Bayesian logistic betting strategy against probability forecasting^{*}

Akimichi Takemura, Univ. Tokyo

(joint with Masayuki Kumon, Jing Li and Kei Takeuchi) November 12, 2012

*arXiv:1204.3496. To appear in Stochastic Analysis and Applications.

Items

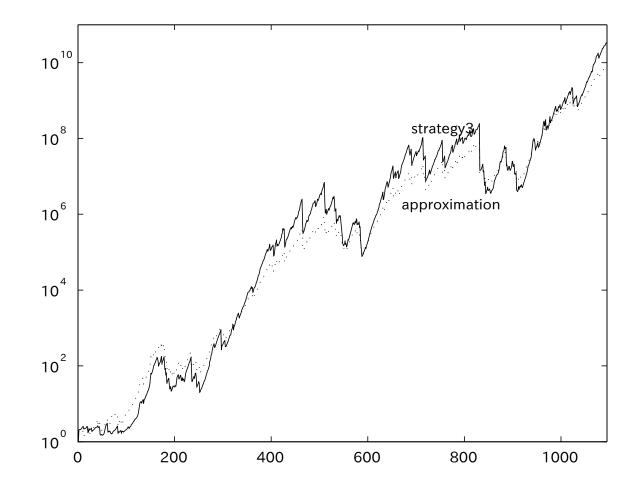
- (i) Introduction
- (ii) Formulation of probability forecasting game
- (iii) Logistic betting strategy
- (iv) Forcing of law of large numbers
- (v) **Experiments**

Introduction

- Primary example of probability forecasting: probability of precipitation
- Japan Meteorological Agency started probability forecasting of "rain" in 1980. (multiples of 10%)
- Is the agency doing well?
 - Is their prediction consistent with the data?
 - Is their prediction "accurate"?
 - Is better prediction possible?

- Suppose that we are allowed to bet against the agency.
- If we can beat the agency in the betting game, then the agency is NOT doing well.
- In fact, it is found that we can beat the agency in the hypothetical betting game, as shown later → their prediction is not accurate.

Beating the agency!



Formulation of probability forecasting game

- At the beginning of day n (or at the end of day n-1) an agency (we call it "Forecaster") announces a probability p_n of certain event in day n, such as precipitation in day n.
- Let x_n = 0,1 be the indicator variable for the event, i.e., x_n = 1 if the event occurs and x_n = 0 otherwise.
- We suppose that a player "Reality" decides the binary outcome x_n .

- When Forecaster announces p_n , it also sells a ticket with the price of p_n per ticket.
- The ticket pays one monetary unit when the event occurs in day *n*. (pays nothing if the event does not occur).
- A bettor or gambler, called "Skeptic", buys M_n tickets with the price of p_n per ticket. Then the payoff to Skeptic in day n is $M_n \times (x_n - p_n)$.
- If the agency's predictions are not good, Skeptic may be able to increase his capital denoted by \mathcal{K}_n .

BINARY PROBABILITY FORECASTING (BPF)

Protocol:

Skeptic announces his initial capital $\mathcal{K}_0 = 1$. FOR $n = 1, 2, \ldots$: Forecaster announces $p_n \in (0, 1)$. Skeptic announces $M_n \in \mathbb{R}$. Reality announces $x_n \in \{0, 1\}$. $\mathcal{K}_n := \mathcal{K}_{n-1} + M_n(x_n - p_n)$. Collateral Duty: Skeptic must keep $\mathcal{K}_n \ge 0$.

BPF WITH SIDE INFORMATION c_n (BPFSI)

Protocol:

 $\mathcal{K}_0 := 1, \mathcal{S}_0 := 0, \mathcal{V}_0 := 0.$ FOR n = 1, 2, ...:

> Forecaster announces $p_n \in (0, 1)$ and $c_n \in \mathbb{R}^d$. Skeptic announces M_n . Reality announces $x_n \in \{0, 1\}$.

