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For infinite binary strings x, y, (x + y)(n) = x(n) + y(n) mod 2.

Main Theorem
The following are equivalent for x € 2.
@ x is low for uniform Kurtz randomness.
© x + yis Kurtz random whenever y is Kurtz random.
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For infinite binary strings x, y, (x + y)(n) = x(n) + y(n) mod 2.

Main Theorem
The following are equivalent for x € 2.
@ x s low for uniform Kurtz randomness.
© x + yis Kurtz random whenever y is Kurtz random.
© x is low for uniform weak 1-genericity.
©Q x + yis weakly 1-generic whenever y is weakly 1-generic.
© xis K"-null for every computable h.

Key ldea
@ Pawlikowski’s characterization of strong measure zero [1]
@ Characterization of meager-additivity [2]

[1] J. Pawlikowski, A characterization of strong measure zero sets, 1993.

[2] T. Bartoszynski and H. Judah, Set Theory: On the Structure of the Real
Line, 1995.
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The concept of K -nullness is introduced by K.-Miyabe [3]
as a Kurtz version of effective Hausdorff dimension.

Definition (K.-Miyabe [3])

For an order h : w = w, a set E C 2% is Kurtz h-null (K"-null) if
there is a computable sequence {Cn}new Of finite sets of strings
such that

Ec[Ciand ) 2707 <2 forall n € w.

oeCp

We also say that A € 2 is Kurtz h-null if {A} is Kurtz h-null.

[3] T. Kihara and K. Miyabe, Uniform Kurtz randomness, 2013.
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Fine Structure inside “Probability 0” )

H-null « K'-null «— P-null
T T T
dimy <1 «— dimg <1 «— dimp < 1
T T T
dimy <s «— dimg <s « dimp <s (se(0,1))
T T T
dimy =10 « dimgxk =0 « dimp=0
T T T
HO-null - Kh-null «  Phnul (h- )
T T T
(Vh) H"-null « (Yh) K'-null « (Yh) PP-null
¢ ? ¢
strong measure zero « meager-additive « null-additive
T (eff) T (eff) T (eff)
uniLow(Sch,Kur) « uniLow(Kur) <« uniLow(Sch)
(uniLow(ML,Kur)) uniLow(W1G) (uniLow(ML,Sch))
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Bitwise Sum
For sequences x, y € 2%, the bitwise addition x + y is defined by
(x + y)(n) = x(n) + y(n) mod 2.

1100100100001111110
+

1010110111110101010
Il

0110010011111010100
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Bitwise Sum

For sets X, Y € 2% their bitwise addition is defined by
X+Y={A+B:(A,B)e Xx Y}

Ao= 1100100100001111110

A= 0101010101010101010

+
Bp= 1010110111110101010
Bi= 1100100100001111110
Bb= 1111111111111111111

Il
Ao+By= 0110010011111010100

Av+Bi= 0000000000000000000

Ac+B,= 0011011011110000001
Ail+B= 1111100010100000000
Ai+Bi= 1001110001011010100

A+ B

1010101010101010101
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@ The union of countably many p-null set is p-null.




@ The union of countably many p-null set is p-null.
@ If 7 is a o-ideal of 2, the cardinal add(Z) is defined by

min{k : {No}o<x € 7, & Up No ¢ 1}
e Ny < add(N) < add(M) < 2%,
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@ The union of countably many p-null set is p-null.

@ If 7 is a o-ideal of 2, the cardinal add(7) is defined by
min{x : {No}o<x € 7, & Ugi No € 1}

e Ny < add(N) < add(M) < 2%,

@ If Nis null (meager, resp.), X + N = Uxex(x + N) is the
union of | X] many null (meager, resp.) sets.
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@ X C 2% is null-additive if X + N is null whenever N is null.

@ X C 2% is meager-additive if X + M is meager whenever M is
meager.
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@ The union of countably many p-null set is p-null.

@ If 7 is a o-ideal of 2, the cardinal add(7) is defined by
min{x : {No}o<x € 7, & Ugi No € 1}

e Ny < add(N) < add(M) < 2%,

@ If Nis null (meager, resp.), X + N = Uxex(x + N) is the
union of | X] many null (meager, resp.) sets.

Definition
@ X C 2% is null-additive if X + N is null whenever N is null.

@ X C 2% is meager-additive if X + M is meager whenever M is
meager.

Theorem (Shelah [4])
null-additive = meager-additive = strongly measure zero

[4] S. Shelah, Every null-additive set is meagre additive, 1995.
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Let 7 be an ideal of 2¢. A partial function p :C w® — 7 is a
representation of 1 if the image of p generates 7.

@ The Martin-L6f representation of the null sets N is a partial
function pyL :€ w® — N defined by

puL(P) = Na Um[o'p(n,m)]y
dom(pm) = {p : (VN) p(Umlopnm]) <277}
©Q The Kurtz representation of the closed null sets & is a partial
function pkur :€ w® — & defined by
Prur(P) = Np Um<|p(n)|[0'p(n)(m)],
dom(pkur) = {p : (VYn) /J(Um<|p(n)|[0'p(n)(m)]) <27}
© The weakly 1-generic representation of the nowhere dense
sets ND is a partial function pwig :€ w® = ND defined by

pw1G(P) = N Um<ip(n)[op(n)(m)];
dom(pwig) = {P : Nn Um<ip(n)i[op(n)(m)] € ND}.
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Oracle Tests

(7, p): arepresented ideal in 2¢.

An oracle (I, p)-testis a partial function N :C 2 — T realized by
a computable function fy : dom(N) — dom(p) such that

N = p o fy. If Nis total, it is called a uniform (I, p)-test.
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Oracle Tests

(7, p): arepresented ideal in 2¢.

