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“Almost everywhere” theorems

Several important theorems in analysis
assert a property for almost every
real z. Two examples:

Theorem (Lebesgue, 1904)

Let E ✓ [0, 1] be measurable. Then for almost every z 2 [0, 1]:
if z 2 E, then E has density 1 at z.

Theorem (Lebesgue, 1904)

Let f : [0, 1] ! R be of bounded variation.

Then the derivative f

0(z) exists for almost every real z.
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Variation of a function

Recall that for a function g : [0, 1] ! R we let

V (g, [0, x]) = sup
P

n�1
i=1 |g(t

i+1)� g(t
i

)|,

where the sup is taken over all t1  t2  . . .  t

n

in [0, x].

We say that g is of bounded variation if V (g, [0, 1]) is finite.
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Complexity of the exception set

Theorem (Demuth 1975/Brattka, Miller, Nies 2011)

Let r 2 [0, 1]. Then
r is ML-random ()

f

0(r) exists, for each function f of bounded variation such
that f(q) is a computable real, uniformly in each rational q.

I The implication “)” is an e↵ective version of the classical
theorem.

I The implication “(” has no classical counterpart. To prove it,
one builds a computable function f of bounded variation that is
only di↵erentiable at ML-random reals.
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Computable randomness
Can you bet on this and make unbounded profit?

10100111000101111010101000010101101111011000010111101010

10010101100011111010110001100111111101100000111001111000

00110011011110100011110100011100101011011001011100010110

01100110001111000010011001011101100100101000001110001111

11100100011000101111110100010111110011011100100110011010

00111111011010101101001101010110000011000001001101011100

01001001001011010001010000110100010100011100001100000100

11000111110111001000011001011010100111101111010101111111

00000001010011110010000000011011001010011010101101000010 . . .

We call a sequence of bits computably random if no computable
betting strategy (martingale) has unbounded capital along the
sequence.

ML-random ) computably random, but not conversely.
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Computable randomness and di↵erentiability

Theorem (Brattka, Miller, Nies, 2011)

Let r 2 [0, 1]. Then
r (in binary) is computably random ()

f

0(r) exists, for each nondecreasing function f

that is uniformly computable on the rationals.

I Full computability of a function f : [0, 1] ! R means that with a
Cauchy name for x as an oracle, one can compute a Cauchy name
for f(x).

I For continuous nondecreasing functions, full computability is
equivalent to being computable on the rationals.
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Other notions of e↵ectiveness
Variants of the Demuth/ BMN theorems have been proved:

Theorem (Freer, Kjos, Nies, Stephan, 2012)

x is computably random ,
each computable Lipschitz functions is di↵erentiable at x.

Theorem (BMN, 2011)

z is weakly 2-random ,
each a.e. di↵erentiable computable function f is di↵erentiable at z.

Theorem (Pathak, Rojas, Simpson 2011/ Freer, Kjos, Nies, Stephan,
2012/ Rute’s thesis )

z is Schnorr random ,
z is a weak Lebesgue point of each L1-computable function.

In this talk, we will look (mostly) at nondecreasing functions, but
vary the notion of e↵ectiveness.
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�1
1 randomness

E↵ectiveness “higher up”...

To be hyperarithmetical means to be computable in ;(↵) for some
recursive ordinal ↵. Another term for this is �1

1.

We say that z is �1
1 random if no hyperarithmetical martingale

succeeds on z.

I This notion was proposed by Martin-Löf in a 1970 paper (4 years
after his famous one). He showed there is no universal test for
�1

1-randomness.

I Higher randomness was later studied e.g. by Hjorth/N (2006),
Chong, N and Yu (2008), and recently Bienvenu, Greenberg and
Monin.
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Hyperarithmetical functions

Theorem

z is �1
1 random

, each nondecreasing hyperarithmetical fcn f is di↵erentiable at z

, each hyperarithmetical f of bounded variation
is di↵erentiable at z.

I This is because V (f, [0, x]) can be evaluated by quantifying over
rationals, and hence is also hyperarithmetical. So the Jordan
decomposition V (f)� (V (f)� f)) into two non-decreasing
functions of a hyperarithmetical function f is hyperarithmetical.

