
A link between Game-Theoretic Probability and
Imprecise Probabilities

Gert de Cooman

Ghent University, SYSTeMS

gert.decooman@UGent.be

http://users.UGent.be/˜gdcooma

gertekoo.wordpress.com

GTP2012
13 November 2012



My boon companions

FILIP HERMANS ENRIQUE MIRANDA JASPER DE BOCK



Imprecise probability models



Set of desirable gambles as a belief model

Two types of imprecise-probability models (Walley, 1991):

lower expectation: P(f (X)) for all gambles f : X ! R
set of desirable gambles: D ✓ G (X) is a set of gambles that a subject

strictly prefers to zero

Working with sets of desirable gambles D:
is simpler, more intuitive and more elegant
is more general and expressive than (conditional) lower
expectations and even full conditional measures
gives a geometrical flavour to probabilistic inference
shows that probabilistic inference is ‘logical’ inference
avoids problems with conditioning on sets of probability zero
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Coherence for a set of desirable gambles
A set of desirable gambles D is called coherent if:
D1. if f  0 then f 62 D [not desiring non-positivity]
D2. if f > 0 then f 2 D [desiring partial gains]
D3. if f ,g 2 D then f +g 2 D [addition]
D4. if f 2 D then l f 2 D for all real l > 0 [scaling]
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Precise models cor-
respond to the special
case that the convex
cones D are actually
halfspaces!
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Connection with lower and upper expectations
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f

f �P(f )

P(f )

lower expectation:

P(f ) = sup{a 2 R : f �a 2 D}

upper expectation:

P(f ) = inf{a 2 R : a � f 2 D}=�P(�f )



Inference: natural extension
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The conditioning rule
Now suppose that you learn that B occurs.
This leads to an updated set of desirable gambles:

f 2 D|B , IBf 2 D or f > 0

or equivalently, for gambles g on B:

g 2 DcB , IBg 2 D.

Just like in the unconditional case, we can use a coherent set of
desirable gambles D to derive conditional lower and upper expectations:

P(f |B) := sup{a 2 R : f �a 2 D|B}= sup{a 2 R : IB(f �a) 2 D}
P(g|B) := sup{a 2 R : g�a 2 DcB}= sup{a 2 R : IB(g�a) 2 D}
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All you know about probability theory . . .

All of propositional logic and probability theory can be inferred from:

the coherence rules D1–D4
the conditioning rule
(and some extra continuity requirements)

for sets of desirable gambles.

1 Bayes’s Rule and Theorem
2 laws of large numbers
3 other limit laws
4 . . .

But they provide a solid foundation for imprecise probabilities too!



Grafting IP-models on an event tree



@ARTICLE{cooman2008,
author = {de Cooman, Gert and Hermans, Filip},
title = {Imprecise probability trees: Bridging two theories of imprecise probability},
journal = {Artificial Intelligence},
year = {2008},
volume = {172},
pages = {1400–1427},
number = {11},
doi = {10.1016/j.artint.2008.03.001}

}



An event tree and its situations
Situations are nodes in the event tree, and the sample space W is the
set of all terminal situations:

t

w

initial

terminal

non-terminal



Events

An event A is a subset of the sample space W:

s

E(s) := {w 2 W : s v w}



Cuts of a situation

t

u
3

u
2
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Cuts of a situation

t

U V

U precedes V: U v V



Immediate prediction models

In each non-terminal situation s, Forecaster has a belief model Ds,
satisfying D1–D4.

s

c
2

c
1

t

Ds ✓ G (C(s)) Dt ✓ G (C(t))

C(s) = {c
1

,c
2

} is the set of children of s.



Imprecise probability trees with
bounded horizon



From a local to a global model

We first assume that the event tree has bounded depth.

How to combine the local pieces of information into a coherent global
model:

Forecaster accepts which gambles f on the entire sample space W?

For each non-terminal situation s and each hs 2 Ds, Forecaster accepts
the gamble ˆhs on W, where

ˆhs(w) :=

(

0 w /2 E(s)
hs(cw) s @ cw v w.

ˆhs represents the gamble on W that is called off unless Reality ends up
in situation s, and then depends only on Reality’s move c immediately
after s, and gives the same value hs(c) to all paths w that go through c.



