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PART 1: Brownian motion and Kolmogorov complexity



Kolmogorov Complexity and Schnorr’s Theorem

Let K denote prefix-free Kolmogorov complexity, let 2ω = {0, 1}∞,
and let µ be the fair-coin measure on 2ω.

A ∈ 2ω is Martin-Löf
random if for each uniformly Σ0

1 sequence {Un}n∈N with
µUn ≤ 2−n, A 6∈

⋂
n Un.

Theorem (Schnorr)

A ∈ 2ω is Martin-Löf random ⇔ ∃c ∀n K (A � n) ≥ n − c.

Thus, the randomness of the infinite object A is reduced to
randomness of finite approximations. Does something similar hold
in other settings?
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A ∈ 2ω is Martin-Löf random ⇔ ∃c ∀n K (A � n) ≥ n − c.

Thus, the randomness of the infinite object A is reduced to
randomness of finite approximations. Does something similar hold
in other settings?



Kolmogorov Complexity and Schnorr’s Theorem

Let K denote prefix-free Kolmogorov complexity, let 2ω = {0, 1}∞,
and let µ be the fair-coin measure on 2ω. A ∈ 2ω is Martin-Löf
random if for each uniformly Σ0

1 sequence {Un}n∈N with
µUn ≤ 2−n, A 6∈

⋂
n Un.

Theorem (Schnorr)
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Random Walk

Let {Xi}i∈N be a sequence of independent random variables each
satisfying P{Xi = 1} = P{Xi = −1} = 1

2 .

For any n ≥ 0, let

Sn =
n∑

i=1

Xi .

The sequence of random variables {Sn}n∈N is a random walk on Z.
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Random Walk
The expected value of each Xi is

E(Xi ) =
∑

a

a · P{Xi = a} =
1

2
− 1

2
= 0.

and so

E(Sn) = E

(
n∑

i=1

Xi

)
=

n∑
i=1

E(Xi ) = 0.

The variance of Xi is

Var(Xi ) = E
[
(Xi − E[Xi ])

2] = E[X 2
i

]
= 1.

If X and Y are any independent random variables then

Var(X + Y ) = Var(X ) + Var(Y ).

Thus,

Var(Sn) = Var

(
n∑

i=1

Xi

)
=

n∑
i=1

Var(Xi ) =
n∑

i=1

1 = n.
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Random Walk

For 0 ≤ k ≤ n, we have

Var

(
Sk√

n

)
=

(
1√
n

)2

Var(Sk) =
k

n
.

The piecewise linearization `X (t) of X = (X1, . . . ,Xn) is a
piecewise linear function with

`X

(
k

n

)
=

Sk√
n
.

Thus whenever t is of the form k
n , we have

Var(`X (t)) = t.
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Brownian Motion

Brownian motion is a random function W : [0, 1]→ R with
Var(W (t)) = t for all t ∈ [0, 1]; a “random walk with infinitely
small steps”.

It satisfies
P (W (t) ≤ y) = lim

n→∞
P (`(t) ≤ y) .
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Approximating Brownian Motion

The Brownian motion distribution (the Wiener measure) is a limit
of random walk distributions.

`X is an approximation of W , similarly to how a finite binary
sequence A � n = (A(0), . . . ,A(n − 1)) is an approximation of
A = (A(0),A(1), . . .).
It is also true that almost surely, Brownian motion is close to a
piecewise linearization of a random walk; we may choose
X = (X1, . . . ,Xn) so that

sup
0≤t≤1

|`X (t)−W (t)| ≈ 0.

Can we find such an X which has high Kolmogorov complexity?



Approximating Brownian Motion

The Brownian motion distribution (the Wiener measure) is a limit
of random walk distributions.
`X is an approximation of W , similarly to how a finite binary
sequence A � n = (A(0), . . . ,A(n − 1)) is an approximation of
A = (A(0),A(1), . . .).
It is also true that almost surely, Brownian motion is close to a
piecewise linearization of a random walk; we may choose
X = (X1, . . . ,Xn) so that

sup
0≤t≤1

|`X (t)−W (t)| ≈ 0.

Can we find such an X which has high Kolmogorov complexity?



Asarin’s Schnorr’s Theorem for Brownian Motion, and a
strange constant

Asarin (doctoral dissertation 1984 advised by Kolmogorov) defined
Martin-Löf random Brownian motion in terms of tests, and proved
an analogue of Schnorr’s Theorem:

Theorem (Asarin, Automation and Remote Control (1986))

W ∈ C [0, 1] is a Martin-Löf random Brownian motion if and only
if there is a constant c such that for all but finitely many n ∈ N
there is a string x = (x1, . . . , xn) ∈ {0, 1}n such that

sup
0≤t≤1

|`x(t)−W (t)| ≤ n−1/10 and K (x1, . . . , xn) ≥ n − c .

