Bitwise Addition and Lowness for Randomness

Takayuki Kihara

Japan Advanced Institute of Science and Technology (JAIST)
JSPS research fellow PD

15, May, 2013

Main Theorem

The following are equivalent for $x \in 2^{\omega}$.

- **1 x** is low for uniform Kurtz randomness.
- 2 x + y is Kurtz random whenever y is Kurtz random.

Main Theorem

The following are equivalent for $x \in 2^{\omega}$.

- **1 x** is low for uniform Kurtz randomness.
- $\mathbf{2} \mathbf{x} + \mathbf{y}$ is Kurtz random whenever \mathbf{y} is Kurtz random.
- 3 x is low for uniform weak 1-genericity.
- $\mathbf{0}$ $\mathbf{x} + \mathbf{y}$ is weakly **1**-generic whenever \mathbf{y} is weakly **1**-generic.

Main Theorem

The following are equivalent for $x \in 2^{\omega}$.

- **1 x** is low for uniform Kurtz randomness.
- 2x + y is Kurtz random whenever y is Kurtz random.
- 3 x is low for uniform weak 1-genericity.
- $\mathbf{0}$ $\mathbf{x} + \mathbf{y}$ is weakly **1**-generic whenever \mathbf{y} is weakly **1**-generic.
- **5** x is \mathcal{K}^h -null for every computable h.

Main Theorem

The following are equivalent for $x \in 2^{\omega}$.

- x is low for uniform Kurtz randomness.
- 2 x + y is Kurtz random whenever y is Kurtz random.
- 3 x is low for uniform weak 1-genericity.
- \bullet x + y is weakly 1-generic whenever y is weakly 1-generic.
- **3** x is \mathcal{K}^h -null for every computable h.

Key Idea

- Pawlikowski's characterization of strong measure zero [1]
- Characterization of meager-additivity [2]
- [1] J. Pawlikowski, A characterization of strong measure zero sets, 1993.
- [2] T. Bartoszyński and H. Judah, Set Theory: On the Structure of the Real Line, 1995.

Main Theorem

The following are equivalent for $x \in 2^{\omega}$.

- **1 x** is low for uniform Kurtz randomness.
- 2 x + y is Kurtz random whenever y is Kurtz random.
- 3 x is low for uniform weak 1-genericity.
- \bullet x + y is weakly 1-generic whenever y is weakly 1-generic.
- **3** x is \mathcal{K}^h -null for every computable h.

Key Idea

- Pawlikowski's characterization of strong measure zero [1]
- Characterization of meager-additivity [2]
- [1] J. Pawlikowski, A characterization of strong measure zero sets, 1993.
- [2] T. Bartoszyński and H. Judah, Set Theory: On the Structure of the Real Line, 1995.

The concept of \mathcal{K}^h -nullness is introduced by K.-Miyabe [3] as a Kurtz version of effective Hausdorff dimension.

Definition (K.-Miyabe [3])

For an order $h:\omega\to\omega$, a set $E\subseteq 2^\omega$ is *Kurtz* h-null (\mathcal{K}^h -null) if there is a computable sequence $\{C_n\}_{n\in\omega}$ of finite sets of strings such that

$$E \subseteq [C_n]$$
 and $\sum_{\sigma \in C_n} 2^{-h(|\sigma|)} \le 2^{-n}$ for all $n \in \omega$.

We also say that $\mathbf{A} \in \mathbf{2}^{\omega}$ is Kurtz \mathbf{h} -null if $\{\mathbf{A}\}$ is Kurtz \mathbf{h} -null.

[3] T. Kihara and K. Miyabe, Uniform Kurtz randomness, 2013.

Fine Structure inside "Probability 0"

Bitwise Sum

For sequences $x, y \in 2^{\omega}$, the *bitwise addition* x + y is defined by $(x + y)(n) \equiv x(n) + y(n) \mod 2$.

Bitwise Sum

For sets $X, Y \subseteq 2^{\mathbb{N}}$, their *bitwise addition* is defined by $X + Y = \{A + B : (A, B) \in X \times Y\}$.

• The union of countably many μ -null set is μ -null.	

- The union of countably many μ -null set is μ -null.
- If I is a σ -ideal of 2^{ω} , the cardinal add(I) is defined by

$$\min\{\kappa: \{N_{\theta}\}_{\theta < \kappa} \subseteq I, \& \bigcup_{\theta < \kappa} N_{\theta} \notin I\}.$$

• $\aleph_1 \leq \operatorname{add}(\mathcal{N}) \leq \operatorname{add}(\mathcal{M}) \leq 2^{\aleph_0}$.