Natural extension

So Forecaster accepts all gambles in the set:

D :=
�

ˆhs : hs 2 Ds and s non-terminal
 

.

Find the natural extension ED of D:
the smallest subset of G (W) that includes D, is coherent—satisfies
D1-D4—and satisfies cut conglomerability.

A set of desirable gambles D on W is cut-conglomerable if for all cuts U
of ⇤:
D5. if (8u 2 U)(IE(u)f 2 D[{0}) then f 2 D[{0}.



Desirable selections and gamble processes

A desirable t-selection S is a process, defined on all non-terminal
situations s that follow t, and such that

S (s) 2 Ds [{0} for all non-terminal s w t
S (s) 6= 0 for some non-terminal s w t

It selects, in advance, a desirable-or-zero gamble S (s) from the
available desirable gambles in each non-terminal s w t.

With a desirable t-selection S , we can associate a real-valued t-gamble
process I S , which is a t-process such that:

I S (c) := I S (s)+S (s)(c), for all s w t and all c 2 C(s)

and
I S (t) = 0.



Marginal Extension Theorem

Theorem (Marginal Extension Theorem)
There is a smallest set of gambles that satisfies D1–D4 and D5 and that

includes D. This natural extension of D is given by

ED :=
n

g 2 G (W) : g � I S
W for some desirable ⇤-selection S

o

.

Moreover, for any non-terminal situation t and any t-gamble g,

IE(t)g 2 ED iff there is some desirable t-selection St such that g � I St
E(t).

Use the coherent set of desirable gambles ED to define predictive lower
expectations P(·|t) := P(·|E(t)) conditional on an event E(t):
For any t-gamble f on E(t) and for any non-terminal situation t,

P(f |t) := sup

�

a 2 R : IE(t)(f �a) 2 ED
 

= sup

n

a 2 R : f �a � I S
E(t) for some desirable t-selection S

o

.



Law of Iterated Expectations

For a cut U of t, define the t-gamble P(f |U) by

P(f |U)(w) := P(f |u) for the unique u 2 U such that u v w.

Theorem (Law of Iterated Expectations)
Consider any two (bounded) cuts U and V of a situation t such that U
precedes V. Then for all t-gambles f on E(t),

1 P(f |t) = P(P(f |U)|t);
2 P(f |U) = P(P(f |V)|U).



Applications: stochastic processes



@ARTICLE{cooman2009,
author = {{d}e Cooman, Gert and Hermans, Filip and Quaegehebeur, Erik},
title = {Imprecise {M}arkov chains and their limit behaviour},
journal = {Probability in the Engineering and Informational Sciences},
year = 2009,
volume = 23,
pages = {597--635},
doi = {10.1017/S0269964809990039}

}



Queueing system

server

buffer

Service process: RkArrival process: Ak

We assume that:
There is only one queue
There is only one server
The capacity of the queueing system is 2
There is maximally one arrival in one time step
There is maximally one item serviced in one time step
The service decision happens before the arrival event



Unrolling the event tree

The state of the system Xk at time k is an element of {0,1,2} where 0

corresponds to Xk = 0, 1 to Xk = 1 and 2 corresponds to Xk = 2.

0

(0,0)

(0,1)

(0,2)

1

(1,0)

(1,1)

(1,2)

2

(2,0)

(2,1)

(2,2)



The relation between Xk, Ak and Rk
The number of objects in the system Xk+1

(= in the buffer + being
serviced) at time k+1, is determined by:

Xk: The number of objects in the system at time k,
Ak: The number of objects that arrive at time k,
Rk: The number of objects that are serviced at time k,

Xk+1

= Xk +Ak �Rk.

Only a limited number of combinations of Ak, Rk, Xk and Xk+1

are
allowed:

Xk+1

Xk Ak Rk

0 0 0 0

0 0 1

1 0 1 0

0 1 1

Xk+1

Xk Ak Rk

1 1 0 0

1 1 0 1

2 1 1 0

1 1 1 1

Xk+1

Xk Ak Rk

2 2 0 0

1 2 0 1

2 1 0

2 2 1 1



Imprecise (stationary) Markov chain

We assume that Ak and Rk do not depend on A
1:k�1

,R
1:k�1

.
Consequently, Xk is independent of X

1:k�1

which is the Markov
condition and {Xk}k2N is a discrete time, imprecise Markov chain.
We assume that the belief model for (Ak,Rk) does not depend on
the time index k: the resulting Markov chain is stationary.

