Part 1: Brownian motion and Kolmogorov complexity Part 2: Teaching asset pricing using GTP

> Bjørn Kjos-Hanssen University of Hawai'i at Mānoa

Conference on game-theoretic probability and related topics, Tokyo 2012

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

PART 1: Brownian motion and Kolmogorov complexity

Let K denote prefix-free Kolmogorov complexity, let $2^{\omega} = \{0, 1\}^{\infty}$, and let μ be the fair-coin measure on 2^{ω} .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let *K* denote prefix-free Kolmogorov complexity, let $2^{\omega} = \{0, 1\}^{\infty}$, and let μ be the fair-coin measure on 2^{ω} . $A \in 2^{\omega}$ is Martin-Löf random if for each uniformly Σ_1^0 sequence $\{U_n\}_{n \in \mathbb{N}}$ with $\mu U_n \leq 2^{-n}$, $A \notin \bigcap_n U_n$.

Let *K* denote prefix-free Kolmogorov complexity, let $2^{\omega} = \{0, 1\}^{\infty}$, and let μ be the fair-coin measure on 2^{ω} . $A \in 2^{\omega}$ is Martin-Löf random if for each uniformly Σ_1^0 sequence $\{U_n\}_{n \in \mathbb{N}}$ with $\mu U_n \leq 2^{-n}$, $A \notin \bigcap_n U_n$.

Theorem (Schnorr)

 $A \in 2^{\omega}$ is Martin-Löf random $\Leftrightarrow \exists c \ \forall n \ K(A \upharpoonright n) \ge n - c$.

Let *K* denote prefix-free Kolmogorov complexity, let $2^{\omega} = \{0, 1\}^{\infty}$, and let μ be the fair-coin measure on 2^{ω} . $A \in 2^{\omega}$ is Martin-Löf random if for each uniformly Σ_1^0 sequence $\{U_n\}_{n \in \mathbb{N}}$ with $\mu U_n \leq 2^{-n}$, $A \notin \bigcap_n U_n$.

Theorem (Schnorr)

 $A \in 2^{\omega}$ is Martin-Löf random $\Leftrightarrow \exists c \forall n \ K(A \upharpoonright n) \ge n - c$.

Thus, the randomness of the infinite object A is reduced to randomness of finite approximations. Does something similar hold in other settings?

Let $\{X_i\}_{i \in \mathbb{N}}$ be a sequence of independent random variables each satisfying $\mathbb{P}\{X_i = 1\} = \mathbb{P}\{X_i = -1\} = \frac{1}{2}$.

Let $\{X_i\}_{i \in \mathbb{N}}$ be a sequence of independent random variables each satisfying $\mathbb{P}\{X_i = 1\} = \mathbb{P}\{X_i = -1\} = \frac{1}{2}$. For any $n \ge 0$, let

$$S_n=\sum_{i=1}^n X_i.$$

Let $\{X_i\}_{i \in \mathbb{N}}$ be a sequence of independent random variables each satisfying $\mathbb{P}\{X_i = 1\} = \mathbb{P}\{X_i = -1\} = \frac{1}{2}$. For any $n \ge 0$, let

$$S_n=\sum_{i=1}^n X_i.$$

The sequence of random variables $\{S_n\}_{n \in \mathbb{N}}$ is a random walk on \mathbb{Z} .

(日) (日) (日) (日) (日) (日) (日) (日)

The expected value of each X_i is

$$\mathbb{E}(X_i) = \sum_{a} a \cdot \mathbb{P}\{X_i = a\} = \frac{1}{2} - \frac{1}{2} = 0.$$

and so

$$\mathbb{E}(S_n) = \mathbb{E}\left(\sum_{i=1}^n X_i\right) = \sum_{i=1}^n \mathbb{E}(X_i) = 0.$$

The expected value of each X_i is

$$\mathbb{E}(X_i) = \sum_{a} a \cdot \mathbb{P}\{X_i = a\} = \frac{1}{2} - \frac{1}{2} = 0.$$

and so

$$\mathbb{E}(S_n) = \mathbb{E}\left(\sum_{i=1}^n X_i\right) = \sum_{i=1}^n \mathbb{E}(X_i) = 0.$$

