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Shafer and Vovk (2001): base probability on game theory instead of measure theory.
*To test a probabilistic theory: Bet at the odds it gives.

* To prove that something happens with probability one: Devise a strategy that
multiplies the capital it risks by a large factor if the theorem fails.

These ideas can be applied to forecasting, causality, and inference.




1. Game theoretic probability

2. Game theoretic upper and lower probabilities
3. Defensive forecasting

4. Probability judgment

* Probabilities derive from betting offers.
Not from the measure of sets.

* Test probabilities by betting.

Refute alleged probabilities by making money.

* Prove “probability one” by betting strategy.
-- Do not say that the property will fail on a set of measure zero.

-- Say that its failure will mean the success of a betting strategy.



* Probabilities derive from betting offers.
Not from the measure of sets.

* Test probabilities by betting strategy.

Refute alleged probabilities by making money.

Qualification:

Not all probabilities are testable assertions.

We test probabilities (or betting offers or other prices) when they are
offered as theories about the world. Their meaning in this case is that
no one will profit unusually by taking advantage of these prices.

But | can offer you prices without claiming that you will not make a lot
of money at those prices.




1. Game theoretic probability

2. Game theoretic upper and lower probabilities
3. Defensive forecasting

4. Probability judgment

Probabilities derive from betting offers.
The offers may determine less than a probability distribution.

1.The stock market gives a price but not a probability
distribution for tomorrow’s value of a share of Google.

2.A forecaster who gives a probability for rain tomorrow every
day for a year does not give a joint probability distribution for the
365 outcomes.

In such cases, we get only upper and lower probabillities.



1. Game theoretic probability

2. Game theoretic upper and lower probability
3. Defensive forecasting

4. Probability judgment

* In the game-theoretic framework, it can be shown
that good probability forecasting is possible.

* Once a sequence of events is fixed, you can give
probabilities that pass statistical tests.

* The forecasting defends against the tests.



Defensive forecasting continued

* Once a sequence of events is fixed, you can
give probabilities that pass statistical tests.

* The only role of the observer is to place the
event in a sequence.

* Advance knowledge is not needed.

* The sequence need not be “iid”; this concept is
not even defined.



1. Game theoretic probability

2. Game theoretic upper and lower probability
3. Defensive forecasting

4. Probability judgment

Jeyzy Neyman'’s inductive behavior

A statistician who makes predictions with 95% confidence
has two goals:

be informative

be right 95% of the time

Question: Why isn'’t this good enough for probability judgment?

Answer: Because two statisticians who are right 95% of the time
may tell the court different and even contradictory things.

They are placing the current event in different sequences.




Probability judgment continued

*Good probability forecasting requires a sequence.

*It does not require repetition of the “same” event.

* Each event remains unique.

Probability judgment: Assessment of the relevance or irrelevance

of experience from different sequences for which we have good
probability forecasters.



1. Game theoretic probability

The contrast between measure-theoretic &
game-theoretic probability began in 1654.

Pascal = game theory

Fermat = measure theory
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Pascal’'s question to Fermat in 1654

Pe/ e

Paul needs 2 points to win.
Peter needs only one.

Blaise Pascal (1623—-1662)
f the game must be broken off,
now much of the stake should

Paul get? 1"




Fermat's answer
(measure theory)

Count the possible outcomes.

Suppose they play two rounds. There
are 4 possible outcomes:

Peter wins first, Peter wins second
Peter wins first, Paul wins second
Paul wins first, Peter wins second
Paul wins first, Paul wins second

BwnN =

Paul wins only in outcome 4.
So his share should be %4, or
16 pistoles.

Pascal didn’t like the
argument.

Pierre Fermat, 1601-1665
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Pascal’'s answer (game theory)

Pe/
\ Pe/
Paul

Paul

0

0

64
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Another probability problem: HH before TT

PROBABILITIES PAYOFFS

1/3

3

e

$1

T \
T

$0

If you bet $1 on heads...

Toss the biased coin repeatedly.

What is the probability of

HH before TT?
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Measure-theoretic question

PROBABILITIES

1/3

What is the probability
of HH before TT?

T

Measure-theoretic solution

Probability Outcome

(3)° HH
(373 THH
(373 HTHH
(4% (2)>  THTHH

($)*(3)* HTHTHH

Summing the series, we find
5
probability = — 15
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Game-theoretic question

What is $p, the price of a
$1 payoff conditional on
HH before TT?

