On the intermediate structure of arithmetical transfinite recursion and Π_1^1 comprehension

Yudai Suzuki

(This is a joint work with Keita Yokoyama.)

Reverse mathematics is a research program which investigate the complexity of mathematical theorems. More precisely, we consider the complexity of a mathematical theorem as the strength of an axiom of second order arithmetic which is sufficient and needed to prove the theorem.

The structure of complexity in reverse mathematics has five big milestones, namely RCA_0 , WKL_0 , ACA_0 , ATR_0 , Π_1^1 - CA_0 , and some recent studies focus on problems having intermediate complexity between ATR_0 and Π_1^1 - CA_0 . Theorems belonging to this area are roughly separated into two parts by the complexity of formulas : the Π_2^1 part and the Π_3^1 part. In this talk, we will give a fine separation of the Π_2^1 part.

For this purpose, we use a characterization of Π_1^1 -CA₀ based on hyperjump. Let X be a set. We denote HJ(X) the set of indices of X-computable well-oderings, and call it the hyperjump of X. For each k > 0, Π_1^1 -CA₀ is equivalent to ACA₀ + $\forall X \exists Y(Y = HJ^k(X))$.

According to this fact, the complexity of Π_1^1 -CA₀ should be separated into the hierarchy of $\{\forall X \exists Y (Y = HJ^k(X)) : k \in \omega\}$. To apply this idea to the Π_2^1 part, we introduce a Π_2^1 weakening of them.

Definition. Let k > 0. Define $\beta \mathsf{RFN}(k)$ by $\forall X \exists \mathcal{M} : coded \ \omega \text{-model}(\mathcal{M} \models \mathsf{ACA}_0 + \exists Y(Y = \mathrm{HJ}^k(X))).$

We will show that the hierarchy of $\beta \mathsf{RFN}$ gives a nice separation of the Π_2^1 part of Π_1^1 -CA₀.

Theorem. The following holds.

- Each $\beta \mathsf{RFN}(k)$ is a Π_2^1 statement provable from Π_1^1 -CA₀
- Over ACA_0 , the hierarchy of $\beta RFN(n)$ is strictly increasing.
- $|\Pi_1^1 \mathsf{CA}_0|_{\Pi_2^1} = |\mathsf{ACA}_0 + \{\beta \mathsf{RFN}(k) : k \in \omega\}|_{\Pi_2^1}$. Here, $|T|_{\Pi_2^1}$ denotes $\{\sigma \in \Pi_2^1 : T \vdash \sigma\}$.

In addition, some Π_2^1 consequences of Π_1^1 -CA₀ can be characterized as follows.

Theorem. Over ACA_0 , the following assertions are equivalent.

- { β RFN $(k) : k \in \omega$ }
- {rel(Σ₁⁰)_kDet : k ∈ ω} where rel(Σ₁⁰)_kDet says that for any (Σ₁⁰)_k games in the Baire space, there is a pseudo-winning strategy S for one player in the sense that any arithmetically definable strategy S' from S never win against S.
- $\{\operatorname{rel}\Sigma_k^0\mathsf{Ram} : k \in \omega\}$ where $\operatorname{rel}\Sigma_k^0\mathsf{Ram}$ says the existence of psuedo-homogeneous set for each 2-coloring for a Σ_k^0 subset of $[\mathbb{N}]^{\mathbb{N}}$.