 $\mathcal{K}_{n} := \mathcal{K}_{n-1} + M_{n}(x_{n} - p_{n}).$ $\mathcal{S}_{n} := \mathcal{S}_{n-1} + c_{n}(x_{n} - p_{n}).$ $\mathcal{V}_{n} := \mathcal{V}_{n-1} + c_{n}c'_{n} p_{n}(1 - p_{n}).$ ': transpose Collateral Duty: Skeptic must keep $\mathcal{K}_{n} \geq 0.$

- $\mathcal{V}_n = \operatorname{Var}(\mathcal{S}_n)$ is the variance of \mathcal{S}_n .
- If $c_n \equiv 1$, we are looking at the behavior of $S_n = \sum_{i=1}^n (x_i - p_i)$. In SLLN we are interested in the convergence of S_n/n of S_n/\mathcal{V}_n .
- In BPFSI, we are assuming that Forecaster discloses relevant side information c_n to Skeptic.
- However c_n can be any information available to Skeptic, just before his move.

- We introduced the side information because of the following measure-theoretic consideration.
 - Let (Ω, P, \mathcal{F}) be a probability space and let $\mathcal{G} \subset \mathcal{F}$ be a subfield of \mathcal{F} .
 - Let X be a random variable s.t. $E|X| < \infty$ and let $E(X|\mathcal{G})$ denote the conditional expectation w.r.t. \mathcal{G} .
 - Let Y be \mathcal{G} -measurable. Then

 $Y = E(X|\mathcal{G})$ a.s. $\Leftrightarrow E[C(X - Y)] = 0$ $\forall C : \mathbf{G} ext{-measurable and bounded}.$ Proof. (\Rightarrow) Obvious. (\Leftarrow) Let $C = I_{\{E(X|\mathcal{G})-Y>0\}}$. This C is \mathcal{G} -measurable. Then

$$0 = E[I_{\{E(X|\mathcal{G})>Y\}}(X-Y)]$$

= $E[E[I_{\{E(X|\mathcal{G})-Y>0\}}(E(X|\mathcal{G})-Y)|\mathcal{G}]]$
= $E[I_{\{E(X|\mathcal{G})-Y>0\}}(E(X|\mathcal{G})-Y)]$

Then

$$P\{E(X|\mathcal{G}) > Y\} = 0.$$

Similarly $P\{E(X|\mathcal{G}) < Y\} = 0.$ (Q.E.D.)

- Therefore we can test whether {x_n p_n}'s are martingale differences, by considering the covariance between them and any bounded predictable sequence {c_n}.
- For example, if $c_n = x_{n-1}$ we are testing whether the first-order autocovariance is zero or not.

Equivalence of betting strategy and Skeptic's probability

• Define the betting ratio as

$$\nu_n = \frac{M_n}{\mathcal{K}_{n-1}}.$$

• Suppose that Skeptic himself models the Reality's move as Bernoulli random variable with success probability \hat{p}_n . • For a given Forecaster's move p_n , define a one-to-one correspondence between \hat{p}_n and ν_n :

$$\nu_n = \frac{\hat{p}_n - p_n}{p_n(1 - p_n)} = \frac{\hat{p}_n}{p_n} - \frac{1 - \hat{p}_n}{1 - p_n}$$

- Then a strategy of Skeptic is equivalent to a formulation of \hat{p}_n in BPFSI.
- Hence we describe Skeptic's strategy by a formulation of \hat{p}_n
- We formulate logistic regression model for \hat{p}_n (standard statistics stuff).

Regularity conditions

- Let $\lambda_{\max,n}$ and $\lambda_{\min,n}$ denote the maximum and the minimum eigenvalues of \mathcal{V}_n .
- We consider the following regularity conditions:
 - i) $\lim_n \lambda_{\min,n} = \infty$.
- ii) $\limsup_n \lambda_{\max,n}/\lambda_{\min,n} < \infty$.
- iii) $\{c_1, c_2, \dots\}$ is a bounded set.

Logistic betting strategy

• Model for \hat{p}_n :

$$\log \frac{\hat{p}_n}{1-\hat{p}_n} = \log \frac{p_n}{1-p_n} + \theta' c_n,$$

where $\theta \in \mathbb{R}^d$ is a parameter vector.

- $p_n/(1-p_n)$ may be one component of c_n .
- Skeptic's model is, at round n,

$$P(X_n = 1) = \hat{p}_n, \qquad P(X_n = 0) = 1 - \hat{p}_n.$$

- As in the usual statistical logistic regression, θ can be estimated by maximum likelihood estimation or Bayes estimation.
- Bayes estimation corresponds to static mixture of betting strategies for fixed θ .
- Let \mathcal{K}_n^{θ} denote the capital process for a given θ .
- Let $\pi(\theta)$ denote a "prior" probability density for θ .
- Basic arguments in Shafer-Vovk use discrete π.
 Discete π is more clear, but continus π is more convenient for numerical analysis.