I It is hard to get past �1
1 randomness. Even the a.e. di↵erentiable

hyperarithmetical functions only need that.

I However, there is a larger class, the interval ⇧1
1 functions, where

even higher ML-randomness is not su�cient to make all functions
di↵erentiable.
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The two theorems

Firstly, we will look at feasibly computable nondecreasing functions.
One obtains an analog of the Brattka, Miller, N 2011 result.

Theorem (Kawamura and Miyabe/ N independently)

r 2 [0, 1] is polynomial time random ()
g

0(r) exists, for each nondecreasing function g

that is polynomial time computable.

Secondly, we look at a class of nondecreasing functions larger than
computable. We say a nondecreasing function f is interval c.e. if
f(0) = 0, and for any rational q > p, f(q)� f(p) is a uniformly
left-c.e. real.

Theorem

Let z 2 [0, 1]. Then z is a ML-random density-one point ()
f

0(r) exists, for each interval-c.e. function f
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Porosity, density, and derivatives
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Upper and lower derivatives

Let f : [0, 1] ! R. We define

Df(z) = lim sup
h!0

f(z + h)� f(z)

h

Df(z) = lim inf
h!0

f(z + h)� f(z)

h

Then

f

0(z) exists () Df(z) equals Df(z) and is finite.

12/47



Notation for slopes, and for basic dyadic intervals

For a function f : ✓ R ! R, the slope at a pair a, b of distinct reals in
its domain is

S

f

(a, b) =
f(a)� f(b)

a� b

.

For an interval A with endpoints a, b, we also write S

f

(A) instead of
S

f

(a, b).

I Let [�] denote the closed basic dyadic interval [0.�, 0.� + 2�|�|],
for a string �.

I The open basic dyadic interval is denoted (�).

I We write S

f

([�]) with the expected meaning.
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Pseudo-derivatives

I If f is only defined on the rationals in [0, 1], we can still consider
the upper and lower pseudo-derivatives defined by:

D

e
f(x) = lim inf

h!0+
{S

f

(a, b) | a  x  b ^ 0 < b� a  h},

e
Df(x) = lim sup

h!0+
{S

f

(a, b) | a  x  b ^ 0 < b� a  h}.

where a, b range over rationals in [0, 1].

I If f is total and continuous, or nondecreasing, this is the same as
the usual derivatives.

I We will use the subscript 2 to indicate that all the limit
operations are restricted to the case of basic dyadic intervals
containing z. For instance,

e
D2f(x) = lim sup

|�|!1
{S

f

([�]) | x 2 [�]}.
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Porosity

Definition (sukasuka)

We say that a set C ✓ R is porous at z via the porosity factor " > 0 if
there exists arbitrarily small � > 0 such that (z � �, z + �) contains
an open interval of length "� that is disjoint from C.

Definition

We call z a porosity point if some e↵ectively closed class to which it
belongs is porous at z. Otherwise, z is a non-porosity point.

Theorem (Bienvenu, Hölzl, Miller, N, 2011)

Let z be ML-random. If z is a porosity point then z is Turing
complete.

The converse is currently unknown.
We will see that porosity at a real z is closely related to
non-di↵erentiability at z. Both say that something bad happens for
arbitrarily short intervals containing z.
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Non-porosity and the Denjoy alternative

The short story how porosity came up in this research direction.

I The Denjoy-Saks-Young theorem for a function f : ✓ [0, 1] ! R
defined on all the rationals in [0, 1] says that for almost every
z 2 [0, 1], the Denjoy alternative holds:
either D

e
f(z) = �1 and e

Df(z) = 1, or both are equal and finite
(so f is pseudo-di↵erentiable at z).

I f is Markov computable if it is uniformly computable on indices
for computable reals.

I Demuth showed that Demuth randomness of z implies the DA for
f at z. The following is much stronger.

Theorem (BHMN, 2011)

Let f be Markov computable. Let z be a computably random

non-porosity point. Then the DA holds for f at z.
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Density

The (lower Lebesgue) density of a set C ✓ R at a point z is the
quantity

%(C|z) := lim inf
z2I ^ |I|!0

�(I \ C)
|I| ,

where I ranges over intervals containing z.

