Effective Strong Measure Zero

Kojiro Higuchi*

Joint work with Takayuki Kihara⁺

*Chiba University +JAIST

May 15, 2013 at Hongo Campus, The University of Tokyo

Abstract

- E. Borel introduced the concept, strong measure zero in 1919.
- We give some characterization of the concept through techniques and results obtained in Algorithmic Randomness Theory.

First, we introduce the following three concepts:

- Strong measure zero
- Effective strong measure zero
- Strong Martin-Löf measure zero

Strong Measure Zero

- Definition (E. Borel, 1919) $X \subset \mathbb{R}$ is a strong measure zero set \iff $\forall \{\varepsilon_n\}_{n\in\mathbb{N}} \subset \mathbb{R}^+ \exists \{I_n\}_{n\in\mathbb{N}} : \text{ open intervals with } |I_n| < \varepsilon_n$ $X \subset \bigcup_{n\in\mathbb{N}} I_n$.
- Borel conjectured BC: {Strong measure zero sets} = {Countable sets}.
- BC is independent from ZFC.
 - (Sierpiński, 1928) Continuum Hypothesis implies ¬BC.
 - (Laver, 1976) ZFC+BC $\not\vdash \bot$ (if ZFC $\not\vdash \bot$).

Strong Measure Zero

- Definition (E. Borel, 1919) $X \subset \mathbb{R}$ is a strong measure zero set \iff $\forall \{\varepsilon_n\}_{n\in\mathbb{N}} \subset \mathbb{R}^+ \exists \{I_n\}_{n\in\mathbb{N}} : \text{ open intervals with } |I_n| < \varepsilon_n$ $X \subset \bigcup_{n\in\mathbb{N}} I_n$.
- Borel conjectured BC: {Strong measure zero sets} = {Countable sets}.
- BC is independent from ZFC.
 - (Sierpiński, 1928) Continuum Hypothesis implies ¬BC.
 - (Laver, 1976) ZFC+BC $\not\vdash \bot$ (if ZFC $\not\vdash \bot$).

Strong Measure Zero

- Definition (E. Borel, 1919) $X \subset \mathbb{R}$ is a strong measure zero set \iff $\forall \{\varepsilon_n\}_{n\in\mathbb{N}} \subset \mathbb{R}^+ \exists \{I_n\}_{n\in\mathbb{N}} : \text{ open intervals with } |I_n| < \varepsilon_n$ $X \subset \bigcup_{n\in\mathbb{N}} I_n$.
- Borel conjectured BC: {Strong measure zero sets} = {Countable sets}.
- BC is independent from ZFC.
 - (Sierpiński, 1928) Continuum Hypothesis implies ¬BC.
 - (Laver, 1976) ZFC+BC $\forall \bot$ (if ZFC $\forall \bot$).

Strong Measure Zero in $2^{\mathbb{N}}$

- Definition (E. Borel, 1919) $X \subset \mathbb{R}$ is a strong measure zero set \iff $\forall \{\varepsilon_n\}_{n\in\mathbb{N}} \subset \mathbb{R}^+ \exists \{I_n\}_{n\in\mathbb{N}} : \text{ open intervals with } |I_n| < \varepsilon_n$ $X \subset \bigcup_{n\in\mathbb{N}} I_n$.
- Definition (in $2^{\mathbb{N}}$) $X \subset 2^{\mathbb{N}}$ is a strong measure zero set \iff $\forall \{k_n\}_{n\in\mathbb{N}} \subset \mathbb{N} \ \exists \{\sigma_n\}_{n\in\mathbb{N}} \subset 2^{<\mathbb{N}} \ \text{with} \ |\sigma_n| \geq k_n$ $X \subset \bigcup_{n\in\mathbb{N}} \llbracket \sigma_n \rrbracket,$ where $\llbracket \sigma_n \rrbracket = \{f \in 2^{\mathbb{N}} \mid f \supset \sigma_n \}.$