• "Bayesian logistic betting strategy":

$$\mathcal{K}_n^{\pi} = \int_{\mathbb{R}^d} \mathcal{K}_n^{\theta} \pi(\theta) d\theta$$

is the capital process of a Bayesian logistic betting strategy with the prior density π .

• \mathcal{K}_n^{θ} can be explicitly written for fixed θ . \mathcal{K}_n^{π} needs numerical integration.

Forcing of law of large numbers

Theorem 1 (Usual form of SLLN) In BPFSI, by a Bayesian logistic strategy with a prior distribution π supporting a neighborhood of the origin, Skeptic can weakly force

i), ii), iii)
$$\Rightarrow \lim_{n} \mathcal{V}_{n}^{-1} \mathcal{S}_{n} = 0,$$

where i),ii),iii) are the regularity conditions.

Stronger form of SLLN

Theorem 2 In BPFSI, by a Bayesian logistic strategy with a prior distribution π supporting a neighborhood of the origin, Skeptic can weakly force

i), ii), iii)
$$\Rightarrow \limsup_{n} \frac{\mathcal{S}'_{n}\mathcal{V}_{n}^{-1}\mathcal{S}_{n}}{\log \det \mathcal{V}_{n}} \leq 1,$$

where i), ii), iii) are the regularity conditions.

Approximation for $\log \mathcal{K}_n^{\pi}$

• Theorem 2 is the consequence of the following approximation:

$$\log \mathcal{K}_n^{\pi} = \frac{1}{2} \mathcal{S}_n' \mathcal{V}_n^{-1} \mathcal{S}_n - \frac{1}{2} \log \det \mathcal{V}_n + o(\log \det \mathcal{V}_n)$$

• $S'_n V_n^{-1} S_n/2$ corresponds to the maximized log likelihood, i.e. the log likelihood at the maximum likelihood estimate (MLE) $\hat{\theta}_n$ of θ at round n:

$$\hat{\theta}_n^* = \operatorname{argmax}_{\theta} \mathcal{K}_n^{\theta}$$

• $\hat{\theta}_n^*$: "hindsight best strategy" at round n.

Experiments

- Let $c'_n = (1, \log p_n / (1 p_n), x_{n-1})$ and $\theta = (\theta_1, \beta 1, \theta_3)$.
- We model the probability of precipitation \hat{p}_n by

$$\log \frac{\hat{p}_n}{1 - \hat{p}_n} = \log \frac{p_n}{1 - p_n} + c'_n \theta = \theta_1 + \beta \log \frac{p_n}{1 - p_n} + \theta_3 x_{n-1}$$

- We first tried π, which is the uniform distribution on [0, 1]³. This did not work.
 (Actually we should have considered [-1, 1]³.)
- We then used the uniform distribution on $[0,1] \times [0,2] \times [0,1] \quad (\Rightarrow p.4. !!)$

Why [0, 2] for β works?

- Because the hindsight best β_n^* is about 1.5.
- Look at the following table.
- It shows that Japan Meteorological Agency has the tendency of avoiding clear-cut forecasts.
- We only found this fact after the uniform prior on $[0,1]^3$ did not work.

Table 1: Actual ratio of rainy days

$p_n(\%)$	$x_n = 1$	$x_n = 0$	Actual Ratio(%)
0	1	61	1.6
10	10	324	3.0
20	24	193	11.1
30	36	117	23.5
40	20	26	43.5
50	67	56	54.5
60	38	14	73.1
70	36	7	85.7
80	36	4	90.0
90	22	1	95.6
100	3	0	100

24

Future works

- Our logistic betting strategy is nice, because the strategy directly depends Forecaster's current forecast p_n. In many papers in game-theoretic probability, Skeptic's strategies often ignore Forecaster's current forecast.
- We would like to extend our strategy for the binary case $x_n \in \{0, 1\}$ to the continuous case $x_n \in \mathbb{R}$.
- Such a strategy should be very useful for defensive forecasting.