Payoff on each toss
$3c
H
$c
T s0

Game-theoretic solution

a = price when last toss was H

b = price when last toss was T

$1 conditional on HH before TT

HH before TT _. $1

—

-~
~
-~
~

Last toss was H Lasttosswas T
$1 $a
H H
$a $b
LTy s | T 30
a=5+3b b= —a
3 3 3
3 1
1= — h=—
[ {
o _ _ 5
Beginning of game )= 1 . 2+ 2 i
$3/7 3 i 3 i
H
D
$p =5
T $1/7 16




Caveat

In Pascal’s problem, the prices are not necessarily
assertions about the world. Perhaps the players have
different levels of skill but have nevertheless agreed to
play at even odds.

This anticipates the modern theory of option pricing,
where so-called “risk-neutral” probabilities are merely
prices derived from other prices, not assertions about
whether what will make money in the future.
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Fermat's combinatorial or measure-theoretic
approach leads to a metaphysics of possibility. By
the 1690s, Jacob Bernoulli was writing about
“equally possible cases” that happen equally often.

Pascal’s betting approach is more flexible. Betting
prices have many meanings. If we choose to use
giving betting prices as a theory about the world, the
meaning of this theory lies in the way it is tested, not
In any metaphysics about possibilities that precede
realities.
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Game theoretic upper and lower probability

Measure-theoretic probability:
* Classical: elementary events with probabilities adding to one.
* Modern: space with filtration and probability measure.

Probability of A = total of probabilities for elementary events favoring A

Game-theoretic probability:
* One player offers prices for uncertain payoffs.
* Another player decides what to buy.

Probability of A = initial stake needed to obtain the payoff
[1 if A happens and 0 otherwise]

If no strategy delivers exactly the 0/1 payoff:

Upper probability of A = initial stake needed to obtain at least the payoff
[1 if A happens, 0 otherwise]
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Objective interpretation of probability

Cournot’s principle
Commonly used by mathematicians before WWII

An event of very small probability will not happen.

To avoid lottery paradox, consider only events with simplest descriptions.
(Wald, Schnorr, Kolmogorov, Levin)

Ville's principle
Equivalent to Cournot’s principle when upper probabilities are probabilities

You will not multiply the capital you risk by a large factor.

Mathematical definition of probability:
P(A) = stake needed to obtain $1 if A happens, $0
otherwise

20



Obijective interpretation of game-theoretic probability:

You will not multiply the capital you risk by a large factor.

Subjective interpretation of game-theoretic probability:

| don’t think you will multiply the capital you risk by a
large factor.

Unlike de Finetti, we do not need behavioral assumptions (e.g., people
want to bet or can be forced to do so).
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To make Pascal’s theory part of
modern game theory, we must
define the game precisely.

* Rules of play
* Each player’s information

* Rule for winning
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A game between Forecaster and Reality

Forecaster gives probabilities for a sequence z1,x-.... of 1s and
0s.

Before Reality announces x,, Forecaster announces probability
pn for o@p = 1.

FOR n=1,2,...
Forecaster announces p, € [0, 1].
Reality announces z,, € {0, 1}.

23



FORn=1,2,....
Forecaster announces p, € [0, 1].
Reality announces z,, € {0, 1}.

Clarifications:

1. The phenomena need not be binary. We assume z,, € {0, 1}
only for simplicity.

2. Reality’'s move space may change from round to round.

3. Perfect information: All players hear announcements as they
are made.

4. In addition to x41,...,x,_1, Forecaster may have other newly
acquired information.
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Forecaster is tested by a third player, Skeptic, who tries to get
rich from Forecaster’s betting offers.

Plavers:. Forecaster, Reality, Skeptic
Protocol:
ED = 1.
FOR n=1,2,...:
Forecaster announces p, € [0, 1].
Skeptic announces M, € E.
Reality announces z, € {0,1}.
Kn =K1+ Mu(zn — pn).
Winner: Skeptic wins if Xy > 0 for all n and limnp—osea K = o0.
Otherwise Forecaster and Reality win.
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Example of a game-theoretic probability theorem.

Kq = 1.

FOR n=1.2,...:
Forecaster announces p, € |0, 1].
Skeptic announces s, € R.
Reality announces y, € {0, 1}.
Kn i =Kyp_1+ SH(yﬂ- - Pn)-

Skeptic wins if
(1) Ky is never negative and
(2) either Iimn_-,;m%E;":l (yi —pi) =0
or limnp—s Kn = oc.

