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Imprecise probability models



Set of desirable gambles as a belief model

Two types of imprecise-probability models (Walley, 1991):

lower expectation: P(f(X)) for all gambles f: 2" — R

set of desirable gambles: 7 C (.2 is a set of gambles that a subject
strictly prefers to zero



Set of desirable gambles as a belief model

Two types of imprecise-probability models (Walley, 1991):

lower expectation: P(f(X)) for all gambles f: 2" — R

set of desirable gambles: 7 C (.2 is a set of gambles that a subject
strictly prefers to zero

Working with sets of desirable gambles Z:
m is simpler, more intuitive and more elegant

m is more general and expressive than (conditional) lower
expectations and even full conditional measures

m gives a geometrical flavour to probabilistic inference
m shows that probabilistic inference is ‘logical’ inference
m avoids problems with conditioning on sets of probability zero



Coherence for a set of desirable gambles

A set of desirable gambles 7 is called coherent if:

Di. iff<Othenf¢ 2 [not desiring non-positivity]
D2. iff >0thenfc ¥ [desiring partial gains]
D3. iff,.gec Zthenf+gec P [addition]

D4. iffe Zthen Af ¢ Y forallreal L >0 [scaling]
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A set of desirable gambles 7 is called coherent if:
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if f>0thenfec 2 [desiring partial gains]
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Precise models cor-
respond to the special
case that the convex
cones 7 are actually
halfspaces!




Connection with lower and upper expectations

lower expectation:
P(f)=sup{acR: f—aec 7}

upper expectation:
P(f)=inf{a eR: a—f € P} = —P(—f)




Inference: natural extension
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A UG (2)>0




Inference: natural extension

8.y = posi(Z UG (Z)~0)

posi(%) = {Z)kak:fk e X, >0,n> O}
k=1



The conditioning rule

Now suppose that you learn that B occurs.
This leads to an updated set of desirable gambles:

fEIDB&Igf €« Zorf>0
or equivalently, for gambles g on B:

gEZ|B&Igge .



The conditioning rule

Now suppose that you learn that B occurs.
This leads to an updated set of desirable gambles:

fEIDB&Igf €« Zorf>0
or equivalently, for gambles g on B:

gEZ|B&Igge .

Just like in the unconditional case, we can use a coherent set of
desirable gambles 7 to derive conditional lower and upper expectations:

P(f|B) =sup{a e R: f—a € Z|B} =sup{a e R: I3(f —at) € I}
P(g|B) =sup{aeR: g—ac Z|B} =sup{a e R: Ig(g—a) € I}



All you know about probability theory ...
All of and can be inferred from:

m the coherence rules D1-D4
m the conditioning rule
m (and some extra continuity requirements)

for sets of desirable gambles.

Bayes’s Rule and Theorem
laws of large numbers
other limit laws



Grafting IP-models on an event tree
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Abstract

We give an overview of two approaches to probability theory where lower and upper probabilities, rather than probabilities,
are used: Walley's behavioural theory of imprecise probabilities, and Shafer and Vovk's game-theoretic account of probability.
‘We show that the two theories are more closely related than would be suspected at first sight, and we establish a correspondence
‘berween them that (i) has an interesting interpretation, and (ii) allows us to freely import results from one theory into the other.
Our approach leads to an account of probability trees and random processes in the framework of Walley's theory. We indicate how
our results can be used to reduce the computational complexity of dealing with imprecision in probability trees, and we prove an
interesting and quite general version of the weak law of large numbers.

©2008 Elsevier B.V. All rights reserved.
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An event tree and its situations

Situations are nodes in the event tree, and the sample space Q is the
set of all terminal situations:

a) .
___—— terminal

init( /

non-terminal



Events

An event A is a subset of the sample space Q:

E(s) ={woeQ:sC o}



Cuts of a situation

Ui

U

us3




Cuts of a situation

Uprecedes V: ULV




Immediate prediction models

In each non-terminal situation s, Forecaster has a belief model 7,
satisfying D1-D4.

C(s) = {cy,c2} is the set of children of s.



Imprecise probability trees with
bounded horizon



From a local to a global model

We first assume that the event tree has

How to combine the local pieces of information into a coherent global
model:

Forecaster accepts which gambles f on the entire sample space Q7?

For each non-terminal situation s and each /., € 7, Forecaster accepts
the gamble /2, on O, where

. {o o ¢ E(s)

hy(w) =
(@) hs(cw) SCcopC o.

h, represents the gamble on Q that is unless Reality ends up
in situation s, and then depends only on Reality’s move ¢
s, and gives the same value /;(¢) to all paths o that go through c.



