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1. Randomness = unpredictability



Randomness for infinite sequences.

In the previous talks, randomness for infinite binary sequences was
discussed, in particular the notion of Martin-Löf randomness.

A sequence X ∈ 2ω is Martin-Löf random
iff it avoids every effectively null Π0

2 class
iff all its initial segments are incompressible (= have high Kolmogorov
complexity).
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The unpredictability paradigm.
Schnorr proposed another approach: an infinite binary sequence X is
random if no computable gambling strategy makes (a lot of) money
by betting on the values of the bits of X.

Strategy:
• starts with some finite capital
• at each turn, bets some amount of money – between 0 and

current capital – on the value of the next bit (e.g. bets $0.3 on
the value 1 for next bit)

• next bit is revealed, the strategy doubles its stake if correct,
loses it otherwise

• strategy succeeds if the capital reaches arbitrarily high values
throughout the game (i.e. the lim sup of the capital is +∞).
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Computable randomness (1).

A strategy can be thought as a function which maps a finite
sequence of bits (the sequence of bits already revealed) to a bet, i.e.
a 0/1 guess and a stake (any real number between 0 and current
capital). This allows us to talk about computable strategies.

A sequence X ∈ 2ω is computably random if there is no computable
strategy which succeeds on X (with succeeds = reaches arbitrarily
high values of capital).
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Computable randomness (2).
Examples of non-computably random sequences:

• computable sequences
• sequences which do not satisfy the law of large numbers
• sequences such that any prefix contains more 0’s than 1’s
• sequences X such that X(i) = 0 for all i power of 2

Computable randomness is significantly weaker than Martin-Löf
randomness, but is sufficient to capture most classical probability
laws.

Recently, it was shown by Brattka, Miller, Nies that it has strong
connections with computable analysis (differentiability).
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2. Integer-valued strategies



A more realistic gambling model.

In any “real-world” situation involving gambling, the money is
discrete, i.e. the values of possible bets are all multiples of an
“atomic” value (one cent, one token, etc.).

Therefore, it makes sense to look at integer-valued strategies. We
call N-random a sequence X such that no computable
integer-valued strategy succeeds on X.

Does this give a weaker notion?
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N-valued strategies are weak (1).

Computable N-valued strategies are much weaker than real-valued
ones, in the sense that they can be defeated more easily.

How to defeat a computable real-valued strategy?
One possibility: at each step, if the strategy guesses 0, put a 1, if the
strategy guesses 1, put a 0.

We can extend this technique to a finite number of strategies:
indeed n strategies together can be thought as a single player.

One typically builds computably random reals by diagonalization,
adding more and more strategies.
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N-valued strategies are weak (2).
For N-valued strategies, the situation is even better: one can
completely defeat any given strategy after finitely many bets.

Suppose we want to defeat an N-valued strategy S which has
already seen some finite sequence σ of bits. There are two cases:
• either S does not make any bet (= stake 0) on any extension

of σ. In that case, S is dormant and is defeated no matter what
extension of σ we choose.

• or S bets on some extension τ of σ, we pick the shortest
such τ, and chose the extension τ0 if the strategy guesses 1
and the extension τ1 if the strategy guesses 0. This causes the
strategy to lose at least 1.

We repeat this process. The second case cannot happen infinitely
often, so eventually the strategy is either broke or “gives up”.
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N-randomness and category (1).

In a diagonalization, this technique gives the opportunity to treat
N-valued strategies one after the other, instead of all at the same
time.

What we just proved is that for every N-valued strategy S, there
exists a dense open set of sequences that defeat S. Since there are
only countably many computable such strategies, this shows that
the set of N-random sequences is co-meager.

This is very large. For example the set of sequences that satisfy the
Law of Large Numbers is meager.
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N-randomness and category (2).

We can look at effective versions of category.

A sequence X ∈ 2ω is is weakly n-generic if for every dense
Σ0

1(∅(n−1)) set U , X belongs to U .

X is n-generic if for every Σ0
1(∅(n−1)) set U , X is either in U or in the

interior of the complement of U .

For all n, weakly-(n+ 1)-generic ⇒ n-generic ⇒ weakly-n-generic.
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N-randomness and category (3).

How much genericity is needed to guarantee N-randomness?

Theorem (BST)
Any
weakly-2-generic
sequence X is N-random. This
does
not
hold
anymore
with
1-genericity
in
place
of
weak-2-genericity.

2. Integer-valued strategies 15/33



N-randomness and category (3).

How much genericity is needed to guarantee N-randomness?

Theorem (BST)
Any
weakly-2-generic
sequence X is N-random. This
does
not
hold
anymore
with
1-genericity
in
place
of
weak-2-genericity.

2. Integer-valued strategies 15/33



N-randomness vs Kurtz randomness (1).

There is another well-known “randomness” notion whose
corresponding class of random reals is co-meager: Kurtz
randomness. A sequence X is Kurtz random if it belongs to every Σ0

1
set of measure 1. Since a Σ0

1 of measure 1 must be dense, any
1-generic sequence is Kurtz random.

So Kurtz random does not imply N-randomness, but does the
reverse implication hold?

We show that it is not the case.
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N-randomness vs Kurtz randomness (2).

To prove this, we use a characterization of Kurtz randomness in
terms of strategies.

Theorem (Wang)
A sequence X is not Kurtz
random
if
and
only
if
there
is
a
computable
real-valued
strategy S and
a
computable
non-decreasing
unbounded
function h such
that
the
capital
of S after n bets
on X is
at
least h(n).
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N-randomness vs Kurtz randomness (4).