T heorem Skeptic has a winning strategy.
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Ville's strategy

Ko=1.

FOR n=1,2,...:
Skeptic announces s, £ R.
Reality announces y, € {0,1}.

Kn =K1 + S-i-z.[:yﬂ. — %}

Ville suggested the strategy

4 n—1 1 =
Sl .o 1) = Ka-1 | a1 — , Where rp,_1 1= Z i
2 i=1

IT produces the capital
ATal(n —ry)!
(n+ 1)!
From the assumption that this remains bounded by some constant ', yvou
can easily derive the strong law of large numbers using Stirling’s formula.

Ky =2
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Defensive forecasting

The name was introduced in Working Paper 8 at www.probabilityandfinance, by
Vovk, Takemura, and Shafer (September 2004). See also Working Papers 7, 9,
10, 11, 13, 14, 16, 17, 18, 20, 21, 22, and 30.

Akimichi Takemura Volodya Vovk
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http://www.probabilityandfinance/

Crucial idea: all the tests (betting strategies for Skeptic)
Forecaster needs to pass can be merged into a single
portmanteau test for Forecaster to pass.

1.1f you have two strategies for multiplying capital risked,
divide your capital between them.

2.Formally: average the strategies.
3.You can average countably many strategies.

4.As a practical matter, there are only countably many
tests (Abraham Wald, 1937).

5.1 will explain how Forecaster can beat any single
test (including the portmanteau test). 29



A. How Forecaster beats any single test

B. How to construct a portmanteau test
for binary probability forecasting

‘Use law of large numbers to test
calibration for each probability p.

‘Merge the tests for different p.
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How Forecaster can beat any single test S

Skeptic adopts a continuous strategy &.
FORn=1.2,...
Reality announces r,, € X.
Forecaster announces p, € [0, 1].
Skeptic makes the move s, specified by &.
Reality announces y, € {0,1}.
Skeptic's profit = s, (v, — pn).

Theorem Forecaster can guarantee that Skeptic never makes money.

We actually prove a stronger theorem. Instead of making Skeptic announce

his entire strateagy in advance, only make him reveal his strategy for each
round in advance of Forecaster's move.

FORn=1.2,...
Reality announces z,, € X.
Skeptic announces continuous Sy : [0, 1] — E.
Forecaster announces p, € [0, 1].
Reality announces y, € {0, 1}.
Skeptic's profit := Su(pn)(yn — pn).

Theorem. Forecaster can guarantee that Skeptic never makes money.
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FOR n=1.2....
Reality announces z,, € X.
Skeptic announces continuous S, : [0, 1] — E.
Forecaster announces p, € [0, 1].
Reality announces y, € {0,1}.
Skeptic's profit ;= S, (pu)(yn — pn).

Theorem Forecaster can guarantee that Skeptic never makes money.

Proof:

|
[

o If S;,(p) > 0 for all p, take py, :

|
©

o If Sp(p) < O for all p, take py, :

e Otherwise, choose p, so that S, (p,) = O.
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Why Hilary Putnam thought good probability prediction
IS impossible. . .

FORn=1,2,...
Forecaster announces p,, € [0, 1].
Skeptic announces s,, € R.
Reality announces vy, € {0, 1}.
Skeptic's profit := s, (y, — pn).

Reality can make Forecaster uncalibrated by setting

‘ 1 If Pn < 0.5
yﬂ- . — .
O ifp,>05

Skeptic can then make steady money with

1 ifp<o05
T l-1 ifp > 05
33



But Skeptic's move
1 if p< 0.5
Sn = . .
—1 ifp=0,5

is discontinuous in p. This infinitely abrupt shift—an artificial
idealization—is crucial to the counterexample.

Forecaster can defeat any strategy for Skeptic if
e The strategy for Skeptic is continuous in p, or
e Forecaster is allowed to randomize, announcing a probability
distribution for p rather than a sharp value for p.

See Working Papers 7 & 8 at www.probabilityandfinance.com.
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Probability judgment

To conclude, | will discuss how Bayesian
conditioning can be understood as an
example of probability judgment.
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De Moivre’s argument for P(A&B) = P(A)P(B|A)

Assumptions
1. P(A) = price of a ticket that pays 1 if A happens.