Natural extension

So Forecaster accepts all gambles in the set:

2 = {hy: hy € Z; and s non-terminal} .

Find the natural extension & of Z:

the smallest subset of ¥(Q) that includes 2, is coherent—satisfies
D1-D4—and satisfies cut conglomerability.

A set of desirable gambles Z on Q is cut-conglomerable if for all cuts U
of [:

DS. if (Vu € U)(Igf € 2U{0}) then f € 2U{0}.



Desirable selections and gamble processes

A desirable r-selection . is a process, defined on all non-terminal
situations s that follow 7, and such that

S (s) € 2,U{0} for all non-terminal s 3¢
S (s) # 0 for some non-terminal s J ¢

It selects, in advance, a desirable-or-zero gamble .~ (s) from the
available desirable gambles in each non-terminal s J 7.

With a desirable r-selection ., we can associate a real-valued -gamble
process .7, which is a r-process such that:

I7(¢) =77 (s)+.7(s)(c), forall s Jrand all ¢ € C(s)

and |
I7 (1) =0.



Marginal Extension Theorem

Theorem (Marginal Extension Theorem)

There is a smallest set of gambles that satisfies D1-D4 and D5 and that
includes . This natural extension of 7 is given by

Eg = {g €9(Q): g > .75 for some desirable (-selection . } .
Moreover, for any non-terminal situation + and any 1-gamble g,
k)8 € &9 Iff there is some desirable t-selection ./, such that g > jE‘(;)_

Use the coherent set of desirable gambles & to define predictive lower
expectations P(-|r) = P(-|E(r)) conditional on an event E(1):

For any --gamble / on E(7) and for any non-terminal situation 7,

P(f|r) :==sup{a € R: I, (f — ) € Ep}

= sup{a eER:f—a> fé@ for some desirable r-selection 7} :



Law of Iterated Expectations

For a cut U of 7, define the -gamble P(f|U/) by

P(f|U)(w) := P(f|u) for the unique u € U such that u C .

Theorem (Law of lterated Expectations)
Consider any two (bounded) cuts U and V of a situation t such that U
precedes V. Then for all --gambles f on E(1),

P(ft) = P(P(f|U)|1);

P(flU) = P(E(f|V)|U).



Applications: stochastic processes
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IMPRECISE MARKOV CHAINS AND
THEIR LIMIT BEHAVIOR

GerT DE CoomaN, FiLip HERMANS, AND ERIK QUAEGHEBEUR
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ie 14, 9052 Zwiji Belgium
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When the initial and transition probabilities of a finite Markov chain in discrete time
are not well known, we should perform a sensitivity analysis. This can be done by
onsidering as basic uncertainty models the so-called credal sets that these probabil-
are known or believed to belong to and by allowing the probabilities to vary over
such sets. This leads to the definition of an imprecise Markov chain. We show that
the time evolution of such a system can be studied very efficiently using so-called
lower and upper expectations, which are equivalent mathematical representations of
credal sets. We also study how the inferred credal set about the state at time 1 evolves
inder quite unrestrictive conditions, it con
set given for the initial state. This leads to a non-
I Perron-Frobenius theorem to imprecise Markov

asn—
credal set, regardless of the cr
trivial generalization of the c!
chains.
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Queueing system

Ak

W

a
N/

We assume that:
m There is only one queue
m There is only one server
m The capacity of the queueing system is 2
m There is maximally one arrival in one time step
m There is maximally one item serviced in one time step
m The service decision happens before the arrival event



Unrolling the event tree

The state of the system X, at time & is an element of {0, 1,2} where
corresponds to X; =0, 1to X, = 1 and 2 corresponds to X; = 2.




The relation between X, A, and Ry

The number of objects in the system X;..; (= in the buffer + being
serviced) at time « -+ 1, is determined by:

m X;: The number of objects in the system at time &,

m A;: The number of objects that arrive at time %,

m R;: The number of objects that are serviced at time %,

Xi+1 =Xk +Ar — Ry.

Only a limited number of combinations of A;, R, X, and X, | are
allowed:

Xer1 Xk Ar Ry Xer1 Xk Ar Ry Xi+1 X A R




Imprecise (stationary) Markov chain

m We assume that A, and R, do notdepend on A, | Ry .

m Consequently, X, is independent of X;., ; which is the Markov
condition and {X;},_, is a discrete time, imprecise Markov chain.

m We assume that the belief model for (A, R;) does not depend on
the time index k: the resulting Markov chain is stationary.

An imprecise stationary Markov chain is defined by

m its Z,
m the belief model 0 on ¥ (%),
m the T:9(2)—>9(2)

Tf(x) := Q(f|x) for all states x € 2.