X
1

X
2

X
3

X
4

X
5

Q
1

T T T T

An imprecise stationary Markov chain is defined by
its state space X,
the prior belief model Q

1

on G (X),
the upper transition operator T: G (X)! G (X)

Tf (x) := Q(f |x) for all states x 2 X.



Markov chains are a special type of event tree

0

(0,0)

(0,1)

(0,2)

1

(1,0)

(1,1)

(1,2)

2

(2,0)

(2,1)

(2,2)

Q
1

Q(·|0)

Q(·|1)

Q(·|2)

X
1

X
2

In each situation, there
is the choice of the
same possibilities
X = {1,0,2}. This is
what we call the state
space.
The belief model
depends only on the
last state. This is the
Markov condition



Law of iterated expectations for Markov chains

The advantage of interpreting the queueing system as an imprecise
Markov chain is that any expectation (assuming epistemic irrelevance in
the Markov condition) can be calculated recursively.

Theorem
For any real-valued map h on Xn, and for any 1  `< n and all x` in X`:

Pn|`(h|x`) = T

n�`h(x`),

Pn(h) = Q
1

(Tn�1h).



The transition operator on the simplex

a
0

= 2/10 r
0
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Time evolution and ergodicity

n = 1 n = 2 n = 3 n = 5

n = 8 n = 10 n = 20 n = 1000

a
0

= 7/10 and r
0

= 4/10 and e = 2/10.



Influence of the precise models

a
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= 4/10 r
0

= 8/10 a
0

= 4/10 r
0

= 10/10 a
0

= 8/10 r
0

= 0/10 a
0

= 2/10 r
0
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n = 5000 and e = 1/10.



Influence of imprecision

e = 0.0000 e = 0.0100 e = 0.0200 e = 0.0500

e = 0.1000 e = 0.2000 e = 0.5000 e = 1.0000

n = 5000 and a
0

= 7/10 and r
0

= 4/10.



The Perron-Frobenius theorem

Theorem (Perron–Frobenius Theorem)
Consider a stationary imprecise Markov chain with finite state set X
that is ergodic. Then for every initial upper expectation P

1

, the upper

expectation Pn = P
1

�T

n�1

for the state at time n converges point-wise to

the same upper expectation P•:

lim

n!•
Pn(h) = lim

n!•
P

1

(Tn�1h) =: P•(h) for all h in G (X).

Moreover, the limit upper expectation P• is the only T-invariant upper

expectation on G (X).



Applications: credal trees



@ARTICLE{cooman2010,
author = {{d}e Cooman, Gert and Hermans, Filip and Antonucci, Alessandro and Zaffalon, Marco},
title = {Epistemic irrelevance in credal nets: the case of imprecise {M}arkov trees},
journal = {International Journal of Approximate Reasoning},
year = 2010,
volume = 51,
pages = {1029--1052},
doi = {10.1016/j.ijar.2010.08.011}

}



Credal trees: local uncertainty models

Local uncertainty model associated with each node t
For each possible value xm(t) 2 Xm(t) of the mother variable Xm(t), we
have a conditional lower expectation

Qt(·|xm(t)) : G (Xt)! R

where

Qt(f |xm(t)) = lower expectation of f (Xt), given that Xm(t) = xm(t).

The local model Qt(·|Xm(t)) is a conditional lower expectation operator.

Xm(t)

Xs . . . Xt . . . Xs0



Interpretation of the graphical structure

The graphical structure is interpreted as follows:
Conditional on the mother variable, the non-parent non-descendants of
each node variable are epistemically irrelevant to it and its
descendants.

X
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X
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X
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X
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X
5

X
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X
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X
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X
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MePICTIr for updating a credal tree

For a credal tree we can find the joint model from the local models
recursively, from leaves to root.