Definition (Bienvenu, Hölzl, Miller, N, 2011)

We say that z 2 [0, 1] is a density-one point if %(C|z) = 1 for every
e↵ectively closed class C containing z.
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Recent solution of the covering problem via density

Theorem [Bienvenu, Greenberg, Kučera, N. Turetsky, Mar 2012]

Suppose some e↵ectively closed (i.e., ⇧0
1) class P ✓ 2N has lower density

< 1 at some ML-random set Y 2 P.
Then Y is Turing above each K-trivial set.

Theorem [Day and Miller, August 2012]

There is an e↵ectively closed class P and a ML-random set Y 2 P
strictly Turing below the halting problem such that P has lower density
< 1 at Y .

I Thus, there is a single Turing incomplete ML-random �0
2 set Y

above all the K-trivials!

I BGKNT ’12 also showed that this Y must be close to the halting
problem.
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Dyadic versus full density
A (closed) basic dyadic interval has the form [r2�n

, (r + 1)2�n] where
r 2 Z, n 2 N. For the lower dyadic density of a set C ✓ R at a point z
only consider basic dyadic intervals containing z:

%2(C|z) := lim inf
z2I ^ |I|!0

�(I \ C)
|I| ,

where I ranges over basic dyadic intervals containing z.

Theorem (Khan and Miller, 2012)

Let z be a ML-random dyadic density-one point. Then z is a full
density-one point.

We know from Franklin and Ng (2010) and BHMN (2011) that z is a
non-porosity point. The actual statement Miller and Khan proved:

Suppose z is a ML-random non-porosity point. Let P be a ⇧0
1 class,

z 2 P, and %2(P | z) = 1. Then already %(P | z) = 1.

Khan has shown that ML-randomness is necessary here. See the 2013
Logic Blog available on my web site.
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Khan/Miller: Suppose z is a non-porosity point. Let P be a ⇧0
1

class, z 2 P, and %2(P | z) = 1. Then already %(P | z) = 1.

Proof.

Consider an arbitrary interval I with z 2 I and �

I

(P) < 1� ✏. Let
� = ✏/4.

Let n be such that 2�n+1
> |I| � 2�n. Cover I with three consecutive

basic dyadic intervals A,B,C of length 2�n.
Say z 2 B. Since P is relatively sparse in I, but thick in B, this
means it must be sparse in A or C.
Let the ⇧0

1 class Q consist of the basic dyadic intervals where P is
thick:

Q = [0, 1]�
S
{L : �

L

(P) < 1� �}

where L ranges over open basic dyadic intervals. Then Q is porous at
z with porosity factor 1/3: if z 2 B, say, then one of A, C must be
missing.
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Slopes and martingales

The basic connections:

I if f is nondecreasing then M(�) = S

f

([�]) is a martingale.

I M succeeds on z , e
D2f(z) = 1

I M converges on z , D

e 2f(z) = e
D2f(z) < 1
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A useful lemma entirely in the classical analysis setting

High dyadic slopes lemma

Suppose f : [0, 1] ! R is a nondecreasing function. Suppose for a real
z 2 [0, 1] we have

e
D2f(z) < p <

e
Df(z).

Let �⇤ � Z be any string such that 8� [Z � � ⌫ �

⇤ ) S

f

([�])  p].
Then the closed set

C = [�⇤]�
[

{(�) : � ⌫ �

⇤ ^ S

f

([�]) > p},

which contains z, is porous at z.
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Proof of high dyadic slopes lemma
Show:

e
D2f(z) < p <

e
Df(z)

implies

C = [�⇤]�
[

{(�) : � ⌫ �

⇤ ^ S

f

([�]) > p}
is porous at z.

Proof.

Suppose k 2 N is such that p(1 + 2�k+1) < e
Df(z). We show that can

choose 2�k�2 as a porosity constant.

– There is an interval I 3 z of arbitrarily short positive length such
that p(1 + 2�k+1) < S

f

(I). Let n be such that
2�n+1

> |I| � 2�n.