The variance of X_i is

$$\operatorname{Var}(X_i) = \mathbb{E}\left[(X_i - \mathbb{E}[X_i])^2\right] = \mathbb{E}[X_i^2] = 1.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The expected value of each X_i is

$$\mathbb{E}(X_i) = \sum_{a} a \cdot \mathbb{P}\{X_i = a\} = \frac{1}{2} - \frac{1}{2} = 0.$$

and so

$$\mathbb{E}(S_n) = \mathbb{E}\left(\sum_{i=1}^n X_i\right) = \sum_{i=1}^n \mathbb{E}(X_i) = 0.$$

The variance of X_i is

$$\operatorname{Var}(X_i) = \mathbb{E}\left[(X_i - \mathbb{E}[X_i])^2\right] = \mathbb{E}[X_i^2] = 1.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

If X and Y are any independent random variables then Var(X + Y) = Var(X) + Var(Y).

The expected value of each X_i is

$$\mathbb{E}(X_i) = \sum_{a} a \cdot \mathbb{P}\{X_i = a\} = \frac{1}{2} - \frac{1}{2} = 0.$$

and so

$$\mathbb{E}(S_n) = \mathbb{E}\left(\sum_{i=1}^n X_i\right) = \sum_{i=1}^n \mathbb{E}(X_i) = 0.$$

The variance of X_i is

$$\operatorname{Var}(X_i) = \mathbb{E}\left[(X_i - \mathbb{E}[X_i])^2 \right] = \mathbb{E}[X_i^2] = 1.$$

If X and Y are any independent random variables then Var(X + Y) = Var(X) + Var(Y). Thus,

$$\operatorname{Var}(S_n) = \operatorname{Var}\left(\sum_{i=1}^n X_i\right) = \sum_{i=1}^n \operatorname{Var}(X_i) = \sum_{i=1}^n 1 = n.$$

For $0 \le k \le n$, we have

$$\operatorname{Var}\left(\frac{S_k}{\sqrt{n}}\right) = \left(\frac{1}{\sqrt{n}}\right)^2 \operatorname{Var}(S_k) = \frac{k}{n}$$

For $0 \le k \le n$, we have

$$\operatorname{Var}\left(\frac{S_k}{\sqrt{n}}\right) = \left(\frac{1}{\sqrt{n}}\right)^2 \operatorname{Var}(S_k) = \frac{k}{n}.$$

The piecewise linearization $\ell_X(t)$ of $X = (X_1, \ldots, X_n)$ is a piecewise linear function with

$$\ell_X\left(\frac{k}{n}\right) = \frac{S_k}{\sqrt{n}}.$$

For $0 \le k \le n$, we have

$$\operatorname{Var}\left(\frac{S_k}{\sqrt{n}}\right) = \left(\frac{1}{\sqrt{n}}\right)^2 \operatorname{Var}(S_k) = \frac{k}{n}.$$

The piecewise linearization $\ell_X(t)$ of $X = (X_1, \ldots, X_n)$ is a piecewise linear function with

$$\ell_X\left(\frac{k}{n}\right) = \frac{S_k}{\sqrt{n}}$$

Thus whenever t is of the form $\frac{k}{n}$, we have

$$\operatorname{Var}(\ell_X(t)) = t.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Brownian motion is a random function $W : [0,1] \rightarrow \mathbb{R}$ with Var(W(t)) = t for all $t \in [0,1]$; a "random walk with infinitely small steps".

Brownian motion is a random function $W : [0,1] \rightarrow \mathbb{R}$ with Var(W(t)) = t for all $t \in [0,1]$; a "random walk with infinitely small steps". It satisfies

$$\mathbb{P}(W(t) \le y) = \lim_{n \to \infty} \mathbb{P}(\ell(t) \le y).$$

Approximating Brownian Motion

The Brownian motion distribution (the Wiener measure) is a limit of random walk distributions.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Approximating Brownian Motion

The Brownian motion distribution (the Wiener measure) is a limit of random walk distributions.

 ℓ_X is an approximation of W, similarly to how a finite binary sequence $A \upharpoonright n = (A(0), \dots, A(n-1))$ is an approximation of $A = (A(0), A(1), \dots)$.

It is also true that almost surely, Brownian motion is close to a piecewise linearization of a random walk; we may choose $X = (X_1, \ldots, X_n)$ so that

$$\sup_{0\leq t\leq 1}|\ell_X(t)-W(t)|\approx 0.$$

Can we find such an X which has high Kolmogorov complexity?

