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Kolmogorov Complexity and Schnorr's Theorem

Let K denote prefix-free Kolmogorov complexity, let 2 = {0,1}*°,
and let p be the fair-coin measure on 2¥. A € 2¥ is Martin-Lof
random if for each uniformly X9 sequence {U,}nen with

pUn <277 A&, Un.

Theorem (Schnorr)
A € 2% is Martin-Lof random < 3c Vn K(A [ n) > n—c.

Thus, the randomness of the infinite object A is reduced to
randomness of finite approximations. Does something similar hold
in other settings?
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Random Walk

Let {X}icn be a sequence of independent random variables each
satisfying P{X; = 1} = P{X; = -1} = %

For any n > 0, let
n
S, = Zx,-.
i=1

The sequence of random variables {S,} e is a random walk on Z.



Random Walk

The expected value of each X; is
1 1
E(X;) = P{Xj=al==-—-==0.
() =30 BX =3} =5
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Random Walk

The expected value of each X; is
Za P{X; —a}—§ %:0.
and so . .
=E (Zx,-) =Y E(X
i=1 i=1
The variance of X; is
Var(X;) = E [(X; — E[X]])’] = E[X?] = 1.

If X and Y are any independent random variables then
Var(X + Y) = Var(X) + Var(Y).
Thus,

n

Var(S,) = Var (ZX) = iVar(X;) = Z 1=

i=1
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Random Walk

For 0 < k < n, we have

() () s

The piecewise linearization £x(t) of X = (X, ...

piecewise linear function with

()5

Thus whenever t is of the form % we have

Var({x(t)) = t.

,Xn) is a



Brownian Motion

Brownian motion is a random function W : [0, 1] — R with
Var(W(t)) = t for all t € [0,1]; a “random walk with infinitely
small steps”.



Brownian Motion

Brownian motion is a random function W : [0, 1] — R with
Var(W(t)) = t for all t € [0,1]; a “random walk with infinitely

small steps”.

It satisfies
P(W(t) < y) = lim B(((t) < y).

n—oo



Approximating Brownian Motion

The Brownian motion distribution (the Wiener measure) is a limit
of random walk distributions.



Approximating Brownian Motion

The Brownian motion distribution (the Wiener measure) is a limit
of random walk distributions.

£x is an approximation of W, similarly to how a finite binary
sequence A [ n = (A(0),...,A(n— 1)) is an approximation of
A= (A(0),A(1),...).

It is also true that almost surely, Brownian motion is close to a
piecewise linearization of a random walk; we may choose

X = (X1,...,Xp) so that

sup |[¢x(t) — W(t)| = 0.
0<t<1

Can we find such an X which has high Kolmogorov complexity?
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Asarin’'s Schnorr’'s Theorem for Brownian Motion, and a
strange constant

Asarin (doctoral dissertation 1984 advised by Kolmogorov) defined
Martin-Lof random Brownian motion in terms of tests, and proved
an analogue of Schnorr's Theorem:

Theorem (Asarin, Automation and Remote Control (1986))

W e C[0,1] is a Martin-Lof random Brownian motion if and only
if there is a constant ¢ such that for all but finitely many n € N
there is a string x = (x1,...,%n) € {0,1}" such that

sup () — W(t)] < n 710 and K(x,...,xp) > n—c.
0<t<1

The constant 1/10 is also used in Fouché, Adv. Math. (2000).



Reducing Wiener measure to Lebesgue measure

The measure underlying Brownian motion is called the Wiener
measure.



Reducing Wiener measure to Lebesgue measure

The measure underlying Brownian motion is called the Wiener
measure.
Theorem (Kjos-Hanssen and Nerode)

Let w: [0,1] — C[0, 1] be a certain partial mapping from the proof
of Carathéodory’s measure algebra isomorphism theorem. The
following are equivalent:

» w is a Martin-Lof random real.
» mw(w) is defined and is a Martin-L6f random Brownian motion;

Moreover, if W is a Martin-L6f random Brownian motion then
there is a real w with m(w) = W.