Strong Measure Zero in $2^{\mathbb{N}}$

- Definition (E. Borel, 1919) $X \subset \mathbb{R}$ is a strong measure zero set \iff $\forall \{\varepsilon_n\}_{n\in\mathbb{N}} \subset \mathbb{R}^+ \exists \{I_n\}_{n\in\mathbb{N}} : \text{ open intervals with } |I_n| < \varepsilon_n$ $X \subset \bigcup_{n\in\mathbb{N}} I_n$.
- Definition (in $2^{\mathbb{N}}$) $X \subset 2^{\mathbb{N}}$ is a strong measure zero set \iff $\forall \{k_n\}_{n\in\mathbb{N}} \subset \mathbb{N} \ \exists \{\sigma_n\}_{n\in\mathbb{N}} \subset 2^{<\mathbb{N}} \ \text{with} \ |\sigma_n| \geq k_n$ $X \subset \bigcup_{n\in\mathbb{N}} \llbracket \sigma_n \rrbracket,$ where $\llbracket \sigma_n \rrbracket = \{f \in 2^{\mathbb{N}} \mid f \supset \sigma_n \}.$

Besicovitch's Theorem

Definitions For $\mu: 2^{<\mathbb{N}} \to [0,1]$,

- The induced outer measure μ^* of μ is defined by $\mu^*(X) = \inf\{\sum_{\sigma \in A} \mu(\sigma) : A \subset 2^{<\mathbb{N}}, X \subset \bigcup_{\sigma \in A} \llbracket \sigma \rrbracket \}$ for all $X \subset 2^{\mathbb{N}}$.
- X is of μ -zero $\iff \mu^*(X) = 0$.
- μ is atomless $\iff \forall f \in 2^{\mathbb{N}}, \ \mu^*(f) = 0.$
- μ is a premeasure $\iff \forall \sigma \in 2^{<\mathbb{N}}$, $\mu(\sigma 0), \mu(\sigma 1) \leq \mu(\sigma) \leq \mu(\sigma 0) + \mu(\sigma 1)$.
 - In this case, we have $\mu^*(\llbracket \sigma \rrbracket) = \mu(\sigma)$.

Theorem (due to A.S.Besicovitch, 1933)

 $X \subset 2^{\mathbb{N}}$ is a strong measure zero set \iff

 \forall atomless premeasure $\mu: 2^{<\mathbb{N}} \to [0,1], \ \mu^*(X) = 0.$

Besicovitch's Theorem

Definitions For $\mu: 2^{<\mathbb{N}} \to [0,1]$,

- The induced outer measure μ^* of μ is defined by $\mu^*(X) = \inf\{\sum_{\sigma \in A} \mu(\sigma) : A \subset 2^{<\mathbb{N}}, X \subset \bigcup_{\sigma \in A} \llbracket \sigma \rrbracket \}$ for all $X \subset 2^{\mathbb{N}}$.
- X is of μ -zero $\iff \mu^*(X) = 0$.
- μ is atomless $\iff \forall f \in 2^{\mathbb{N}}, \ \mu^*(f) = 0.$
- μ is a premeasure $\iff \forall \sigma \in 2^{<\mathbb{N}}$, $\mu(\sigma 0), \mu(\sigma 1) \leq \mu(\sigma) \leq \mu(\sigma 0) + \mu(\sigma 1)$.
 - In this case, we have $\mu^*(\llbracket \sigma \rrbracket) = \mu(\sigma)$.

Theorem (due to A.S.Besicovitch, 1933) $X \subset 2^{\mathbb{N}}$ is a strong measure zero set \iff \forall atomless premeasure $\mu: 2^{<\mathbb{N}} \to [0,1], \ \mu^*(X) = 0.$