– Let a0 be greatest of the form v2�n�k, v 2 Z, such that
a0 < min I.

– Let a
v

= a0 + v2�n�k. Let r be least such that a
r

� max I.

By the averaging property of slopes and since f is nondecreasing,
there must be i with 0  i  r such that the slope at [a

i

, a

i+1] is > p.
This interval does not contain z.
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Polynomial time randomness and di↵erentiability
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Special Cauchy names

A Cauchy name is a sequence of rationals (p
i

)
i2N such that

8k > i |p
i

� p

k

|  2�i. We represent a real x by a Cauchy name
converging to x.

For feasible analysis, we use a compact set of Cauchy names: the
signed digit representation of a real. Such Cauchy names, called
special, have the form

p

i

=
iX

k=0

b

k

2�k

,

where b

k

2 {�1, 0, 1}. (Also, b0 = 0, b1 = 1.)

So they are given by paths through {�1, 0, 1}!, something a resource
bounded TM can pro cess. We call the b

k

the symbols of the special
Cauchy name.
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Polynomial time computable functions

The following has been formulated in equivalent forms by Ker-i-Ko
(1989), Weihrauch (2000), Braverman (2008), and others.

Definition

A function g : [0, 1] ! R is polynomial time computable if there is a
polynomial time TM turning every special Cauchy name for x 2 [0, 1]
into a special Cauchy name for g(x).

This means that the first n symbols of g(x) can be computed in time
poly(n), thereby using polynomially many symbols of the oracle tape
holding x.

Functions such as ex, sinx are polynomial time computable.

Analysis gives us rapidly converging approximation sequences, such as

ex =

P
n

xn/n!. As Braverman points out, ex is computable in time O(n3
).

Namely, from O(n3
) symbols of x we can in time O(n3

) compute an

approximation of ex with error  2

�n

.

26/47



Polynomial time randomness

A martingale M : 2<! ! R is called polynomial time computable if
from string � and i 2 N we can in time polynomial in |�|+ i compute
the i-th component of a special Cauchy name for M(�).

We say Z is polynomial time random if no polynomial time
martingale succeeds on Z.

Fact

f is a nondecreasing polynomial time computable function

)

the slope S

f

([�]) determines a polynomial time computable
martingale.

This is so because we can compute f with su�ciently high precision.
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The first theorem

Theorem (Kawamura and Miyabe/ N independently)

The following are equivalent.

(I) z 2 [0, 1] is polynomial time random

(II) f

0(z) exists, for each nondecreasing function f that is polynomial
time computable.
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(II) ! (I)

One actually shows: z not polytime random )

Df(z) = 1 for some polynomial time computable function f .

I use machinery from the Figueira/N (2013) paper ‘Randomness,
feasible analysis, and base invariance’.

Proof.

I If z is not polytime random, some polytime martingale M with
the savings property succeeds on z.

I Then the function cdf
M

: [0, 1] ! R given by cdf
M

(x) = µ

M

[0, x)
is polytime computable (using the almost Lipschitz property).

I And the lower derivative Dcdf
M

(z) = 1.
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(I) ! (II)

We need to show:

z 2 [0, 1] is polynomial time random ) f

0(z) exists,

for each nondecreasing function f that is polynomial time computable.

I Consider the polynomial time computable martingale

M(�) = S

f

(0.�, 0.� + 2�|�|) = S

f

([�]) .

I lim
n

M(Z �
n

) exists and is finite for each polynomially random Z.
This is a version of Doob martingale convergence.

I Returning to the language of slopes, the convergence of M on Z

means that D
e 2f(z) = e

D2f(z) < 1.
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Assume for a contradiction that f 0(z) fails to exist. First suppose that

e
D2f(z) < p <

e
Df(z).

We may suppose S

f

(A) < p for all dyadic intervals containing z.

Choose k with p(1 + 2�k+1) < e
Df(z).

By the “high dyadic slopes” lemma and its proof, there exists
arbitrarily large n such that some basic dyadic interval [⌧

n

] of length
2�n�k has slope > p and is contained in [z � 2�n+2

, z + 2�n+2].
Let 0.Z = z where Z 2 2N.