Asarin's *Schnorr's Theorem* for Brownian Motion, and a strange constant

Asarin (doctoral dissertation 1984 advised by Kolmogorov) defined Martin-Löf random Brownian motion in terms of tests, and proved an analogue of Schnorr's Theorem:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Asarin's *Schnorr's Theorem* for Brownian Motion, and a strange constant

Asarin (doctoral dissertation 1984 advised by Kolmogorov) defined Martin-Löf random Brownian motion in terms of tests, and proved an analogue of Schnorr's Theorem:

Theorem (Asarin, Automation and Remote Control (1986)) $W \in C[0, 1]$ is a Martin-Löf random Brownian motion if and only if there is a constant c such that for all but finitely many $n \in \mathbb{N}$ there is a string $x = (x_1, \ldots, x_n) \in \{0, 1\}^n$ such that

 $\sup_{0 \le t \le 1} |\ell_x(t) - W(t)| \le n^{-1/10} \text{ and } K(x_1, \dots, x_n) \ge n - c.$

Asarin's *Schnorr's Theorem* for Brownian Motion, and a strange constant

Asarin (doctoral dissertation 1984 advised by Kolmogorov) defined Martin-Löf random Brownian motion in terms of tests, and proved an analogue of Schnorr's Theorem:

Theorem (Asarin, Automation and Remote Control (1986)) $W \in C[0, 1]$ is a Martin-Löf random Brownian motion if and only if there is a constant c such that for all but finitely many $n \in \mathbb{N}$ there is a string $x = (x_1, \ldots, x_n) \in \{0, 1\}^n$ such that

$$\sup_{0 \le t \le 1} |\ell_x(t) - W(t)| \le n^{-1/10}$$
 and $K(x_1, \ldots, x_n) \ge n - c.$

The constant 1/10 is also used in Fouché, Adv. Math. (2000).

Reducing Wiener measure to Lebesgue measure

The measure underlying Brownian motion is called the *Wiener measure*.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Reducing Wiener measure to Lebesgue measure

The measure underlying Brownian motion is called the *Wiener measure*.

Theorem (Kjos-Hanssen and Nerode)

Let $\pi : [0,1] \rightarrow C[0,1]$ be a certain partial mapping from the proof of Carathéodory's measure algebra isomorphism theorem. The following are equivalent:

▶ w is a Martin-Löf random real.

• $\pi(w)$ is defined and is a Martin-Löf random Brownian motion; Moreover, if W is a Martin-Löf random Brownian motion then there is a real w with $\pi(w) = W$.

Approximating Brownian Motion

Theorem (Szabados (2001))

There exists a probability space on which is defined a random variable W and a double sequence $X_{i,n}$, $1 \le i \le n$, $n = 4^m$, $m \ge 1$, such that $\{X_{1,n}, \ldots, X_{n,n}\}$ are independent for each n with

$$\mathbb{P}\{X_{i,n}=1\}=\mathbb{P}\{X_{i,n}=-1\}=\frac{1}{2},$$

such that the marginal distribution of W is Brownian motion, and there are constants c_1 , c_2 , and $\alpha \ge 2$, such that if $X^{(n)} = (X_{1,n}, \ldots, X_{n,n})$,

$$\mathbb{P}\left\{\sup_{0\leq t\leq 1}|W(t)-\ell_{X^{(n)}}(t)|\geq c_1rac{\log n}{\sqrt{n}}
ight\}\leq c_2/n^lpha.$$

Note: the sequences $X_{1,n}, \ldots, X_{n,n}$ for different *n* are necessarily dependent.

<□ > < @ > < E > < E > E のQ @

Note: the sequences $X_{1,n}, \ldots, X_{n,n}$ for different *n* are necessarily dependent.

Szabados' proof relies on work of Komlós, Major and Tusnády (1975). As Szabados proves a more general result, the theorem quoted here may have been known earlier.