2. P(A)x = price of a ticket that pays x if A happens.
(Here = can be any real number.)

3. After A happens (we learn A and nothing else),
P(B|A)x = price of a ticket that pays z if B happens.

Argument
1. Pay P(A)P(B|A) to get P(B|A) if A happens. If A does

happen, pay P(B|A) to get 1 if B happens.
2. So P(A)P(BJ|A) is the cost of getting 1 if A&B happens.
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De Finetti's adopted De Moivre's argument for P(A&B) =
P(A)P(B|A), changing “price” to "an individual's price" .

Assumptions

1. P(A)x = price at which I will sell a ticket that pays z if A
happens.

2. After A happens (we learn A and nothing else),
P(B|A)xr = price at which I will sell a ticket that pays = if B
happens.

Argument

1. You pay me P(A)P(B|A) to get P(B|A) if A happens. If A
does happen, you pay me P(B|A) to get 1 if B also happens.

2. So P(A)P(B|A) is what you need to pay me to get 1 if A&B
happens.

37



De Finetti interpreted De Moivre’s prices in a
particular way.

There are other ways.

In game-theoretic probability (Shafer and Vovk

2001) we interpret the prices as a prediction.

The prediction: You will not multiply by a large
factor the capital you risk at these prices.
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The game-theoretic argument for P(B|A) =

Context Winning against given prices means multiplying your
capital by a large factor buying or selling the tickets priced
(and others like them in the long run).

Hypothesis You will not win against P(A) and P(A&B).

Conclusion You still will not win if after A (and nothing else) is
known, P(A&B)/P(A) is added as a new probability for B.

How to prove it Show that if & is a strategy against all three
probabilities, then there exists a strategy &’ against P(A) and
P(A&B) alone that risks the same risks and payoffs.

39



Proof: Let M be the amount of B tickets & buys after learning A. To
construct & from &, delete these B tickets and add

_ P(A&B) .
M tickets on A&EB and — M P(A) tickets on A

to S's purchases in the initial situation.

e [ he tickets added have zero total initial cost:
P(A&RB)

MP(A&B) — M
( ) P ()

P(A) = 0.

e [ he tickets added and the tickets deleted have the same net payoffs:

0 if A does not happen;

_ ﬁprEi:;B) if A happens but not B;

MI[1-— P(A&B) if A and B both happen.
P(4)
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Comments

1. Game-theoretic advantage over de Finetti:
the condition that we learn only A and nothing

else (re
protoco
probabi

evant) has a meaning without a prior
(see my 1985 article on conditional

ity).

2.Winning against probabilities by multiplying
the capital risked over the long run: To
understand this fully, learn about game-
theoretic probabillity.
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Cournotian understanding of Dempster-Shafer

e Fundamental idea: transferring belief

e Conditioning

e Independence

e Dempster’'s rule



Fundamental idea: transferring belief
e Variable w with set of possible values 2.
e Random variable X with set of possible values X.

e We learn a mapping M : X — 25 with this meaning:

If X =2, then we N(x).

e For A C 2, our belief that w € A is now
B(A) = P{z|l(z) C A}.

Cournotian judgement of independence: Learning the relationship between
X and w does not affect our inability to beat the probabilities for X.
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Example: The sometimes reliable witness

e Joe is reliable with probability 30%. When he is reliable, what he says is
true. Otherwise, it may or may not be true.

X = {reliable,not reliable} P(reliable) = 0.3 P(not reliable) = 0.7
e Did Glenn pay his dues for coffee? 2 = {paid, not paid}

e Joe says “Glenn paid.”

[ (reliable) = {paid} ["(not reliable) = {paid, not paid}

e New beliefs:
RB(paid) = 0.3 B(not paid) =0

Cournotian judgement of independence: Hearing what Joe said does not
affect our inability to beat the probabilities concerning his reliability.
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Example: The more or less precise witness

e BIill is absolutely precise with probability 70%, approximate with
probability 20%, and unreliable with probability 10%.

X = {precise, approximate, not reliable}
P(precise) = 0.7 P(approximate) = 0.2 P(not reliable) = 0.1

e What did Glenn pay? 2 =1{0,%1,%5}

e Bill says “Glenn paid $ 5."
[ (precise) = {$5} [ (approximate) = {$1,%$5} "(not reliable) = {0,%1, %5}

e New beliefs:

B{O}=0 B{$1}=0 B{$5} =07 B{$1,$5} =0.9

Cournotian judgement of independence: Hearing what Bill said does not
affect our inability to beat the probabilities concerning his precision.
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Conditioning
e Variable w with set of possible values €2.
¢ Random variable X with set of possible values X.

e We learn a mapping I : X — 2% with this meaning:

If X =2z, then w &€ M(x).