Besicovitch's Theorem

Definitions For $\mu: 2^{<\mathbb{N}} \to [0,1]$,

- The induced outer measure μ^* of μ is defined by $\mu^*(X) = \inf\{\sum_{\sigma \in A} \mu(\sigma) : A \subset 2^{<\mathbb{N}}, X \subset \bigcup_{\sigma \in A} \llbracket \sigma \rrbracket \}$ for all $X \subset 2^{\mathbb{N}}$.
- X is of μ -zero $\iff \mu^*(X) = 0$.
- μ is atomless $\iff \forall f \in 2^{\mathbb{N}}, \ \mu^*(f) = 0.$
- μ is a premeasure $\iff \forall \sigma \in 2^{<\mathbb{N}}$, $\mu(\sigma 0), \mu(\sigma 1) \leq \mu(\sigma) \leq \mu(\sigma 0) + \mu(\sigma 1)$.
 - In this case, we have $\mu^*(\llbracket \sigma \rrbracket) = \mu(\sigma)$.

Theorem (due to A.S.Besicovitch, 1933)

 $X \subset 2^{\mathbb{N}}$ is a strong measure zero set \iff

 \forall atomless premeasure $\mu: 2^{<\mathbb{N}} \to [0,1]$, $\mu^*(X) = 0$.

Effectivizations of Strong Measure Zero

Definitions For $X \subset 2^{\mathbb{N}}$,

- X is an effective strong measure zero set \iff \forall comp. atomless premeasure $\mu: 2^{<\mathbb{N}} \to [0,1]$, $\mu^*(X) = 0$.
- (Kihara/Miyabe) X is a strong Martin-Löf measure zero set \iff \forall comp. atomless premeasure $\mu: 2^{<\mathbb{N}} \to [0,1]$, X is of Martin-Löf μ -zero,

```
Here, X is Martin-Löf \mu-zero for a premeasure \mu: 2^{<\mathbb{N}} \to [0,1] \iff \exists \text{ comp. descending seq. } \{\mathcal{U}_n\}_{n\in\mathbb{N}} \text{ of c.e. open sets } \forall n \in \mathbb{N} \ [\mu^*(\mathcal{U}_n) \leq 2^{-n} \text{ and } X \subset \mathcal{U}_n].
```

Effectivizations of Strong Measure Zero

Definitions For $X \subset 2^{\mathbb{N}}$,

- X is an effective strong measure zero set \iff \forall comp. atomless premeasure $\mu: 2^{<\mathbb{N}} \to [0,1]$, $\mu^*(X) = 0$.
- (Kihara/Miyabe) X is a strong Martin-Löf measure zero set \iff \forall comp. atomless premeasure $\mu: 2^{<\mathbb{N}} \to [0,1]$, X is of Martin-Löf μ -zero,

```
Here, X is Martin-Löf \mu-zero for a premeasure \mu: 2^{<\mathbb{N}} \to [0,1] \iff \exists \text{ comp. descending seq. } \{\mathcal{U}_n\}_{n\in\mathbb{N}} \text{ of c.e. open sets } \forall n\in\mathbb{N} \ [\mu^*(\mathcal{U}_n)\leq 2^{-n} \text{ and } X\subset\mathcal{U}_n].
```

Here, in terms of semimeasures and complexities, we give some characterizations of the concepts we have defined.

Semimeasures and The A Priori Complexity

Definitions

- $\nu: 2^{<\mathbb{N}} \to [0,1]$ is a semimeasure $\iff \forall \sigma \in 2^{<\mathbb{N}}, \ \nu(\sigma) \ge \nu(\sigma 0) + \nu(\sigma 1).$
- A left-computable semimeasure ν_0 is optimal \iff \forall I.-c. semimeasure $\nu_1 \exists c \in \mathbb{R} \forall \sigma \in 2^{<\mathbb{N}}$, $\nu_1(\sigma) \leq c\nu_0(\sigma)$.
 - (Levin) There is such a l.-c. semimeasure.
- Fix an optimal I.-c. semimeasure $\nu_{\mathrm{opt}}: 2^{<\mathbb{N}} \to [0,1]$. A priori complexity KA of $\sigma \in 2^{<\mathbb{N}}$ is defined by $\mathrm{KA}(\sigma) = -\log_2 \nu_{\mathrm{opt}}(\sigma)$.