Approximating Brownian Motion

Theorem (Szabados (2001))

There exists a probability space on which is defined a random
variable W and a double sequence Xi,, 1 <i<n, n=4", m>1,
such that {X1,p,...,Xnn} are independent for each n with

1
P{Xin =1} = P{Xip = -1} = 7,
such that the marginal distribution of W is Brownian motion, and

there are constants c1, ¢», and o > 2, such that if
X(n) - (Xl,ny cee 7Xn,n),

log n
P< sup |W(t) —Lywm(t)| > c }Sc n“.
{ sup W)~ tral0) > 052} <



Note: the sequences Xi ,,..., X, for different n are necessarily
dependent.



Note: the sequences Xi ,,..., X, for different n are necessarily

dependent.
Szabados' proof relies on work of Komlés, Major and Tusnady (1975). As
Szabados proves a more general result, the theorem quoted here may

have been known earlier.



Using Szabados’ result

Thus

P U { s W0 - 60> a2

n=4m>N 0<t<l
< Z c/n* < c/N.
n>N

If nis large enough, say n > N., then

log n n

o] ﬁ < ﬁ

So for N > N,

P U {sup % )—en(t)\znf%}gq//\/.

—4ms N 0<t<1
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If P is a distribution on sequences
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Lemma
If P is a distribution on sequences

{Xn}neN € H{Ov 1}n

neN

such that the marginal distribution of x, is uniform on {0,1}",

then P(3b¥n K(xp) > n—b) = 1.
Proof.
Using ", , 2 K0 < > p halts 27lPl < 1,

P(3n K(x,) < n—b) < Y P(Xe=0)
{o:K(c)<|o|—b}

=Y o< Y oK) < b

{o:K(0)<|o|—b} all o



Definition
f :[0,1] — R is Holder continuous of order ~ if 3C Vx,y € [0,1]
[F() = f) < Clx —y|7.



Explaining the constant 1/10

Theorem (Kjos-Hanssen)

For all e > 0, Asarin’s Theorem with N replaced by {4™ : m € N} holds with the
constant 1/10 replaced by 1/2 — ¢, but not by 1/2.
Proof sketch.
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Theorem (Kjos-Hanssen)

For all e > 0, Asarin’s Theorem with N replaced by {4™ : m € N} holds with the
constant 1/10 replaced by 1/2 — ¢, but not by 1/2.
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Let 7 be as in Carathéodory’s measure algebra isomorphism

theorem; so a Brownian motion W is 7(w) for a real w. For
b > N, the set Uy =

U N {w: sup |€X(t)—7r(w)(t)|§n5_5—>K(X)<n—b}

n=4m>b xc{0,1}" Ost=l
(1)

50
is >7.



Explaining the constant 1/10

Theorem (Kjos-Hanssen)

For all e > 0, Asarin’s Theorem with N replaced by {4™ : m € N} holds with the
constant 1/10 replaced by 1/2 — ¢, but not by 1/2.

Proof sketch. Replacing 1/10 by 1/2 is impossible, as it would
imply that Brownian motion is Holder continuous of order 1/2.

Let 7 be as in Carathéodory’s measure algebra isomorphism
theorem; so a Brownian motion W is 7(w) for a real w. For

b > N, the set U, =

U N {w: sup |€X(t)—7r(w)(t)|§n5_5—>K(X)<n—b}

n=4m>b xc{0,1}" Ost=l
(1)

is Z(l).
Let X(" = (X1n,...,Xn.n) be Szabados' string, and let V,, =

U {W Dosup |y (t) —m(w)(t)] < Nz — K(X(") < n— b} .

n=4m>p 0<t<l



Explaining the constant 1/10

We have U, C V).
By Szabados' Theorem,
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Explaining the constant 1/10

We have U, C V).
By Szabados' Theorem,

P U {WZ sup Uy (t) — m(w)(t)] > nsi} < c&/b.

n=4m>b Ost<l
By the Lemma,

P(3n K(X1pn ..., Xnn) < n—b) <270

So

P(Up) < P(Vj) < ib2 4 2b,
Thus if W = m(w) is Martin-L6f random then there is some b such
that for all n = 4™ > b, there is some x = (xi, ..., x,) with £,(t)

within n==2 of W(t) and K(x) > n— b.
End of Proof Sketch.