Lucky case: there are infinitely many n with ⌘ = Z �
n�4� ⌧

n

. Then
the martingale that from ⌘ on bets everything on the strings of length
n+ k other than ⌧

n

gains a fixed factor 2k+4
/(2k+4 � 1).

Unlucky case: for almost all n we have Z �
n�4 6� ⌧

n

. That means 0.⌧
n

is on the left side of z, and the martingale betting along Z can’t use
⌧

n

, as it may be far from Z in Cantor space! E.g.
Z = 1000000000000 . . ., n� 4 = 9, ⌧

n

= 01111111111111.
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Morayne-Solecki trick

The following was used in a paper by Morayne and Solecki (1989).
They gave a martingale proof of Lebesgue di↵erentiation theorem.
For m 2 N let D

m

be the collection of intervals of the form

[k2�m

, (k + 1)2�m]

where k 2 Z. Let D0
m

be the set of intervals (1/3) + I where I 2 D
m

.

Fact

Let m � 1. If I 2 D
m

and J 2 D0
m

, then the distance between an

endpoint of I and an endpoint of J is at least 1/(3 · 2m).

To see this: assume that k2�m � (p2�m

+ 1/3) < 1/(3 · 2m). This yields

(3k � 3p� 2

m

)/(3 · 2m) < 1/(3 · 2m), and hence 3|2m, a contradiction.
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Using this trick

So, in the unlucky case, we instead bet on the dyadic expansion Y of
z � 1/3. (We may assume that z > 1/2).

Given ⌘

0 = Y �
n�4, where n is as above, we look for an extension

⌧

0 � ⌘

0 of length n+ k + 1, such that 1/3 + [⌧ 0] ✓ [⌧ ] for a string [⌧ ]
with S

f

([⌧ ]) > p. If it is found, we bet everything on the other
extensions of ⌘0 of that length. We gain a fixed factor 2k+5

/(2k+5 � 1).

So we get a polytime martingale that wins on the dyadic expansion of
z � 1/3. Since polytime randomness is base invariant, this gives a
contradiction.

The case D

e
f(z) < D

e 2f(z) is analogous, using the symmetric “low
dyadic slopes lemma” instead.

Ambos-Spies et al., 1996 called a martingale “weakly simple” if it has
only have finitely many, rational, betting factors. The martingales
showing that dyadic derivative = full derivative are such. So being
polynomially stochastic is su�cient for this.
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Martin-Löf random density-one points

and di↵erentiability
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The second theorem

Theorem

Let f : [0, 1] ! R be an interval-c.e. function. Let z a be ML-random
density-one point. Then f

0(z) exists.
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Interval-c.e. functions

A real z is called left-c.e. if the set of rationals < z is c.e.

Definition

A non-decreasing function f on [0, 1] with f(0) = 0 is called
interval-c.e. if f(q)� f(p) is a left-c.e. real uniformly in rationals
p < q.

If f is continuous, this implies lower semicomputable.
Recall that for g : [0, 1] ! R we let

V (g, [0, x]) = sup
P

n�1
i=1 |g(t

i+1)� g(t
i

)|,

where the sup is taken over all t1  t2  . . .  t

n

in [0, x].

Theorem (Freer, Kjos-Hanssen, N, Stephan, Rute 2012)

A continuous function f is interval-c.e. ,
there is a computable function g such that f(x) = Var(g, [0, x]).
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Left-c.e. martingales

Definition

A martingale M : 2<! ! R is called left-c.e. if M(�) is a left-c.e. real
uniformly in string �.

Z is ML-random i↵ no left-c.e. martingale succeeds on Z.

Definition

A martingale M converges on Z 2 2N if lim
n

M(Z �
n

) exists and is
finite.

Z 2 2N is a convergence point for left-c.e. martingales if each left-c.e.
martingale converges on Z.

I The computably randoms are the convergence points for all
computable martingales.