Semimeasures and The A Priori Complexity

Definitions

- $\nu: 2^{<\mathbb{N}} \to [0,1]$ is a semimeasure $\iff \forall \sigma \in 2^{<\mathbb{N}}, \ \nu(\sigma) \ge \nu(\sigma 0) + \nu(\sigma 1).$
- A left-computable semimeasure ν_0 is optimal \iff \forall I.-c. semimeasure $\nu_1 \exists c \in \mathbb{R} \forall \sigma \in 2^{<\mathbb{N}}$, $\nu_1(\sigma) \leq c\nu_0(\sigma)$.
 - (Levin) There is such a l.-c. semimeasure.
- Fix an optimal I.-c. semimeasure $\nu_{\mathrm{opt}}: 2^{<\mathbb{N}} \to [0,1]$. A priori complexity KA of $\sigma \in 2^{<\mathbb{N}}$ is defined by $\mathrm{KA}(\sigma) = -\log_2 \nu_{\mathrm{opt}}(\sigma)$.

Theorem (due to Hudelson/H./Simpson/Yokoyama) For a comp. premeasure $\mu: 2^{<\mathbb{N}} \to [0,1]$ and $X \subset 2^{\mathbb{N}}$, TFAE:

- X is a Martin-Löf μ -zero set.
- X contains no μ -complex element w.r.t. KA, i.e., $\neg \exists f \in X, c \in \mathbb{N} \forall \sigma \subset f, KA(\sigma) > -\log_2(\mu(\sigma)) - c.$
- \exists I.-c. semimeasure $\nu \forall f \in X$, $\sup_{\sigma \in f} \nu(\sigma)/\mu(\sigma) = \infty$.

For a comp. premeasure $\mu: 2^{<\mathbb{N}} \to [0,1]$ and $X \subset 2^{\mathbb{N}}$, TFAE:

- X is a μ-zero set.
- X contains no μ -complex element w.r.t. KA relative to some real, i.e., $\neg \exists f \in X, g \in 2^{\mathbb{N}}, c \in \mathbb{N} \forall \sigma \subset f$. $KA^{g}(\sigma) \ge -\log_{2}(\mu(\sigma)) - c.$
- \exists semimeasure $\nu \forall f \in X$, $\sup_{\sigma \in f} \nu(\sigma)/\mu(\sigma) = \infty$.

Theorem (due to Hudelson/H./Simpson/Yokoyama) For a comp. premeasure $\mu: 2^{<\mathbb{N}} \to [0,1]$ and $X \subset 2^{\mathbb{N}}$, TFAE:

- X is a Martin-Löf μ-zero set.
- X contains no μ -complex element w.r.t. KA, i.e., $\neg \exists f \in X, c \in \mathbb{N} \forall \sigma \subset f, KA(\sigma) \geq -\log_2(\mu(\sigma)) c.$
- \exists I.-c. semimeasure $\nu \forall f \in X$, $\sup_{\sigma \subset f} \nu(\sigma)/\mu(\sigma) = \infty$.

Corollary

For a comp. premeasure $\mu:2^{<\mathbb{N}}\to [0,1]$ and $X\subset 2^{\mathbb{N}}$, TFAE:

- X is a μ -zero set.
- X contains no μ -complex element w.r.t. KA relative to some real, i.e., $\neg \exists f \in X, g \in 2^{\mathbb{N}}, c \in \mathbb{N} \forall \sigma \subset f$, $KA^{g}(\sigma) \geq -\log_{2}(\mu(\sigma)) c$.
- \exists semimeasure $\nu \forall f \in X$, $\sup_{\sigma \subset f} \nu(\sigma)/\mu(\sigma) = \infty$.

Theorem (Kihara/Miyabe) For $X \subset 2^{\mathbb{N}}$, TFAE:

- X is a strong Martin-Löf measure zero set.
- X contains no complex element, i.e., $\neg \exists$ comp. atomless premeasure $\mu, f \in X, c \in \mathbb{N} \forall \sigma \subset f$, $\mathrm{K}(\sigma) \geq -\log_2(\mu(\sigma)) c$, where K is KA or KP , the prefix-free Kolmogorov complexity.
- \forall comp. atomless premeasure $\mu\exists$ I.-c. semimeasure ν $\forall f \in X$, $\sup_{\sigma \subset f} \nu(\sigma)/\mu(\sigma) = \infty$.