It is sufficient to build a computable probability measure µ such that
when choosing X at random w.r.t. µ:
• With µ-probability 1, X is N-random
• With µ-probability 1, X is not Kurtz random

Idea: we use generalized Bernoulli measures. These are the
measures we get when for all i the i-th bit is chosen at random
independently of the others, but with probablity 1/2 + δi to be 0.
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N-randomness vs Kurtz randomness (3).
A result of Bienvenu and Merkle (after Muchnik): If

∑
i δ

2
i = +∞,

then with µ-probability 1, X is not Kurtz random. Indeed, the optimal
strategy which for all i guesses that the i-th bit will be 0 and bets a
fraction 2δi of its capital will make money steadily, ensuring that X
not Kurtz random.

Also, if a strategy S ′ bets too much on the i-th bit (stake ≫ fraction
2δi of the capital), then it loses quickly.

Idea: take the δi such that
∑

i δ
2
i = +∞ but sufficiently small in

such a way that any strategy wins very slowly, and hence, for an
N-valued strategy, betting 1 or more at stage i is too costly. One can
take

δi = (i log i)−1/2
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3. Bounding the bets



An even weaker model.

In many situations, on top of being discrete, the set of possible bets
is bounded (hence finite). If V is a finite set of integers, we call
V-random a sequence X which defeats all computable martingales
which are only allowed to bet amounts of money belonging to V.

Does this too make a difference?

Yes:

Theorem (BST)
For
any
finite
set V, V-randomness
is
weaker
than N-randomness.
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N-randomness vs V-randomness (1).

Idea of the proof: we split the set of integers (positions of bits) into
consecutive blocks. Start with 1 block of length 1, then 2 blocks of
lenght 2, 4 blocks of length 3 and so on, i.e. 2n intervals of
length n+ 1 for all n in order.

We make sure that X ∈ 2ω satisfies the condition

For any block B, there is an i ∈ B such that X(i) = 0 (*)
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N-randomness vs V-randomness (2).

Any X satisfying the condition (∗) can be defeated by an N-valued
strategy. Use the D’Alembert martingale on each block: first bet $1
on value 0, and every time one loses, double the stake on the next
bit. This guarantees a gain of $1 per block, and thus a gain of 2n on
the set of blocks of length n+ 1. This is enough to ensure that the
strategy has enough money to play the D’Alembert martingales on
blocks of length n+ 2.

However, a strategy which is only allowed bounded bets cannot use
the D’Alembert martingale, and in fact it is not too hard to diagonalize
against all V-valued strategies while enforcing condition (∗).
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The importance of V (1).
Ok, putting a bound on the bets makes a difference, but does the set
of allowed values matter itself?

Example: three players are betting on a sequence X.
• Asuka can make bets in A = {0, 1, 2, 3, 4, 5}
• Bachiko can make bets in B = {1, 2, 3, 4, 10, 20}
• Chihiro can make bets in C = {0, 2, 4, 6, 8, 10, 15}

Does any of the players have an advantage?

Pairs (A,B), (B,C) are not clear. However, one can see immediately
that Chihiro has an advantage over Asuka. The reason is that
2A ⊆ B, so Chihiro can just copy Asuka’s strategy, just making bets
twice bigger (and even has the opportunity to use the 15 option; if
we remove this option then the rules of Asuka and Chihiro are
“equivalent”).
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The importance of V (2).

This observation gives us directly:

Lemma
If
for
some k ∈ Q>0 we
have (k ·A) ⊆ B, then B-randomness
implies A-randomness.
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The importance of V (3).

A remarkable result: the converse holds!

Theorem (CDFT)
If B-randomness
implies A-randomness, then
there
is
some
k ∈ Q>0 such
that (k ·A) ⊆ B.
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The importance of V (4).

Proof sketch. Suppose that (k ·A) ̸⊆ B for any k. We want to
show that there is an X which can be defeated by a computable A-
strategy S but no computable B-strategy (in fact, we can diagonalize
against any countable set of B-strategies).

Think of a situation where S is the strategy of a stooge player, who
works in collusion with the casino which provides the sequence X.

Let A = {a1, a2, ..., an}. The strategy S will be simple: bet $a1 on 0,
then $a2, $a3, ..., $an, and repeat. This is clearly computable!!
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The importance of V (4).
Now suppose a player with strategy M enters the casino. The goal is
to defeat M while giving money to S. The casino has a two-phase
plan.

Phase 1. At each step, the casino does the following:
• if M bets money on value 1, then the casino outputs a 0 (this

way S makes money and M loses money... best case scenario!)
• otherwise it computes the ratio

k = (capital of S)/(capital of M) and compares it with
k ′ = (bet of S)/(bet of M)

▶ if k ′ ≥ k, the casino output a 0 (both S and M win some money,
but S wins more proportionally to its capital)
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The importance of V (5).

During phase 1, the ratio (capital of S)/(capital of M) is
non-decreasing over time. One can show by contradiction that in
fact it has to tend to +∞. If not, it tends to some k∗. But then, the
best strategy for M to prevent the increase of
(capital of S)/(capital of M) would be to multiply each bet of S
by 1/k∗. By assumption, this is not possible.
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The importance of V (6).

We have established that (capital of S)/(capital of M) → +∞.

When this ratio becomes large enough, then the casino
enters phase 2, where it will try to make M lose money no matter
how much it costs S. Since S is sufficiently wealthy at the beginning
of this phase, it will “survive” until the end, i.e., when M is defeated.

To complete the proof, a bit more care is needed: how to play
against different players, how to handle the case where players
appear to be dormant (stops betting) but could wake up later, etc.
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Further work.

Is this work useful “in practice”? (i.e., does it explain some real-life
phenomena?)

Does N-randomness has interesting interactions with computability
theory? (e.g. what is lowness for N-randomness?)

Can the separation of A-randomness and B-randomness always be
witnessed by a 1-generic?
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Thank you
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