The constant 1/10 is also used in Fouché, Adv. Math. (2000).
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Reducing Wiener measure to Lebesgue measure

The measure underlying Brownian motion is called the Wiener
measure.

Theorem (Kjos-Hanssen and Nerode)

Let π : [0, 1]→ C [0, 1] be a certain partial mapping from the proof
of Carathéodory’s measure algebra isomorphism theorem. The
following are equivalent:

I w is a Martin-Löf random real.

I π(w) is defined and is a Martin-Löf random Brownian motion;

Moreover, if W is a Martin-Löf random Brownian motion then
there is a real w with π(w) = W .
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Approximating Brownian Motion

Theorem (Szabados (2001))

There exists a probability space on which is defined a random
variable W and a double sequence Xi ,n, 1 ≤ i ≤ n, n = 4m, m ≥ 1,
such that {X1,n, . . . ,Xn,n} are independent for each n with

P{Xi ,n = 1} = P{Xi ,n = −1} =
1

2
,

such that the marginal distribution of W is Brownian motion, and
there are constants c1, c2, and α ≥ 2, such that if
X (n) = (X1,n, . . . ,Xn,n),

P
{

sup
0≤t≤1

|W (t)− `X (n)(t)| ≥ c1
log n√

n

}
≤ c2/nα.



Note: the sequences X1,n, . . . ,Xn,n for different n are necessarily

dependent.

Szabados’ proof relies on work of Komlós, Major and Tusnády (1975). As

Szabados proves a more general result, the theorem quoted here may

have been known earlier.
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Using Szabados’ result

Thus

P
⋃

n=4m>N

{
sup

0≤t≤1
|W (t)− `n(t)| ≥ c1

log n√
n

}
≤
∑
n>N

c2/nα ≤ c2/N.

If n is large enough, say n ≥ Nε, then

c1
log n√

n
<

nε√
n
.

So for N ≥ Nε,

P
⋃

n=4m>N

{
sup

0≤t≤1
|W (t)− `n(t)| ≥ nε−

1
2

}
≤ c2/N.



Lemma
If P is a distribution on sequences

{xn}n∈N ∈
∏
n∈N
{0, 1}n

such that the marginal distribution of xn is uniform on {0, 1}n,
then P(∃b∀n K (xn) ≥ n − b) = 1.

Proof.
Using

∑
all σ 2−K(σ) ≤

∑
p halts 2−|p| ≤ 1,

P(∃n K (xn) < n − b) ≤
∑

{σ:K(σ)<|σ|−b}

P(x|σ| = σ)

=
∑

{σ:K(σ)<|σ|−b}

2−|σ| ≤
∑
all σ

2−(K(σ)+b) ≤ 2−b
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Definition
f : [0, 1]→ R is Hölder continuous of order γ if ∃C ∀x , y ∈ [0, 1]
|f (x)− f (y)| ≤ C |x − y |γ .



Explaining the constant 1/10

Theorem (Kjos-Hanssen)

For all ε > 0, Asarin’s Theorem with N replaced by {4m : m ∈ N} holds with the
constant 1/10 replaced by 1/2− ε, but not by 1/2.

Proof sketch.

Replacing 1/10 by 1/2 is impossible, as it would
imply that Brownian motion is Hölder continuous of order 1/2.
Let π be as in Carathéodory’s measure algebra isomorphism
theorem; so a Brownian motion W is π(w) for a real w . For
b ≥ Nε, the set Ub =⋃
n=4m>b

⋂
x∈{0,1}n

{
w : sup

0≤t≤1
|`x(t)− π(w)(t)| ≤ nε−

1
2 → K (x) < n − b

}
(1)

is Σ0
1.

Let X (n) = (X1,n, . . . ,Xn,n) be Szabados’ string, and let Vb =⋃
n=4m>b

{
w : sup

0≤t≤1
|`X (n)(t)− π(w)(t)| ≤ nε−

1
2 → K (X (n)) < n − b

}
.



Explaining the constant 1/10

Theorem (Kjos-Hanssen)

For all ε > 0, Asarin’s Theorem with N replaced by {4m : m ∈ N} holds with the
constant 1/10 replaced by 1/2− ε, but not by 1/2.

Proof sketch. Replacing 1/10 by 1/2 is impossible, as it would
imply that Brownian motion is Hölder continuous of order 1/2.
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Explaining the constant 1/10

We have Ub ⊆ Vb.
By Szabados’ Theorem,

P
⋃

n=4m>b

{
w : sup

0≤t≤1
|`X (n)(t)− π(w)(t)| > nε−

1
2

}
≤ c2/b.