Theorem For $X \subset 2^{\mathbb{N}}$, TFAE:

- X is an effective strong measure zero set.
- $\neg \exists$ comp. atomless premeasure $\mu \ \forall g \in 2^{\mathbb{N}}$ $\exists f \in X, c \in \mathbb{N} \ \forall \sigma \subset f, \ \mathrm{K}^g(\sigma) \geq -\log_2(\mu(\sigma)) c.$
- \forall comp. atomless premeasure $\mu \exists$ semimeasure $\nu \forall f \in X$, $\sup_{\sigma \in f} \nu(\sigma)/\mu(\sigma) = \infty$.

Theorem (Kihara/Miyabe) For $X \subset 2^{\mathbb{N}}$, TFAE:

- X is a strong Martin-Löf measure zero set.
- X contains no complex element, i.e., $\neg \exists$ comp. atomless premeasure $\mu, f \in X, c \in \mathbb{N} \forall \sigma \subset f$, $\mathrm{K}(\sigma) \geq -\log_2(\mu(\sigma)) c$, where K is KA or KP , the prefix-free Kolmogorov complexity.
- \forall comp. atomless premeasure $\mu\exists$ I.-c. semimeasure ν $\forall f \in X$, $\sup_{\sigma \subset f} \nu(\sigma)/\mu(\sigma) = \infty$.

Theorem For $X \subset 2^{\mathbb{N}}$, TFAE:

- X is an effective strong measure zero set.
- $\neg \exists$ comp. atomless premeasure $\mu \ \forall g \in 2^{\mathbb{N}}$ $\exists f \in X, c \in \mathbb{N} \ \forall \sigma \subset f, \ \mathrm{K}^{g}(\sigma) \geq -\log_{2}(\mu(\sigma)) c.$
- \forall comp. atomless premeasure $\mu \exists$ semimeasure $\nu \forall f \in X$, $\sup_{\sigma \subset f} \nu(\sigma)/\mu(\sigma) = \infty$.

By relativizing to all reals, we have:

Theorem TFAE:

- $X \subset 2^{\mathbb{N}}$ is a strong measure zero set.
- $\neg \exists$ atomless premeasure $\mu \ \forall g \in 2^{\mathbb{N}} \ \exists f \in X, c \in \mathbb{N} \ \forall \sigma \subset f, \ \mathrm{K}^g(\sigma) \geq -\log_2(\mu(\sigma)) c.$
- \forall atomless premeasure $\mu \exists$ semimeasure $\nu \forall f \in X$, $\sup_{\sigma \subset f} \nu(\sigma)/\mu(\sigma) = \infty$.

Corollary Assume Borel Conjecture is true. Then, every uncountable subset of $2^{\mathbb{N}}$ has an element which is complex relative to some real.

- : Let X be uncountable and let μ be an atomless premeasure in the above condition.
- Choose g s.t. μ is g-comp.
- $f \in X$ in the above condition is complex relative to g.

By relativizing to all reals, we have:

Theorem TFAE:

- $X \subset 2^{\mathbb{N}}$ is a strong measure zero set.
- $\neg \exists$ atomless premeasure $\mu \ \forall g \in 2^{\mathbb{N}} \ \exists f \in X, c \in \mathbb{N}$ $\forall \sigma \subset f, \ \mathrm{K}^g(\sigma) \geq -\log_2(\mu(\sigma)) c.$
- \forall atomless premeasure $\mu \exists$ semimeasure $\nu \forall f \in X$, $\sup_{\sigma \subset f} \nu(\sigma)/\mu(\sigma) = \infty$.

Corollary Assume Borel Conjecture is true. Then, every uncountable subset of $2^{\mathbb{N}}$ has an element which is complex relative to some real.