Markov chains are a special type of event tree

. (2,2)

(2.1)

(2,0) m In each situation, there
' is the choice of the

(1,2) same possibilities

(1.1) 2°=11,0,2}. This is
’ what we call the

(1,0) .

(0,2) m The belief model

(0,1) depends only on the
' last state. This is the

(0,0)



Law of iterated expectations for Markov chains

The advantage of interpreting the queueing system as an imprecise
Markov chain is that any expectation (assuming epistemic irrelevance in
the Markov condition) can be calculated

Theorem
For any real-valued map . on %, and forany 1 </ <n and all x; in Z;:

Bn\/l(h‘x(') - Inilh(x/i)v
P,(h)=Q,(T" 'h).



The transition operator on the simplex

A A

ap =2/10 rp =2/10 ap =4/10 rp = 6/10 ap = 8/10 ry = 2/10
€ = 300/1000 € = 300/1000 € = 300/1000

da

ap=210rg=410  ag=210rg=410  ap=2/10ry=4/10
€ = 10/1000 € = 100/1000 € = 1000/1000




Time evolution and ergodicity

n=3 n=>5
n=2_8 n=10 n=20 n = 1000

ap="/10and ryp =4/10 and € = 2/10.



Influence of the precise models

ap=4/10rg =0/10 ap=4/10 ro =2/10 ag =4/10 rp =4/10 ap =4/10 ro = 6/10

AL LA

ap=410ry=38/10 ayg=4/10rg =10/10 ay=23/10r9=9/10 ag=2/10ry=10/10

n=5000and € = 1/10.



Influence of imprecision

€ =0.0000 € =0.0100 € =0.0200 € =0.0500

" A

€ =0.1000 € =0.2000 € =0.5000 € =1.0000

n = 5000 and ag = 7/10 and ry = 4/10.



The Perron-Frobenius theorem

Theorem (Perron—Frobenius Theorem)

Consider a stationary imprecise Markov chain with finite state set 7~
that is ergodic. Then for every initial upper expectation P, the upper
expectation P, — P, o T"" ! for the state at time n converges point-wise to
the same upper expectation P_.:

lim P, (h) = lim P, (T"'h) =: P,(h) for all h in 9 (%).

n—yoo n—o0

Moreover, the limit upper expectation P.. is the only T-invariant upper
expectation on (7).



Applications: credal trees
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Credal trees: local uncertainty models

Local uncertainty model associated with each node ¢

For each possible value x,,,, € #,,,, of the mother variable X, ), we
have a conditional lower expectation

Q,('|xm(l)) : g(%> —R
where
O (f1xu)) = lower expectation of /(X;), given that X, ) = x,,,).

The local model O (-|X,,)) is a conditional lower expectation operator.



Interpretation of the graphical structure

The graphical structure is interpreted as follows:

Conditional on the mother variable, the non-parent non-descendants of
each node variable are epistemically irrelevant to it and its
descendants.

/L]



MePICTIr for updating a credal tree

For a credal tree we can find the joint model from the local models
, from leaves to root.

Exact message passing algorithm

— credal tree treated as an expert system
- in the number of nodes

Python code

— written by Filip Hermans

— testing and connection with strong independence in cooperation
with Marco Zaffalon and Alessandro Antonucci

Current (toy) applications in HMMs
character recognition, air traffic trajectory tracking and identification,
earthquake rate prediction



th Intemational Symposium on Imprecise Probability: Theories and Applications, Innsbruck, Austria, 2011

State sequence prediction in imprecise hidden Markov models

Abstract

‘We present an efficient exact algorithm for estimating state
sequences from outputs (o observations) in imprecise hid-
den Markov models GHMM), where both the uncertainty
linking one state to the next, and that linking a state to
its output, are represented using coherent lower previsions.
“The notion of independence we associate with the credal
network representing the iHMM is that of epistemic irrel-
evance. We consider as best estimates for state sequences
the (Walley~Sen) maximal sequences for the posterior joint
state model (conditioned on the observed output sequence).
associated with a gain function that is the indicator of the
state sequence. This corresponds to (and generalises) find
ing the state sequence with the highest posterior probability
in HMMs with precise transition and output probabilities
(pHMMs). We argue that the computational complexity is
at worst quadratic in the length of the Markov chain, cu-
bic in the number of states, and essentially linear in the
number of maximal state sequences. For binary HMMs,
we investigate experimentally how the number of maximal
state sequences depends on the model parameters.

Keywords. Imprecise hidden Markov model, optimal state
sequence, maximality, coherent lower prevision, credal net-
work, epistemic irrelevance.