Using Szabados' result

Thus

$$\mathbb{P}igcup_{n=4^m>N}igg\{ \sup_{0\leq t\leq 1}|W(t)-\ell_n(t)|\geq c_1rac{\log n}{\sqrt{n}}igg\} \ \leq \sum_{n>N}c_2/n^lpha\leq c_2/N.$$

If n is large enough, say $n \geq N_{arepsilon}$, then

$$c_1 \frac{\log n}{\sqrt{n}} < \frac{n^{\varepsilon}}{\sqrt{n}}.$$

So for $N \geq N_{\varepsilon}$,

$$\mathbb{P} \bigcup_{n=4^m>N} \left\{ \sup_{0 \le t \le 1} |W(t) - \ell_n(t)| \ge n^{\varepsilon - \frac{1}{2}} \right\} \le c_2/N.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Lemma If \mathbb{P} is a distribution on sequences

$$\{x_n\}_{n\in\mathbb{N}}\in\prod_{n\in\mathbb{N}}\{0,1\}^n$$

such that the marginal distribution of x_n is uniform on $\{0,1\}^n$, then $\mathbb{P}(\exists b \forall n \ K(x_n) \ge n-b) = 1$.

Lemma If \mathbb{P} is a distribution on sequences

$$\{x_n\}_{n\in\mathbb{N}}\in\prod_{n\in\mathbb{N}}\{0,1\}^n$$

such that the marginal distribution of x_n is uniform on $\{0,1\}^n$, then $\mathbb{P}(\exists b \forall n \ K(x_n) \ge n-b) = 1$.

Proof.
Using
$$\sum_{\text{all }\sigma} 2^{-\mathcal{K}(\sigma)} \leq \sum_{p \text{ halts}} 2^{-|p|} \leq 1$$
,
 $\mathbb{P}(\exists n \ \mathcal{K}(x_n) < n-b) \leq \sum_{\{\sigma: \mathcal{K}(\sigma) < |\sigma| - b\}} \mathbb{P}(x_{|\sigma|} = \sigma)$

Lemma If \mathbb{P} is a distribution on sequences

$$\{x_n\}_{n\in\mathbb{N}}\in\prod_{n\in\mathbb{N}}\{0,1\}^n$$

such that the marginal distribution of x_n is uniform on $\{0,1\}^n$, then $\mathbb{P}(\exists b \forall n \ K(x_n) \ge n-b) = 1$.

Proof. Using $\sum_{\text{all }\sigma} 2^{-\kappa(\sigma)} \leq \sum_{p \text{ halts}} 2^{-|p|} \leq 1$, $\mathbb{P}(\exists n \ \kappa(x_n) < n-b) \leq \sum_{\{\sigma:\kappa(\sigma) < |\sigma| - b\}} \mathbb{P}(x_{|\sigma|} = \sigma)$ $= \sum_{\{\sigma:\kappa(\sigma) < |\sigma| - b\}} 2^{-|\sigma|} \leq \sum_{\text{all }\sigma} 2^{-(\kappa(\sigma) + b)} \leq 2^{-b}$

▲日▼ ▲□▼ ▲日▼ ▲日▼ □ ● ○○○

Definition $f : [0,1] \to \mathbb{R}$ is Hölder continuous of order γ if $\exists C \ \forall x, y \in [0,1]$ $|f(x) - f(y)| \le C|x - y|^{\gamma}$.

Theorem (Kjos-Hanssen)

For all $\varepsilon > 0$, Asarin's Theorem with \mathbb{N} replaced by $\{4^m : m \in \mathbb{N}\}\$ holds with the constant 1/10 replaced by $1/2 - \varepsilon$, but not by 1/2. **Proof sketch.**

Theorem (Kjos-Hanssen)

For all $\varepsilon > 0$, Asarin's Theorem with \mathbb{N} replaced by $\{4^m : m \in \mathbb{N}\}\$ holds with the constant 1/10 replaced by $1/2 - \varepsilon$, but not by 1/2.

Proof sketch. Replacing 1/10 by 1/2 is impossible, as it would imply that Brownian motion is Hölder continuous of order 1/2.

Theorem (Kjos-Hanssen)

For all $\varepsilon > 0$, Asarin's Theorem with \mathbb{N} replaced by $\{4^m : m \in \mathbb{N}\}\$ holds with the constant 1/10 replaced by $1/2 - \varepsilon$, but not by 1/2.

Proof sketch. Replacing 1/10 by 1/2 is impossible, as it would imply that Brownian motion is Hölder continuous of order 1/2. Let π be as in Carathéodory's measure algebra isomorphism theorem; so a Brownian motion W is $\pi(w)$ for a real w. For $b \ge N_{\varepsilon}$, the set $U_b =$

 $\bigcup_{n=4^m>b} \bigcap_{x\in\{0,1\}^n} \left\{ w: \sup_{0\le t\le 1} |\ell_x(t) - \pi(w)(t)| \le n^{\varepsilon - \frac{1}{2}} \to K(x) < n - b \right\}$ (1)

is Σ_1^0 .