- : Let X be uncountable and let μ be an atomless premeasure in the above condition.
- Choose g s.t. μ is g-comp.
- $f \in X$ in the above condition is complex relative to g.

Here, in terms of martingales, we give characterizations of our main concepts. It is obtained easily using the characterizations by semimeasures.

Martingales

Definitions (related to Schnorr, Lutz)

- Any $O: 2^{<\mathbb{N}} \to [1, \infty)$ is called odds.
- $M: 2^{<\mathbb{N}} \to [0, \infty)$ is O-gale \iff $M(\sigma) = M(\sigma 0)/O(\sigma 0) + M(\sigma 1)/O(\sigma 1)$.
 - Intuitively, an O-gale M is a betting strategy of a gambler:
 - at a stage σ , she/he has her/his capital $M(\sigma)$,
 - she/he divides $M(\sigma)$ into two $M(\sigma0)/O(\sigma0)$ and $M(\sigma1)/O(\sigma1)$ to bet 0 and 1 respectively as her/his conjecture of the next value, and
 - she/he gets $M(\sigma 0)$ if the next value is 0, $M(\sigma 1)$ if it is 1.
 - Note martingale = 2-martingale.
- $M: 2^{<\mathbb{N}} \to [0, \infty)$ is *O*-supergale \iff $M(\sigma) \ge M(\sigma 0)/O(\sigma 0) + M(\sigma 1)/O(\sigma 1)$.

Martingales

Definitions (related to Schnorr, Lutz)

- Any $O: 2^{<\mathbb{N}} \to [1, \infty)$ is called odds.
- $M: 2^{<\mathbb{N}} \to [0, \infty)$ is O-gale \iff $M(\sigma) = M(\sigma 0)/O(\sigma 0) + M(\sigma 1)/O(\sigma 1)$.
 - Intuitively, an O-gale M is a betting strategy of a gambler:
 - at a stage σ , she/he has her/his capital $M(\sigma)$,
 - she/he divides $M(\sigma)$ into two $M(\sigma0)/O(\sigma0)$ and $M(\sigma1)/O(\sigma1)$ to bet 0 and 1 respectively as her/his conjecture of the next value, and
 - she/he gets $M(\sigma 0)$ if the next value is 0, $M(\sigma 1)$ if it is 1.
 - Note martingale = 2-martingale.
- $M: 2^{<\mathbb{N}} \to [0, \infty)$ is *O*-supergale \iff $M(\sigma) \ge M(\sigma 0) / O(\sigma 0) + M(\sigma 1) / O(\sigma 1)$.

Martingales

Definitions (related to Schnorr, Lutz)

- Any $O: 2^{<\mathbb{N}} \to [1, \infty)$ is called odds.
- $M: 2^{<\mathbb{N}} \to [0, \infty)$ is O-gale \iff $M(\sigma) = M(\sigma 0)/O(\sigma 0) + M(\sigma 1)/O(\sigma 1)$.
 - Intuitively, an *O*-gale *M* is a betting strategy of a gambler:
 - at a stage σ , she/he has her/his capital $M(\sigma)$,
 - she/he divides $M(\sigma)$ into two $M(\sigma0)/O(\sigma0)$ and $M(\sigma1)/O(\sigma1)$ to bet 0 and 1 respectively as her/his conjecture of the next value, and
 - she/he gets $M(\sigma 0)$ if the next value is 0, $M(\sigma 1)$ if it is 1.
 - Note martingale = 2-martingale.
- $M: 2^{<\mathbb{N}} \to [0, \infty)$ is O-supergale \iff $M(\sigma) \ge M(\sigma 0)/O(\sigma 0) + M(\sigma 1)/O(\sigma 1)$.