M(z) = for some = € X.

e For A C Q, our belief that w € A is now

Pal(2) CA & T(x)# 0}

B(A) = P{z|M(z) # 0}

Cournotian judgement of independence: Aside from the impossibility of the
r for which M'(xz) = 0, learning I does not affect our inability to beat the
probabilities for X.
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Example: The witness caught out

e [om is absolutely precise with probability 70%, approximate with
probability 20%, and unreliable with probability 10%.

X = [precise, approximate, not reliable}
P(precise) = 0.7 P(approximate) = 0.2 P(not reliable) = 0.1

e What did Glenn pay? 2 = {0,%1, %5}

e [om says “Glenn paid $ 10."”
[ (precise) = () [(approximate) = {$5} M(not reliable) = {0.%$1,%5}
e New beliefs:
B{O} =0 B{$1} =0 B{$5} = 2/3 B{$1,%5} = 2/3
Cournotian judgement of independence: Aside ruling out his being

absolutely precise, what Tom said does not help us beat the probabilities for
his precision.
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Independence

Agin = {Bill precise, Bill approximate, Bill not reliable}
P(precise) = 0.7 P(approximate) = 0.2 P(not reliable) = 0.1

XTom = { Tom precise, Tom approximate, Tom not reliable}
P(precise) = 0.7 P(approximate) = 0.2 P(not reliable) = 0.1

Product measure;

Al & Tom = Aein % ATom

P(Bill precise, Tom precise) = 0.7 x 0.7 = 0.49

P(Bill precise, Tom approximate) = 0.7 «x0.2=0.14
etc.

Cournotian judgements of independence: Learning about the precision of
one of the witnesses will not help us beat the probabilities for the other.

Nothing novel here. Dempsterian independence = Cournotian independence.



Example: Independent contradictory witnesses
e Joe and Bill are both reliable with probability 70%.
¢ Did Glenn pay his dues? (2 = {paid, not paid}

e Joe says, "Glenn paid.” Bill says, “Glenn did not pay.”

IM1(Joe reliable) = {paid} M1 (Joe not reliable) = {paid, not paid}
>(Bill reliable) = {not paid} >(Bill not reliable) = {paid, not paid}

e T he pair (Joe reliable,Bill reliable), which had probability 0.49, is ruled
out.

0.21 0.21
ald) = —=0.41 not paid) = —— = 0.41
B(paid) 0E1 B(not paid) G

Cournotian judgement of independence: Aside from learning that they are

not both reliable, what Joe and Bill said does not help us beat the
probabilities concerning their reliability.
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Dempster's rule (independence + conditioning)
e Variable w with set of possible values €2.
¢ Random variables X; and X, with sets of possible values X; and 5.
e Form the product measure on X = A-.

e We learn mappings M : X1 — 2% and Mz ; &> — 2%

If X1 =1, then w e lMi(x1). If Xo = a2, then w € Ma(x2).
e So if (X1,X2) = (x1,x2), then w € Mi(x1) Na(x2).

¢ Conditioning on what is not ruled out,

[P{(I:L,IQ)M # r1{:r1) M rg(Ig) k_: A}
]P{(Il_,:rzﬂ'ﬂ == rl(l‘l) i rg(l‘g)}

B(A) =

Cournotian judgement of independence: Aside from ruling out some (x1.x2),
learning the I"'; does not help us beat the probabilities for X1 and X-.
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You can suppress the ['s and describe Dempster’s rule in terms
of the belief functions

Joe: B1{paid} = 0.7 Bi{not paid} =0
Bill: Bo{not paid} = 0.7 Bo{paid} =0
Bill
0.7 0.3
not paid e
0.21
aid) = —— = 0.41
B(paid) = =
0.7 paid
0.21
Joe not paid) = —— = 0.41
B( paid) 0.51
0.3 ¥
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Dempster's rule is unnecessary. It is merely a composition of
Cournot operations: formation of product measures,
conditioning, transferring belief.

But Dempster’'s rule is a unifying idea. Each Cournot operation
Is an example of Dempster combination.

e Forming product measure is Dempster combination.

e Conditioning on A is Demspter combination with a belief function that
gives belief one to A.

e Transferring belief is Dempster combination of (1) a belief function on
X« Q that gives probabilities to cylinder sets {x} x €2 with (2) a belief

function that gives probability one to {(z,w)|w € '(x)}.
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