- The union of countably many μ -null set is μ -null.
- If I is a σ -ideal of $\mathbf{2}^{\omega}$, the cardinal $\mathbf{add}(I)$ is defined by

$$\min\{\kappa: \{N_{\theta}\}_{\theta < \kappa} \subseteq I, \& \bigcup_{\theta < \kappa} N_{\theta} \notin I\}.$$

- $\aleph_1 \leq \operatorname{add}(\mathcal{N}) \leq \operatorname{add}(\mathcal{M}) \leq 2^{\aleph_0}$.
- If **N** is null (meager, resp.), $X + N = \bigcup_{x \in X} (x + N)$ is the union of |X| many null (meager, resp.) sets.

- The union of countably many μ -null set is μ -null.
- If I is a σ -ideal of $\mathbf{2}^{\omega}$, the cardinal $\mathbf{add}(I)$ is defined by

$$\min\{\kappa: \{N_{\theta}\}_{\theta < \kappa} \subseteq I, \& \bigcup_{\theta < \kappa} N_{\theta} \notin I\}.$$

- $\aleph_1 \leq \operatorname{add}(\mathcal{N}) \leq \operatorname{add}(\mathcal{M}) \leq 2^{\aleph_0}$.
- If **N** is null (meager, resp.), $X + N = \bigcup_{x \in X} (x + N)$ is the union of |X| many null (meager, resp.) sets.

Definition

- $X \subseteq 2^{\omega}$ is *null-additive* if X + N is null whenever N is null.
- $X \subseteq 2^{\omega}$ is *meager-additive* if X + M is meager whenever M is meager.

- The union of countably many μ -null set is μ -null.
- If I is a σ -ideal of $\mathbf{2}^{\omega}$, the cardinal $\mathbf{add}(I)$ is defined by

$$\min\{\kappa: \{N_{\theta}\}_{\theta < \kappa} \subseteq I, \& \bigcup_{\theta < \kappa} N_{\theta} \notin I\}.$$

- $\aleph_1 \leq \operatorname{add}(\mathcal{N}) \leq \operatorname{add}(\mathcal{M}) \leq 2^{\aleph_0}$.
- If **N** is null (meager, resp.), $X + N = \bigcup_{x \in X} (x + N)$ is the union of |X| many null (meager, resp.) sets.

Definition

- $X \subseteq 2^{\omega}$ is *null-additive* if X + N is null whenever N is null.
- $X \subseteq 2^{\omega}$ is *meager-additive* if X + M is meager whenever M is meager.

Theorem (Shelah [4])

null-additive ⇒ meager-additive ⇒ strongly measure zero

[4] S. Shelah, Every null-additive set is meagre additive, 1995.

Fine Structure inside "Probability 0"

Let I be an ideal of $\mathbf{2}^{\omega}$. A partial function $\rho:\subseteq \omega^{\omega} \to I$ is a *representation* of I if the image of ρ generates I.

• The *Martin-Löf representation* of the null sets $\mathcal N$ is a partial function $\rho_{\rm ML}:\subseteq\omega^\omega\to\mathcal N$ defined by

$$\rho_{\mathsf{ML}}(\boldsymbol{p}) = \bigcap_{n} \bigcup_{m} [\sigma_{p(n,m)}],$$
$$\operatorname{dom}(\rho_{\mathsf{ML}}) = \{ \boldsymbol{p} : (\forall n) \ \mu(\bigcup_{m} [\sigma_{p(n,m)}]) \le 2^{-n} \}.$$

② The *Kurtz representation* of the closed null sets \mathcal{E} is a partial function $\rho_{\mathbf{Kur}}:\subseteq\omega^\omega\to\mathcal{E}$ defined by

$$\rho_{\mathsf{Kur}}(p) = \bigcap_{n} \bigcup_{m < |p(n)|} [\sigma_{p(n)(m)}],$$

$$\operatorname{dom}(\rho_{\mathsf{Kur}}) = \{p : (\forall n) \ \mu(\bigcup_{m < |p(n)|} [\sigma_{p(n)(m)}]) \le 2^{-n}\}.$$

3 The *weakly* **1**-*generic representation* of the nowhere dense sets \mathcal{ND} is a partial function ρ_{W1G} :⊆ $\omega^{\omega} \to \mathcal{ND}$ defined by

$$\rho_{\mathsf{W1G}}(\boldsymbol{p}) = \bigcap_{n} \bigcup_{m < |p(n)|} [\sigma_{p(n)(m)}],$$
$$\operatorname{dom}(\rho_{\mathsf{W1G}}) = \{\boldsymbol{p} : \bigcap_{n} \bigcup_{m < |p(n)|} [\sigma_{p(n)(m)}] \in \mathcal{ND}\}.$$

Oracle Tests

 (I,ρ) : a represented ideal in 2^{ω} .