Exact message passing algorithm

– credal tree treated as an expert system
– linear complexity in the number of nodes

Python code

– written by Filip Hermans
– testing and connection with strong independence in cooperation

with Marco Zaffalon and Alessandro Antonucci

Current (toy) applications in HMMs
character recognition, air traffic trajectory tracking and identification,
earthquake rate prediction



@INPROCEEDINGS{cooman2011,
author = {De Bock, Jasper and {d}e Cooman, Gert},
title = {State sequence prediction in imprecise hidden Markov models},
booktitle = {ISIPTA ’11 -- Proceedings of the 7th International Symposium on Imprecise Probability: Theories and Applications},
year = 2011,
editor = {Coolen, Frank P. A. and {d}e Cooman, Gert and Fetz, Thomas and Oberguggenberger, Michael},
address = {Innsbruck, Austria},
publisher = {SIPTA}

}



A HMM is a special credal tree

X
1

X
2

Xk Xn

O
1

O
2

Ok On

Q
1

(·) Q
2

(·|X
1

) Qk(·|Xk�1

) Qn(·|Xn�1

)

S
1

(·|X
1

) S
2

(·|X
2

) Sk(·|Xk) Sn(·|Xn)

State sequence:

Output sequence:



Maximal state sequences

Classically (Viterbi):
Find the state sequence x̂

1:n that maximises the posterior probability
p(x

1:n|o1:n) corresponding to a given observation sequence o
1:n.

Maximality (under robust ordering):
Define a partial order > on state sequences:

x̂
1:n > x

1:n iff p(x̂
1:n|o1:n)> p(x

1:n|o1:n) for all compatible p(·|o
1:n)

Find the state sequences x̂
1:n that are maximal: undominated by any

other state sequence.



ESTIHMM for finding all maximal state sequences

Exact backward-forward algorithm

– developed by Jasper De Bock
– finds all maximal state sequences that correspond to a given

observation sequence
– quadratic complexity in the number of nodes [linear]
– cubic complexity in the number of states [quadratic]
– linear complexity in the number of maximal sequences. [linear]

Python code

– written by Jasper De Bock

Current (toy) applications in HMMs
character recognition, finding gene islands



Imprecise probability trees with
unbounded horizon



What we would like to get to

We now allow the discrete tree to have unbounded depth.

Define for any t-process F the t-gamble limsupF as:

limsupF (w) := limsup

n!+•
F (wn) for all w 2 E(t),

where wn denotes the (finite or denumerably infinite) sequence of
situations in the path w.

We would like to go from

P(f |t) = sup

n

a : f �a � I S
E(t) for some desirable t-selection S

o

to

P(f |t) = sup

n

a : f �a � limsupI S for some desirable t-selection S
o

.

This is the counterpart of the Shafer–Vovk–Ville formula.



Additional axioms

This seems impossible with only D1–D4 (coherence) and D5 (cut
conglomerability).

So we add two axioms to coherence: bounded cut conglomerability
D5. For all bounded cuts U of ⇤:

(8u 2 U)(IE(u)f 2 D[{0})) f 2 D[{0} .

and bounded cut continuity
D6. For any real process F such that limsupU bounded FU 2 G (W), and

such that FV �FU 2 D[{0} for all bounded cuts U v V of ⇤:
limsupU bounded FU �F (⇤) 2 D[{0}.

Observe that limsupU bounded FU = limsupF .



Marginal Extension Theorem

Theorem (Marginal Extension Theorem)
There is a smallest set of gambles that satisfies D1–D4, and D5–D6

and that includes D. This natural extension of D is given by

ED :=G (W)>0

[
n

g : g � limsupI S
for some desirable ⇤-selection S

o

.

Moreover, for any non-terminal situation t and any t-gamble g,

IE(t)g 2 ED iff g > 0 or there is some desirable t-selection St such that

g � limsupI St
.

For any t-gamble f on E(t) and for any non-terminal situation t,

P(f |t) := sup

�

a : IE(t)(f �a) 2 ED
 

= sup

n

a : f �a � limsupI S for some desirable t-selection S
o

.



Law of Iterated Expectations

Theorem (Law of Iterated Expectations)
Consider any two cuts U and V of a situation t such that U precedes V.

Then for all t-gambles f on E(t),
1 P(f |t) = P(P(f |U)|t);
2 P(f |U) = P(P(f |V)|U).
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