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Introduction

• Primary example of probability forecasting:

probability of precipitation

• Japan Meteorological Agency started

probability forecasting of “rain” in 1980.

(multiples of 10%)

• Is the agency doing well?

– Is their prediction consistent with the data?

– Is their prediction “accurate”?

– Is better prediction possible?
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• Suppose that we are allowed to bet against the

agency.

• If we can beat the agency in the betting game,

then the agency is NOT doing well.

• In fact, it is found that we can beat the agency

in the hypothetical betting game, as shown

later → their prediction is not accurate.
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Beating the agency!
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Formulation of probability

forecasting game

• At the beginning of day n (or at the end of day

n− 1) an agency (we call it “Forecaster”)

announces a probability pn of certain event in

day n, such as precipitation in day n.

• Let xn = 0, 1 be the indicator variable for the

event, i.e., xn = 1 if the event occurs and xn = 0

otherwise.

• We suppose that a player “Reality” decides the

binary outcome xn.
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• When Forecaster announces pn, it also sells a

ticket with the price of pn per ticket.

• The ticket pays one monetary unit when the

event occurs in day n. (pays nothing if the

event does not occur).

• A bettor or gambler, called “Skeptic”, buys Mn

tickets with the price of pn per ticket. Then the

payoff to Skeptic in day n is Mn × (xn − pn).

• If the agency’s predictions are not good,

Skeptic may be able to increase his capital

denoted by Kn.
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Binary Probability Forecasting

(BPF)

Protocol:

Skeptic announces his initial capital K0 = 1.

FOR n = 1, 2, . . .:

Forecaster announces pn ∈ (0, 1).

Skeptic announces Mn ∈ R.
Reality announces xn ∈ {0, 1}.
Kn := Kn−1 +Mn(xn − pn).

Collateral Duty: Skeptic must keep Kn ≥ 0.
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BPF with Side Information cn
(BPFSI)
Protocol:

K0 := 1,S0 := 0,V0 := 0.

FOR n = 1, 2, . . .:

Forecaster announces pn ∈ (0, 1) and cn ∈ Rd.

Skeptic announces Mn.

Reality announces xn ∈ {0, 1}.
Kn := Kn−1 +Mn(xn − pn).

Sn := Sn−1 + cn(xn − pn).

Vn := Vn−1 + cnc′n pn(1− pn). ′ : transpose

Collateral Duty: Skeptic must keep Kn ≥ 0.
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Role of side information cn

• Vn = Var(Sn) is the variance of Sn.

• If cn ≡ 1, we are looking at the behavior of

Sn =
∑n

i=1(xi − pi). In SLLN we are interested in

the convergence of Sn/n of Sn/Vn.

• In BPFSI, we are assuming that Forecaster

discloses relevant side information cn to

Skeptic.

• However cn can be any information available to

Skeptic, just before his move.
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• We introduced the side information because of

the following measure-theoretic consideration.

– Let (Ω, P,F) be a probability space and let

G ⊂ F be a subfield of F .

– Let X be a random variable s.t. E|X| < ∞
and let E(X|G) denote the conditional

expectation w.r.t. G.
– Let Y be G-measurable. Then

Y = E(X|G) a.s. ⇔ E[C(X − Y )] = 0

∀C : G-measurable and bounded.
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Proof.

(⇒) Obvious.

(⇐) Let C = I{E(X|G)−Y >0}. This C is

G-measurable. Then

0 = E[I{E(X|G)>Y }(X − Y )]

= E[E[I{E(X|G)−Y >0}(E(X|G)− Y )|G]]
= E[I{E(X|G)−Y >0}(E(X|G)− Y )]

Then

P{E(X|G) > Y } = 0.

Similarly P{E(X|G) < Y } = 0. (Q.E.D.)
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• Therefore we can test whether {xn − pn}’s are

martingale differences, by considering the

covariance between them and any bounded

predictable sequence {cn}.

• For example, if cn = xn−1 we are testing whether

the first-order autocovariance is zero or not.
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Equivalence of betting strategy and

Skeptic’s probability

• Define the betting ratio as

νn =
Mn

Kn−1
.

• Suppose that Skeptic himself models the

Reality’s move as Bernoulli random variable

with success probability p̂n.
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• For a given Forecaster’s move pn, define a

one-to-one correspondence between p̂n and νn:

νn =
p̂n − pn

pn(1− pn)
=

p̂n
pn

− 1− p̂n
1− pn

• Then a strategy of Skeptic is equivalent to a

formulation of p̂n in BPFSI.