Theorem (Kjos-Hanssen)

For all $\varepsilon > 0$, Asarin's Theorem with \mathbb{N} replaced by $\{4^m : m \in \mathbb{N}\}\$ holds with the constant 1/10 replaced by $1/2 - \varepsilon$, but not by 1/2.

Proof sketch. Replacing 1/10 by 1/2 is impossible, as it would imply that Brownian motion is Hölder continuous of order 1/2. Let π be as in Carathéodory's measure algebra isomorphism theorem; so a Brownian motion W is $\pi(w)$ for a real w. For $b \ge N_{\varepsilon}$, the set $U_b =$

$$\bigcup_{n=4^m > b} \bigcap_{x \in \{0,1\}^n} \left\{ w : \sup_{0 \le t \le 1} |\ell_x(t) - \pi(w)(t)| \le n^{\varepsilon - \frac{1}{2}} \to \mathcal{K}(x) < n - b \right\}$$
(1)

is
$$\Sigma_1^0$$
.
Let $X^{(n)} = (X_{1,n}, \dots, X_{n,n})$ be Szabados' string, and let $V_b = \bigcup_{n=4^m > b} \left\{ w : \sup_{0 \le t \le 1} |\ell_{X^{(n)}}(t) - \pi(w)(t)| \le n^{\varepsilon - \frac{1}{2}} \to \mathcal{K}(X^{(n)}) < n - b \right\}.$

We have $U_b \subseteq V_b$. By Szabados' Theorem,

$$\mathbb{P}\bigcup_{n=4^m>b}\left\{w:\sup_{0\leq t\leq 1}|\ell_{X^{(n)}}(t)-\pi(w)(t)|>n^{\varepsilon-\frac{1}{2}}\right\}\leq c_2/b.$$

By the Lemma,

$$\mathbb{P}(\exists n \ K(X_{1,n},\ldots,X_{n,n}) < n-b) \leq 2^{-b}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

We have $U_b \subseteq V_b$. By Szabados' Theorem,

$$\mathbb{P}\bigcup_{n=4^m>b}\left\{w:\sup_{0\leq t\leq 1}|\ell_{X^{(n)}}(t)-\pi(w)(t)|>n^{\varepsilon-\frac{1}{2}}\right\}\leq c_2/b.$$

By the Lemma,

$$\mathbb{P}(\exists n \ K(X_{1,n},\ldots,X_{n,n}) < n-b) \leq 2^{-b}.$$

So

$$\mathbb{P}(U_b) \leq \mathbb{P}(V_b) \leq \frac{c_2}{b} + 2^{-b}.$$

Thus if $W = \pi(w)$ is Martin-Löf random then there is some b such that for all $n = 4^m > b$, there is some $x = (x_1, \ldots, x_n)$ with $\ell_x(t)$ within $n^{\varepsilon - \frac{1}{2}}$ of W(t) and $K(x) \ge n - b$. End of Proof Sketch.

Proof Summary

Let $X^{(n)}$ be the *n*th Szabados' random walks. With high probability,

(1) $X^{(n)}$ has high complexity and $\ell_{X^{(n)}}$ is near the Brownian motion.

Therefore, with high probability,

(2) there is some $x \in \{0,1\}^n$ of high complexity such that ℓ_x is near the Brownian motion.

Property (2) is simple enough that it will be possessed by every Martin-Löf random Brownian motion.

We do not need to show in any sense that (1) will hold for Martin-Löf random Brownian motion.

PART 2: Teaching the binomial asset pricing model using GTP

Figure: A stochastic volatility, random interest rate model.

Game theoretic probability for asset pricing

$$\overline{\mathbb{P}}(E) = \inf\{a \mid \forall F \exists S \,\forall R \,(\mathcal{K}_0 = a \,\& \, E \Rightarrow \sup_n \mathcal{K}_n \geq 1)\}$$

Here

- F is "forecaster" which we ignore in this simple model.
- ► S is "skeptic" which means a hedging strategy.
- ▶ *R* is "reality" which is one of the 4 paths.
- $\mathcal{K}_0, \mathcal{K}_1, \mathcal{K}_2$ is the initial capital and the next two capitals

Defining GTP when there is an interest rate

 $\overline{\mathbb{P}}(E)$ = the minimum amount of capital needed to set up a strategy/portfolio guaranteeing that we will receive

$$(1+R_0)(1+R_1(\omega))\mathbf{1}_E(\omega)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

(equivalent to $1_E(\omega)$ using discounting) at time *n*.