Proof Summary

Let X(" be the nth Szabados' random walks.

With high probability,
(1) X" has high complexity and Lx(n) Is near the
Brownian motion.

Therefore, with high probability,

(2) there is some x € {0,1}" of high complexity such
that ¢, is near the Brownian motion.

Property (2) is simple enough that it will be possessed by every
Martin-Lof random Brownian motion.

We do not need to show in any sense that (1) will hold for Martin-L6f random Brownian motion.



PART 2: Teaching the binomial asset pricing model using GTP



50:4,r0:1/4\

Figure: A stochastic volatility, random interest rate model.



Game theoretic probability for asset pricing

P(E) = inf{a | VF3SYR (Ko = a& E = supK, > 1)}

Here
» F is “forecaster” which we ignore in this simple model.
> S is “skeptic” which means a hedging strategy.
» R is “reality” which is one of the 4 paths.
» Ko, K1, K> is the initial capital and the next two capitals



Defining GTP when there is an interest rate

P(E) = the minimum amount of capital needed to set up a
strategy/portfolio guaranteeing that we will receive

(14 Ro)(1+ Ri(w))1e(w)

(equivalent to 1g(w) using discounting) at time n.



Example

The sample space € has probability 1 since we may put $1 in the
bank and receive (1 + Rp)(1 + Ri(w)) at time n = 2.



Defining GTP when there is an interest rate: more natural
way

P(E) = the minimum amount of capital needed to set up a
strategy/portfolio guaranteeing that we will receive the contents of
a bank account initially holding $1, if E occurs, and 0 otherwise,
at time n.



Upper and lower probabilities

In general P(A) =1 — P(A) and

P(A) > P(A)

although in this simple model they are equal. (When are they not?)



Risk-neutral measure

P(E) defined by: )
En(anrl) = (1 + R)Sn

where R is the interest rate. Let p be the probability of head (H),
and

S
Sn41(T) = dSp,

then it follows that



P = P under the No-arbitrage assumption

For the proof that P = P we need to use the assumption of no
arbitrage which corresponds to a game-theoretic assumption that
one cannot get arbitrarily rich.



The real world measure

P(E) defined by:
En(Snt1) = (1 +¢€)5n
where £ > R is constant. Let p be the probability of head (H), and
Spr1(H) = uSp, Sp+1(T) = dS,, then it follows that
_14+e—d
 u—d



The risk-neutral /game-theoretic probability gives no
reward for risk-taking

If it costs 50 cent to set up a portfolio that will pay the proceeds
from a $1 bank account if A occurs and 0 otherwise, then in what
sense is P(A) = 1/27 If there is no reward for taking a risk, then
P(A) = 1/2, because then the expected reward for our 50 cent
investment is the same as if we put the 50 cent in the bank.



Convenience argument for risk-neutral measure

In addition to being the game-theoretic or “hedge” measure, for
option pricing it is more convenient to use P than PP.



Suppose we adopt the axiom that E(S1) = (1 + €)So where € # r.
This is similar to a risk-neutral outlook except that, well, it is no
longer risk-neutral.



Since V4 and S; depend on head vs. tail, we have V; = aS5; +
for some constants o and (3 that can be calculated.



The relationship between V7 and Vg has the property that

aE(51)+

OCSO‘F%

E(Vi/Vo) =EM)/ Vo =

(since a bond is still risk-free hence risk-neutral when the interest
rate is known)
_a(l+€)So+

“atns+s



When € = r this simplifies to 1 + r; in particular then E(V1/Vp) is
the same for all securities V when ¢ = r. For any value of ¢ # r,
E(V1/ VW) depends on « and (.



Can we still find Vg if € # r? Yes, the value of Vo = aSo + 12
does not depend on €. But using € # r, we cannot relate V; to
E(V4) in a simple way.