• Hence we describe Skeptic’s strategy by a

formulation of p̂n

• We formulate logistic regression model for p̂n
(standard statistics stuff).
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Regularity conditions

Let λmax,n and λmin,n denote the maximum and the

minimum eigenvalues of Vn.

We consider the following regularity conditions:

i) limn λmin,n = ∞.

ii) lim supn λmax,n/λmin,n < ∞.

iii) {c1, c2, . . . } is a bounded set.
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Logistic betting strategy

• Model for p̂n:

log
p̂n

1− p̂n
= log

pn
1− pn

+ θ′cn,

where θ ∈ Rd is a parameter vector.

• pn/(1− pn) may be one component of cn.

• Skeptic’s model is, at round n,

P (Xn = 1) = p̂n, P (Xn = 0) = 1− p̂n.
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• As in the usual statistical logistic regression, θ

can be estimated by maximum likelihood

estimation or Bayes estimation.

• Bayes estimation corresponds to static mixture

of betting strategies for fixed θ.

• Let Kθ
n denote the capital process for a given θ.

• Let π(θ) denote a “prior” probability density

for θ.

• Basic arguments in Shafer-Vovk use discrete π.

Discete π is more clear, but continus π is more

convenient for numerical analysis.
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• “Bayesian logistic betting strategy”:

Kπ
n =

∫

Rd

Kθ
nπ(θ)dθ

is the capital process of a Bayesian logistic

betting strategy with the prior density π.

• Kθ
n can be explicitly written for fixed θ. Kπ

n

needs numerical integration.
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Forcing of law of large numbers

Theorem 1 (Usual form of SLLN) In BPFSI, by a

Bayesian logistic strategy with a prior distribution π

supporting a neighborhood of the origin, Skeptic can

weakly force

i), ii), iii) ⇒ lim
n

V−1
n Sn = 0,

where i),ii),iii) are the regularity conditions.
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Stronger form of SLLN

Theorem 2 In BPFSI, by a Bayesian logistic strategy

with a prior distribution π supporting a neighborhood of

the origin, Skeptic can weakly force

i), ii), iii) ⇒ lim sup
n

S ′
nV−1

n Sn

log detVn
≤ 1,

where i), ii), iii) are the regularity conditions.
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Approximation for logKπ
n

• Theorem 2 is the consequence of the following

approximation:

logKπ
n =

1

2
S ′
nV−1

n Sn −
1

2
log detVn + o(log detVn)

• S ′
nV−1

n Sn/2 corresponds to the maximized log

likelihood, i.e. the log likelihood at the

maximum likelihood estimate (MLE) θ̂n of θ at

round n :

θ̂∗n = argmaxθ Kθ
n

• θ̂∗n: “hindsight best strategy” at round n.
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Experiments

• Let c′n = (1, log pn/(1− pn), xn−1) and

θ = (θ1, β − 1, θ3).

• We model the probability of precipitation p̂n by

log
p̂n

1− p̂n
= log

pn
1− pn

+ c′nθ = θ1 + β log
pn

1− pn
+ θ3xn−1

• We first tried π, which is the uniform

distribution on [0, 1]3. This did not work.

(Actually we should have considered [−1, 1]3.)

• We then used the uniform distribution on

[0, 1]× [0, 2]× [0, 1] (⇒ p.4. !!)
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Why [0, 2] for β works?

• Because the hindsight best β∗
n is about 1.5.

• Look at the following table.

• It shows that Japan Meteorological Agency has

the tendency of avoiding clear-cut forecasts.

• We only found this fact after the uniform prior

on [0, 1]3 did not work.
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Table 1: Actual ratio of rainy days

pn(%) xn = 1 xn = 0 Actual Ratio(%)

0 1 61 1.6

10 10 324 3.0

20 24 193 11.1

30 36 117 23.5

40 20 26 43.5

50 67 56 54.5

60 38 14 73.1

70 36 7 85.7

80 36 4 90.0

90 22 1 95.6

100 3 0 100
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Future works

• Our logistic betting strategy is nice, because

the strategy directly depends Forecaster’s

current forecast pn. In many papers in

game-theoretic probability, Skeptic’s strategies

often ignore Forecaster’s current forecast.

• We would like to extend our strategy for the

binary case xn ∈ {0, 1} to the continuous case

xn ∈ R.

• Such a strategy should be very useful for

defensive forecasting.
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