An *oracle* (I, ρ) -*test* is a partial function $N :\subseteq 2^{\omega} \to I$ realized by a computable function $f_N : \operatorname{dom}(N) \to \operatorname{dom}(\rho)$ such that $N = \rho \circ f_N$. If N is total, it is called a *uniform* (I, ρ) -*test*.

Oracle Tests

 (I,ρ) : a represented ideal in 2^{ω} .

An *oracle* (I, ρ) -*test* is a partial function $N :\subseteq 2^{\omega} \to I$ realized by a computable function $f_N : \operatorname{dom}(N) \to \operatorname{dom}(\rho)$ such that $N = \rho \circ f_N$. If N is total, it is called a *uniform* (I, ρ) -*test*.

Remark

If we think of a represented ideal (I, ρ) as a (multi-)represented space in the sense of Computable Analysis (TTE),

- an oracle (I, ρ) -test is a partial computable function $N :\subseteq 2^{\omega} \to I$ (w.r.t. ρ)
- a uniform (I, ρ) -test is a total computable function $N : 2^{\omega} \to I$ (w.r.t. ρ)

Examples of Uniform Tests

- An universal oracle Martin-Löf test is a uniform $(\mathcal{N}, \rho_{\mathsf{ML}})$ -test.
- 2 The tt-Schnorr tests = the uniform $(\mathcal{N}, \rho_{\mathsf{Sch}})$ -tests.
- **3** The *tt*-Kurtz test = the uniform $(\mathcal{E}, \rho_{Kur})$ -tests.
- The Demuth_{BLR}-tests = the uniform $(\mathcal{N}, \rho_{Demuth})$ -tests.

Examples of Uniform Tests

- An universal oracle Martin-Löf test is a uniform $(\mathcal{N}, \rho_{\mathsf{ML}})$ -test.
- 2 The tt-Schnorr tests = the uniform $(\mathcal{N}, \rho_{\mathsf{Sch}})$ -tests.
- **3** The *tt*-Kurtz test = the uniform $(\mathcal{E}, \rho_{Kur})$ -tests.
- The Demuth_{BLR}-tests = the uniform (N, ρ_{Demuth}) -tests.
- **5** If **N** is a Schnorr test, $x \mapsto x + N$ is a uniform (N, ρ_{Sch}) -test.
- **1** If **E** is a Kurtz test, $x \mapsto x + E$ is a uniform $(\mathcal{E}, \rho_{Kur})$ -test.
- If M is nowhere dense Π_1^0 , $x \mapsto x + N$ is a uniform $(\mathcal{M}, \rho_{\text{W1G}})$ -test.

Examples of Uniform Tests

- An universal oracle Martin-Löf test is a uniform $(\mathcal{N}, \rho_{\mathsf{ML}})$ -test.
- 2 The tt-Schnorr tests = the uniform $(\mathcal{N}, \rho_{\mathsf{Sch}})$ -tests.
- **3** The tt-Kurtz test = the uniform $(\mathcal{E}, \rho_{\text{Kur}})$ -tests.
- The Demuth_{BLR}-tests = the uniform (N, ρ_{Demuth}) -tests.
- **5** If **N** is a Schnorr test, $x \mapsto x + N$ is a uniform (N, ρ_{Sch}) -test.
- **1** If **E** is a Kurtz test, $x \mapsto x + E$ is a uniform $(\mathcal{E}, \rho_{Kur})$ -test.
- If M is nowhere dense Π_1^0 , $x \mapsto x + N$ is a uniform $(\mathcal{M}, \rho_{\text{W1G}})$ -test.
- **③** (Since $+: 2^{\omega} \times I \rightarrow I$ is computable, for the above represented ideals (I, ρ)).

Fine Structure inside "Probability 0"

 $(\forall \mathsf{comp.}\ \textit{\textbf{h}})\ \textit{\textbf{V}}\ \mathsf{is}\ \mathcal{K}^\textit{\textbf{h}}\text{-null}\ \Longleftrightarrow\ (\forall \mathsf{Kurtz}\ \mathsf{test}\ \textit{\textbf{E}})\ \textit{\textbf{V}} + \textit{\textbf{E}}\ \mathsf{is}\ \mathsf{Kurtz}\ \mathsf{null}.$

Lemma (K.-Miyabe [3])

Assume that V is \mathcal{K}^h -null for every computable h. Then, $\bigcup_{y \in V} E(y)$ is Kurtz null for every uniform Kurtz test $E : 2^\omega \to \mathcal{E}$.