Semimesures vs Martingales

Definitions

- The induced odds O_{μ} and the induced $(O_{\mu}$ -)supergale M_{μ}^{ν} by a premeasure $\mu: 2^{<\mathbb{N}} \to (0,1]$ and a semimeasure ν are defined as $O_{\mu}(\emptyset) = 1/\mu(\emptyset)$ and $O_{\mu}(\sigma i) = \mu(\sigma)/\mu(\sigma i)$; and $M_{\mu}^{\nu}(\sigma) = \nu(\sigma)/\mu(\sigma)$.
- The induced premeasure μ_O and the induced semimeasure ν_O^M by odds $O: 2^{<\mathbb{N}} \to [1,\infty)$ with $O(\sigma 0)^{-1} + O(\sigma 1)^{-1} \ge 1$ and an O-supergale M are defined as $\mu_O(\sigma) = (\prod_{\tau \subset \sigma} O(\tau))^{-1}$ and $\nu_O^M(\sigma) = \mu_O(\sigma) M(\sigma)$.

Proposition These maps are a bijection and its inverse b/w;

- the set of all pairs of premeasures $\mu: 2^{<\mathbb{N}} \to (0,1]$ and semimeasures; and
- the set of all pairs of odds O with $O(\sigma 0)^{-1} + O(\sigma 1)^{-1} > 1$ and O-supergales.

Semimesures vs Martingales

Definitions

- The induced odds O_{μ} and the induced $(O_{\mu}$ -)supergale M^{ν}_{μ} by a premeasure $\mu: 2^{<\mathbb{N}} \to (0,1]$ and a semimeasure ν are defined as $O_{\mu}(\emptyset) = 1/\mu(\emptyset)$ and $O_{\mu}(\sigma i) = \mu(\sigma)/\mu(\sigma i)$; and $M^{\nu}_{\mu}(\sigma) = \nu(\sigma)/\mu(\sigma)$.
- The induced premeasure μ_O and the induced semimeasure ν_O^M by odds $O: 2^{<\mathbb{N}} \to [1,\infty)$ with $O(\sigma 0)^{-1} + O(\sigma 1)^{-1} \ge 1$ and an O-supergale M are defined as $\mu_O(\sigma) = (\prod_{\tau \subset \sigma} O(\tau))^{-1}$ and $\nu_O^M(\sigma) = \mu_O(\sigma) M(\sigma)$.

Proposition These maps are a bijection and its inverse b/w;

- the set of all pairs of premeasures $\mu: 2^{<\mathbb{N}} \to (0,1]$ and semimeasures; and
- the set of all pairs of odds O with $O(\sigma 0)^{-1} + O(\sigma 1)^{-1} > 1$ and O-supergales.

Semimesures vs Martingales

Definitions

- The induced odds O_{μ} and the induced $(O_{\mu}$ -)supergale M_{μ}^{ν} by a premeasure $\mu: 2^{<\mathbb{N}} \to (0,1]$ and a semimeasure ν are defined as $O_{\mu}(\emptyset) = 1/\mu(\emptyset)$ and $O_{\mu}(\sigma i) = \mu(\sigma)/\mu(\sigma i)$; and $M_{\mu}^{\nu}(\sigma) = \nu(\sigma)/\mu(\sigma)$.
- The induced premeasure μ_O and the induced semimeasure ν_O^M by odds $O: 2^{<\mathbb{N}} \to [1,\infty)$ with $O(\sigma 0)^{-1} + O(\sigma 1)^{-1} \ge 1$ and an O-supergale M are defined as $\mu_O(\sigma) = (\prod_{\tau \subset \sigma} O(\tau))^{-1}$ and $\nu_O^M(\sigma) = \mu_O(\sigma) M(\sigma)$.

Proposition These maps are a bijection and its inverse b/w;

- the set of all pairs of premeasures $\mu: 2^{<\mathbb{N}} \to (0,1]$ and semimeasures; and
- the set of all pairs of odds O with $O(\sigma 0)^{-1} + O(\sigma 1)^{-1} > 1$ and O-supergales.

Characterizations via Martingales

Proposition $\forall f \in 2^{\mathbb{N}}, \sup_{\sigma \subset f} M^{\nu}_{\mu}(\sigma) = \sup_{\sigma \subset f} \nu(\sigma)/\mu(\sigma).$

• Since $M^{\nu}_{\mu}(\sigma) = \nu(\sigma)/\mu(\sigma)$.