An oracle (I, p)-testis a partial function N :C 2 — T realized by
a computable function fy : dom(N) — dom(p) such that

N = p o fy. If Nis total, it is called a uniform (I, p)-test.

Remark

If we think of a represented ideal (7, p) as a (multi-)represented
space in the sense of Computable Analysis (TTE),

@ an oracle (7, p)-test is a partial computable function
N :C 2 — 1 (w.r.t. p)

@ auniform (Z, p)-test is a total computable function
N:2° - 7 (w.rt. p)
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Examples of Uniform Tests

@ An universal oracle Martin-L&f test is a uniform (N, pm)-test.
©Q The tt-Schnorr tests = the uniform (N, psen)-tests.

© The tt-Kurtz test = the uniform (&, pkur)-tests.

© The Demuthgg-tests = the uniform (N, ppemutn)-tests.

Takayuki Kihara Bitwise Addition and Lowness for Randomness



Examples of Uniform Tests

@ An universal oracle Martin-L&f test is a uniform (N, pm)-test.
©Q The tt-Schnorr tests = the uniform (N, psen)-tests.

© The tt-Kurtz test = the uniform (&, pkur)-tests.

© The Demuthgg-tests = the uniform (N, ppemutn)-tests.

@ If Nis a Schnorr test, x = x + N is a uniform (N, psch)-test.
Q If Eis a Kurtz test, x » x + E is a uniform (&, pkur)-test.
@ If Mis nowhere dense I'I?,

x — x + Nis a uniform (M, pwig)-test.
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Examples of Uniform Tests

@ An universal oracle Martin-L&f test is a uniform (N, pm)-test.
©Q The tt-Schnorr tests = the uniform (N, psen)-tests.

© The tt-Kurtz test = the uniform (&, pkur)-tests.

© The Demuthgg-tests = the uniform (N, ppemutn)-tests.

@ If Nis a Schnorr test, x = x + N is a uniform (N, psch)-test.
Q If Eis a Kurtz test, x » x + E is a uniform (&, pkur)-test.

@ If Mis nowhere dense Y,
x — x + Nis a uniform (M, pwig)-test.

Q (Since + : 2“ x T — I is computable, for the above
represented ideals (Z, p)).
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(Ycomp. h) Vis K"-null < (VKurtz test E) V + E is Kurtz null. J

Lemma (K.-Miyabe [3])

Assume that V is K"-null for every computable h. Then,
Uyev E(y) is Kurtz null for every uniform Kurtz test E : 2 — &.
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(Ycomp. h) Vis K'-null & (V¥Kurtz test E) V + E is Kurtz null.

Lemma

Assume that V + E is Kurtz null for every Kurtz null set E.
Then, V is K"-null for every computable h.

@ h: given. g(n) = g(n - 1) + h(n) 4 2h("),
@ E; c 29(K): strings of the form 70" p s.t.
Il = g(k = 1), lovil = h(k), lp] = 2"%), and p(i) = 0,
where {07 : i < 2"(K)} is an enumeration of 2h(k)
© By assumption, V + E is covered by a Kurtz test D = (,, Dp.
Q De(): #(De(iyl7) < 1/8 for any T € 29(k=1),
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(Ycomp. h) Vis KM-null & (YKurtz test E) V + E is Kurtz null.

@ d(k) = e(k) if Eqk—1) € 2<9%=1; d(k) = d(k — 1) o.w.
Q Given 1 € 29(k-1) & g 2h(K)+2"Y) gots k_closer to D/ if
(1 =27%7") u(Dy(ylra) > p(Dak)l7).
D:[k]: all o which get k-closer to D/t.
© (Remark) u(D,[k]) <1 -27%1,
Q V. [k] = {o €2"'® : (30’ > o) 0’ + E € D.[k]}.
Q V[k] = {ro : o € D,[Kk]}.
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Claim
#V[k] < (k + 1) -2h(0),

©Q Note that V. [k] + Ex € D.[k].

© By probability independence, u(V;[k] + Ex) = 1 — 271VIII,
© However, u(D.[k]) <1 —-27K1,

© Hence, |V [Kk]| < k + 1.
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Claim

Let {k(/)}iew be the list of all k s.t. d(k) # d(k —1).
k(1)-1

Then, V C N Ui:k(l—1) V[jl.

@ Otherwise, thereis x € Vsit. x ¢ U;‘z('z(_;_”
Q@ a:=k(I-1),b=k(l)-1
© By def,, u(Dy(a)lx + 1) < 1/8 for any T € 29(a-1),
Q u(Dy(a)lx + 1) = 1for V7 € E | g(b), since V + E C Dy(a).
© This is impossible, since x ¢ U,l":a V[j] implies we can find
sequence Ta, Ta+1,°* € E s.t.
#(Dy(a)lx +7a) 2 17, (1 = 2777") - y(Daga)|x + 7p) > 1/8.

V[j] for some I.
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Are the following equivalent for x € 2“7

@ x is low for uniform Schnorr randomness.
© x + yis Schnorr random whenever y is Schnorr random.

Question Il
Are the following equivalent for x € 2“7

| A\

@ x is low for Martin-L6f randomness.

©Q x + y is Martin-Lof random whenever y is Martin-Lof random.
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Are the following equivalent for x € 2“7
@ x is low for uniform Schnorr randomness.
© x + yis Schnorr random whenever y is Schnorr random.

Question Il
Are the following equivalent for x € 2¢?

| A\

@ x is low for Martin-L6f randomness.
©Q x + y is Martin-Lof random whenever y is Martin-Lof random.

Question Il

R, S: randomness notions.
Are the following equivalent for x € 2¢?

| A\

@ x is low for R-randomness versus uniform S-randomness.

©Q x + yis S-random whenever y is R-random.
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