Jasper De Bock and Gert de Cooman
SYSTeMS, Ghent University. Belgium
(jasper.debock,gert.decooman } @ UGent.be

is a serious limitation, there are, nevertheless quite a num-
ber of models and applications that involve a tree structure.
Amongst these, hidden Markov models (HMMs) are defin-
itely the simplest. and perhaps also the most popular ones.
But this brings us to the second limitation: MePiCTIr only
allows updating of beliefs about a single node. Whereas
one of the most important applications for, say. HMMs,
involves finding the sequence of (hidden) states with the
highest posterior probability after observing a sequence of
outputs [11]. For HMMs with precise local transition and
emission probabilities. there are quite efficient dynamic
programming algorithms, such as Viterbi’s [11., 13]. for per-
forming this task. For imprecise-probabilistic local models.,
suchas coherent lower previsions, we know of no algorithm
in the literature for which the computational complexity
comes even close to that of Viterbi’s.

In this paper, we take the first steps towards remedying this
situation. We describe imprecise hidden Markov models
as special cases of credal trees (a special case of credal
networks) under epistemic irrelevance in Section 2. We
show in particular how we can use the ideas underlying the
Mc CTIr algorithm (independent natural extension and

arginal extension) to construct a most conservative joint
model from i .mpmm Joeal tunsiton and enision madels

-hz: construction.In Sction 3 we explain hnw a sequence
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A HMM is a special credal tree

Ql() Qz(‘Xl) Qk("xkfl) Qn('p{nfl)

State sequence: e @ --- @ - e
Output sequence: @ @ @ @

Si¢1X1)  S(1X2) Sy (+1Xk) Sy (+1Xn)



Maximal state sequences

Classically (Viterbi):

Find the state sequence 1., that maximises the posterior probability
p(xi.lo1.,) corresponding to a given observation sequence o.,.

Maximality (under robust ordering):
Define a partial order > on state sequences:

X1 > X1 iff p(R1n]01:0) > p(x1:0]01:) fOr all compatible p(-|o1.,)

Find the state sequences 1., that are maximal: undominated by any
other state sequence.



ESTIHMM for finding all maximal state sequences

Exact backward-forward algorithm

— developed by Jasper De Bock

— finds all maximal state sequences that correspond to a given
observation sequence

- in the number of nodes [linear]
- in the number of states [quadratic]
- in the number of maximal sequences. [linear]

Python code
— written by Jasper De Bock

Current (toy) applications in HMMs
character recognition, finding gene islands



Imprecise probability trees with
unbounded horizon



What we would like to get to

We now allow the discrete tree to have unbounded depth.

Define for any 7-process .7 the r-gamble limsup.7 as:

limsup.% (®) = limsup.Z (w,) for all w € E(¢),
n——+oo

where w, denotes the (finite or denumerably infinite) sequence of
situations in the path .

We would like to go from
P(f|t) = sup {oc o> fr/([) for some desirable ¢-selection 7}
to
P(f|t) =sup {oc . f— o > limsup.#~” for some desirable ¢-selection &”} .

This is the counterpart of the Shafer—Vovk—Ville formula.



Additional axioms

This seems impossible with only D1-D4 (coherence) and D5 (cut
conglomerability).

So we add two axioms to coherence: bounded cut conglomerability
D5. For all bounded cuts U of [1:

(Vu € U)(Iguf € 2U{0}) = f € 2U{0}.

and bounded cut continuity

D6. For any real process .7 such that limsup;; o ,nqeq 70 € 4(€2), and
such that .7, — .7, ¢ 2U{0} for all bounded cuts U L V of [
limsupy pounded-#v —-# (H) € ZU{0}.

Observe that limsup;; ,ounded -7 = limsup.7.



Marginal Extension Theorem

Theorem (Marginal Extension Theorem)

There is a smallest set of gambles that satisfies D1-D4, and D5-D6
and that includes . This natural extension of 7 is given by

Eg:=9(Q)>0U {g: g > limsup.#” for some desirable O-selection . } .

Moreover, for any non-terminal situation : and any :-gamble g,
Ir)8 € &y Iff g > 0 or there is some desirable 1-selection ./, such that

g > limsup .7,
For any --gamble / on E(7) and for any non-terminal situation 7,

P(flr) i=sup {a: Iy (f — @) € 6}
= sup{a:f— a > limsup.#~ for some desirable t-selection /} :



Law of Iterated Expectations

Theorem (Law of lterated Expectations)

Consider any two cuts U and V of a situation t such that U precedes V.
Then for all t-gambles f on E(1),

P(ft) = P(B(f|U)]1);
P(f|U) = P(E(f|V)|U).
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