Theorem For $X \subset 2^{\mathbb{N}}$, TFAE

- X is an effective strong measure zero set.
- \forall comp. atomless premeasure $\mu: 2^{<\mathbb{N}} \to [0,1]$ \exists semimeasure $\nu \forall f \in X$, $\sup_{\sigma \subset f} \nu(\sigma)/\mu(\sigma) = \infty$.
- \forall comp. acceptable odds $O: 2^{<\mathbb{N}} \to [1, \infty)$ $\exists O$ -supergale $M \forall f \in X$, $\sup_{\sigma \subset f} M(\sigma) = \infty$,
 - where O is acceptable \iff $\forall g \in 2^{\mathbb{N}}, \; \prod_{n \in \mathbb{N}} O(g \upharpoonright n) = \infty.$

Characterizations via Martingales

Proposition $\forall f \in 2^{\mathbb{N}}, \sup_{\sigma \subset f} M^{\nu}_{\mu}(\sigma) = \sup_{\sigma \subset f} \nu(\sigma)/\mu(\sigma).$

• Since $M^{\nu}_{\mu}(\sigma) = \nu(\sigma)/\mu(\sigma)$.

Theorem For $X \subset 2^{\mathbb{N}}$, TFAE

- X is an effective strong measure zero set.
- \forall comp. atomless premeasure $\mu: 2^{<\mathbb{N}} \to [0,1]$ \exists semimeasure $\nu \forall f \in X$, $\sup_{\sigma \subset f} \nu(\sigma)/\mu(\sigma) = \infty$.
- \forall comp. acceptable odds $O: 2^{<\mathbb{N}} \to [1, \infty)$ $\exists O$ -supergale $M \forall f \in X$, $\sup_{\sigma \subset f} M(\sigma) = \infty$,
 - where O is acceptable \iff $\forall g \in 2^{\mathbb{N}}, \prod_{n \in \mathbb{N}} O(g \upharpoonright n) = \infty.$

Characterizations via Martingales

Again, by relativization, we have Theorem For $X \subset 2^{\mathbb{N}}$, TFAE:

- X is a strong measure zero set.
- \forall atomless premeasure $\mu \exists$ semimeasure $\nu \forall f \in X$, $\sup_{\sigma \subset f} \nu(\sigma)/\mu(\sigma) = \infty$.
- \forall acceptable odds $O\exists O$ -supergale $M\forall f\in X$, $\sup_{\sigma\subset f}M(\sigma)=\infty$.

Summary

TFAE:

- X is a strong measure zero set.
- $\neg \exists$ atomless premeasure $\mu \ \forall g \in 2^{\mathbb{N}} \ \exists f \in X$ f is μ -complex relative to g.
- \forall atomless premeasure $\mu\exists$ semimeasure $\nu\forall f\in X$, $\sup_{\sigma\subset f}\nu(\sigma)/\mu(\sigma)=\infty.$
- \forall acceptable odds $O\exists O$ -supergale $M\forall f\in X$, $\sup_{\sigma\subset f}M(\sigma)=\infty$.

This talk is based on:

K.Higuchi and T.Kihara, On effectively closed sets of effective strong measure zero, preprint.

Thank you for your attention!

Summary

TFAE:

- X is a strong measure zero set.
- $\neg \exists$ atomless premeasure $\mu \ \forall g \in 2^{\mathbb{N}} \ \exists f \in X$ f is μ -complex relative to g.
- \forall atomless premeasure $\mu \exists$ semimeasure $\nu \forall f \in X$, $\sup_{\sigma \subset f} \nu(\sigma)/\mu(\sigma) = \infty$.
- \forall acceptable odds $O\exists O$ -supergale $M\forall f\in X$, $\sup_{\sigma\subset f}M(\sigma)=\infty$.

This talk is based on:

K.Higuchi and T.Kihara, On effectively closed sets of effective strong measure zero, preprint.

Thank you for your attention!