 $(\forall \mathsf{comp.}\ \textit{\textbf{h}})\ \textit{\textbf{V}}\ \mathsf{is}\ \mathcal{K}^\textit{\textbf{h}}\text{-null}\ \Longleftrightarrow\ (\forall \mathsf{Kurtz}\ \mathsf{test}\ \textit{\textbf{E}})\ \textit{\textbf{V}} + \textit{\textbf{E}}\ \mathsf{is}\ \mathsf{Kurtz}\ \mathsf{null}.$

Lemma

Assume that V + E is Kurtz null for every Kurtz null set E. Then, V is \mathcal{K}^h -null for every computable h.

- **1** h: given. $g(n) = g(n-1) + h(n) + 2^{h(n)}$.
- 2 $E_k \subseteq 2^{g(k)}$: strings of the form $\tau \cap \sigma_i \cap \rho$ s.t. $|\tau| = g(k-1), |\sigma_i| = h(k), |\rho| = 2^{h(k)}, \text{ and } \rho(i) = 0,$ where $\{\sigma_i : i < 2^{h(k)}\}$ is an enumeration of $2^{h(k)}$.
- **3** By assumption, V + E is covered by a Kurtz test $D = \bigcap_n D_n$.
- **4** $D_{e(k)}$: $\mu(D_{e(k)}|\tau) < 1/8$ for any $\tau \in 2^{g(k-1)}$.

 $(\forall comp. h) V is \mathcal{K}^h$ -null $\Leftarrow (\forall Kurtz test E) V + E is Kurtz null.$

- **1** d(k) = e(k) if $E_{d(k-1)} \subseteq 2^{\leq g(k-1)}$; d(k) = d(k-1) o.w.
- ② Given $\tau \in 2^{g(k-1)}$, $\sigma \in 2^{h(k)+2^{h(k)}}$ gets k-closer to D/τ if $(1-2^{-k-1}) \ \mu(D_{d(k)}|\tau\sigma) > \mu(D_{d(k)}|\tau).$
 - $D_{\tau}[k]$: all σ which get k-closer to D/τ .
- **3** (Remark) $\mu(D_{\tau}[k]) \leq 1 2^{-k-1}$.

Claim

$$\#V[k] \leq (k+1) \cdot 2^{h(k)}.$$

- **1** Note that $V_{\tau}[k] + E_k \subseteq D_{\tau}[k]$.
- ② By probability independence, $\mu(V_{\tau}[k] + E_k) = 1 2^{-|V_{\tau}[k]|}$.
- **3** However, $\mu(D_{\tau}[k]) \leq 1 2^{-k-1}$.
- **③** Hence, $|V_τ[k]| ≤ k + 1$.

Claim

Let $\{k(I)\}_{I\in\omega}$ be the list of all k s.t. $d(k) \neq d(k-1)$. Then, $V \subseteq \bigcap_I \bigcup_{i=k(I-1)}^{k(I)-1} V[j]$.

- ① Otherwise, there is $x \in V$ s.t. $x \notin \bigcup_{j=k(l-1)}^{k(l)-1} V[j]$ for some l.
- 2 a := k(I-1), b = k(I)-1
- **3** By def., $\mu(D_{d(a)}|x+\tau) < 1/8$ for any $\tau \in 2^{g(a-1)}$.
- This is impossible, since $x \notin \bigcup_{j=a}^b V[j]$ implies we can find sequence $\tau_a, \tau_{a+1}, \dots \in E$ s.t. $\mu(D_{d(a)}|x+\tau_a) \ge \prod_{j=a}^b (1-2^{-j-1}) \cdot \mu(D_{d(a)}|x+\tau_b) > 1/8.$

Fine Structure inside "Probability 0"

Question I

Are the following equivalent for $x \in 2^{\omega}$?

- **1** *x* is low for uniform Schnorr randomness.
- $\mathbf{Q} \mathbf{x} + \mathbf{y}$ is Schnorr random whenever \mathbf{y} is Schnorr random.

Question II

Are the following equivalent for $x \in 2^{\omega}$?

- **1 x** is low for Martin-Löf randomness.
- 2x + y is Martin-Löf random whenever y is Martin-Löf random.

Question I

Are the following equivalent for $x \in 2^{\omega}$?

- **1 x** is low for uniform Schnorr randomness.
- $\mathbf{Q} \mathbf{x} + \mathbf{y}$ is Schnorr random whenever \mathbf{y} is Schnorr random.

Question II

Are the following equivalent for $x \in 2^{\omega}$?

- **1 x** is low for Martin-Löf randomness.
- $\mathbf{Q} \mathbf{x} + \mathbf{y}$ is Martin-Löf random whenever \mathbf{y} is Martin-Löf random.

Question III

 \mathcal{R}, \mathcal{S} : randomness notions.

Are the following equivalent for $x \in 2^{\omega}$?

- $\mathbf{0}$ **x** is low for \mathcal{R} -randomness versus uniform \mathcal{S} -randomness.
- 2 x + y is S-random whenever y is R-random.