Example

The sample space Ω has probability 1 since we may put \$1 in the bank and receive $(1 + R_0)(1 + R_1(\omega))$ at time n = 2.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Defining GTP when there is an interest rate: more natural way

 $\overline{\mathbb{P}}(E)$ = the minimum amount of capital needed to set up a strategy/portfolio guaranteeing that we will receive *the contents of a bank account initially holding* \$1, if *E* occurs, and 0 otherwise, at time *n*.

Upper and lower probabilities

In general
$$\overline{\mathbb{P}}(A) = 1 - \underline{\mathbb{P}}(A)$$
 and

 $\overline{\mathbb{P}}(A) \geq \underline{\mathbb{P}}(A)$

although in this simple model they are equal. (When are they not?)

Risk-neutral measure

 $\tilde{\mathbb{P}}(E)$ defined by:

$$\tilde{\mathbb{E}}_n(S_{n+1}) = (1+R)S_n$$

where R is the interest rate. Let \tilde{p} be the probability of head (H), and

$$S_{n+1}(H) = uS_n$$
$$S_{n+1}(T) = dS_n,$$

then it follows that

$$\tilde{p} = \frac{1+R-d}{u-d}$$

$\tilde{\mathbb{P}}=\overline{\mathbb{P}}$ under the No-arbitrage assumption

For the proof that $\tilde{\mathbb{P}} = \overline{\mathbb{P}}$ we need to use the assumption of *no* arbitrage which corresponds to a game-theoretic assumption that one cannot get arbitrarily rich.

The real world measure

 $\mathbb{P}(E)$ defined by:

$$\mathbb{E}_n(S_{n+1}) = (1+\varepsilon)S_n$$

where $\varepsilon \ge R$ is constant. Let p be the probability of head (H), and $S_{n+1}(H) = uS_n$, $S_{n+1}(T) = dS_n$, then it follows that

$$p=\frac{1+\varepsilon-d}{u-d}$$

The risk-neutral/game-theoretic probability gives no reward for risk-taking

If it costs 50 cent to set up a portfolio that will pay the proceeds from a \$1 bank account if A occurs and 0 otherwise, then in what sense is $\mathbb{P}(A) = 1/2$? If there is no reward for taking a risk, then $\mathbb{P}(A) = 1/2$, because then the expected reward for our 50 cent investment is the same as if we put the 50 cent in the bank.

Convenience argument for risk-neutral measure

In addition to being the game-theoretic or "hedge" measure, for option pricing it is more convenient to use $\tilde{\mathbb{P}}$ than $\mathbb{P}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Suppose we adopt the axiom that $\mathbb{E}(S_1) = (1 + \epsilon)S_0$ where $\epsilon \neq r$. This is similar to a risk-neutral outlook except that, well, it is no longer risk-neutral.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Since V_1 and S_1 depend on head vs. tail, we have $V_1 = \alpha S_1 + \beta$ for some constants α and β that can be calculated.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The relationship between V_1 and V_0 has the property that

$$E(V_1/V_0) = E(V_1)/V_0 = \frac{\alpha E(S_1) + \beta}{\alpha S_0 + \frac{\beta}{1+r}}$$

(since a bond is still risk-free hence risk-neutral when the interest rate is known)

$$= \frac{\alpha(1+\epsilon)S_0+\beta}{\alpha(1+r)S_0+\beta} \cdot (1+r)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

When $\epsilon = r$ this simplifies to 1 + r; in particular then $E(V_1/V_0)$ is the same for all securities V when $\epsilon = r$. For any value of $\epsilon \neq r$, $E(V_1/V_0)$ depends on α and β .

Can we still find V_0 if $\epsilon \neq r$? Yes, the value of $V_0 = \alpha S_0 + \frac{\beta}{1+r}$ does not depend on ϵ . But using $\epsilon \neq r$, we cannot relate V_0 to $E(V_1)$ in a simple way.