By the Lemma,

P(∃n K (X1,n, . . . ,Xn,n) < n − b) ≤ 2−b.

So
P(Ub) ≤ P(Vb) ≤ c2

b
+ 2−b.

Thus if W = π(w) is Martin-Löf random then there is some b such
that for all n = 4m > b, there is some x = (x1, . . . , xn) with `x(t)

within nε−
1
2 of W (t) and K (x) ≥ n − b.

End of Proof Sketch.
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Proof Summary

Let X (n) be the nth Szabados’ random walks.
With high probability,

(1) X (n) has high complexity and `X (n) is near the
Brownian motion.

Therefore, with high probability,

(2) there is some x ∈ {0, 1}n of high complexity such
that `x is near the Brownian motion.

Property (2) is simple enough that it will be possessed by every
Martin-Löf random Brownian motion.
We do not need to show in any sense that (1) will hold for Martin-Löf random Brownian motion.



PART 2: Teaching the binomial asset pricing model using GTP



S2(HH) = 12

S1(H) = 8, r1(H) = 1/4
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Figure: A stochastic volatility, random interest rate model.



Game theoretic probability for asset pricing

P(E ) = inf{a | ∀F ∃S ∀R (K0 = a & E ⇒ sup
n
Kn ≥ 1)}

Here

I F is “forecaster” which we ignore in this simple model.

I S is “skeptic” which means a hedging strategy.

I R is “reality” which is one of the 4 paths.

I K0,K1,K2 is the initial capital and the next two capitals



Defining GTP when there is an interest rate

P(E ) = the minimum amount of capital needed to set up a
strategy/portfolio guaranteeing that we will receive

(1 + R0)(1 + R1(ω))1E (ω)

(equivalent to 1E (ω) using discounting) at time n.



Example

The sample space Ω has probability 1 since we may put $1 in the
bank and receive (1 + R0)(1 + R1(ω)) at time n = 2.



Defining GTP when there is an interest rate: more natural
way

P(E ) = the minimum amount of capital needed to set up a
strategy/portfolio guaranteeing that we will receive the contents of
a bank account initially holding $1, if E occurs, and 0 otherwise,
at time n.



Upper and lower probabilities

In general P(A) = 1− P(A) and

P(A) ≥ P(A)

although in this simple model they are equal. (When are they not?)



Risk-neutral measure

P̃(E ) defined by:
Ẽn(Sn+1) = (1 + R)Sn

where R is the interest rate. Let p̃ be the probability of head (H),
and

Sn+1(H) = uSn

Sn+1(T ) = dSn,

then it follows that

p̃ =
1 + R − d

u − d



P̃ = P under the No-arbitrage assumption

For the proof that P̃ = P we need to use the assumption of no
arbitrage which corresponds to a game-theoretic assumption that
one cannot get arbitrarily rich.



The real world measure

P(E ) defined by:
En(Sn+1) = (1 + ε)Sn

where ε ≥ R is constant. Let p be the probability of head (H), and
Sn+1(H) = uSn, Sn+1(T ) = dSn, then it follows that

p =
1 + ε− d

u − d



The risk-neutral/game-theoretic probability gives no
reward for risk-taking

If it costs 50 cent to set up a portfolio that will pay the proceeds
from a $1 bank account if A occurs and 0 otherwise, then in what
sense is P(A) = 1/2? If there is no reward for taking a risk, then
P(A) = 1/2, because then the expected reward for our 50 cent
investment is the same as if we put the 50 cent in the bank.



Convenience argument for risk-neutral measure

In addition to being the game-theoretic or “hedge” measure, for
option pricing it is more convenient to use P̃ than P.



Suppose we adopt the axiom that E(S1) = (1 + ε)S0 where ε 6= r .
This is similar to a risk-neutral outlook except that, well, it is no
longer risk-neutral.



Since V1 and S1 depend on head vs. tail, we have V1 = αS1 + β
for some constants α and β that can be calculated.



The relationship between V1 and V0 has the property that

E (V1/V0) = E (V1)/V0 =
αE (S1) + β

αS0 + β
1+r

(since a bond is still risk-free hence risk-neutral when the interest
rate is known)

=
α(1 + ε)S0 + β

α(1 + r)S0 + β
· (1 + r)



When ε = r this simplifies to 1 + r ; in particular then E (V1/V0) is
the same for all securities V when ε = r . For any value of ε 6= r ,
E (V1/V0) depends on α and β.



Can we still find V0 if ε 6= r? Yes, the value of V0 = αS0 + β
1+r

does not depend on ε. But using ε 6= r , we cannot relate V0 to
E (V1) in a simple way.