I The Martin-Löf randoms that are density-one points are the
convergence points for all left-c.e. martingales (Andrews, Cai,
Diamondstone, Lempp, Miller; 2012).
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The actual theorem

Theorem

Let f : [0, 1] ! R be an interval-c.e. function. Let z be a convergence
point for left-c.e. martingales. Then f

0(z) exists.

The basic connection:

I if f is interval-c.e., then M(�) = S

f

([�]) is a left-c.e. martingale.

I Convergence of M on Z means that D
e 2f(z) = e

D2f(z), i.e., f is
dyadic di↵erentiable at z.

The theorem says that we can get full di↵erentiability for convergence
points for left-c.e. martingales (but also looking at other left-c.e.
martingales).
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Recall: High dyadic slopes lemma

Suppose f : [0, 1] ! R is a nondecreasing function. Suppose for a real
z 2 [0, 1] we have

e
D2f(z) < p <

e
Df(z).

Let �⇤ � Z be any string such that 8� [Z � � ⌫ �

⇤ ) S

f

([�])  p].
Then the closed set

C = [�⇤]�
[

{(�) : � ⌫ �

⇤ ^ S

f

([�]) > p},

which contains z, is porous at z.

Proposition

Let f : [0, 1] ! R be interval-c.e. Then e
D2f(z) = e

Df(z) for each
non-porosity point z.

Proof.

Assume e
D2f(z) < e

Df(z). Since f is interval c.e., the class C defined
in the Lemma is e↵ectively closed. This class is porous at z.
Contradiction.
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Proof that f 0(z) exists for left-c.e. convergence points z

We may assume z > 1/2, else we work with f(x+ 1/2) instead of f .

I The real z is a a dyadic density one point, hence a (full)
density-one point by the Khan-Miller Theorem.

I Then z� 1/3 is also a ML-random density-one point, so using the
work of the Madison group discussed earlier, z � 1/3 is also a
convergence point for left-c.e. martingales.

I In particular, both z and z � 1/3 are non-porosity points.
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To complete the proof ...:

Let M be the martingale associated with the dyadic slopes of f .

I Note that M converges on z by hypothesis. Thus
D

e 2f(z) = e
D2f(z) = M(z).

I By the Proposition above we have e
D2f(z) = e

Df(z).

I It remains to be shown that

D

e
f(z) = D

e 2f(z).

Since f is nondecreasing, D = D

e
etc., so this will establish that

f

0(z) exists.
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Shifting by 1/3 yields the same dyadic derivative

Let b
f(x) = f(x+ 1/3), and let M 0 the martingale associated with the

dyadic slopes of b
f .

Claim

M(z) = M

0(z � 1/3).

Proof.

Since z� 1/3 is a convergence point for c.e. martingales, M 0 converges
on z � 1/3.

If M(z) < M

0(z � 1/3) then e
D2f(z) < e

Df(z). However z is a
non-porosity point, so this contradicts the Proposition.

If M 0(z � 1/3) < M(z) we argue similarly, using that z � 1/3 is a
non-porosity point.
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Choosing some rational parameters

Assume for a contradiction that

D

e
f(z) < D

e 2f(z).

Then we can choose rationals p, q such that

D

e
f(z) < p < q < M(z) = M

0(z � 1/3).

Let k 2 N be such that p < q(1� 2�k+1).

Let u, v be rationals such that

q < u < M(z) < v and v � u  2�k�3(u� q).
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Two ⇧0
1 classes

Let n⇤ 2 N be such that we have S

f

(A) � u, for each n � n

⇤ and any
interval A of length  2�n

⇤
that is basic dyadic or basic dyadic +1/3.

E = {X 2 2N : 8n � n

⇤
M(X �

n

)  v}
E 0 = {W 2 2N : 8n � n

⇤
M

0(W �
n

)  v}

I Let 0.Z be as usual the binary expansion of z. Let 0.Y be the
binary expansion of z � 1/3.

I We have Z 2 E and Y 2 E 0.

We will show that E is porous at Z, or E 0 is porous at Y .
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Low dyadic slopes for both types of intervals
Consider an interval I 3 z of positive length  2�n

⇤�3 such that
S

f

(I)  p.

I Let n be such that 2�n+1
> |I| � 2�n.

I Let a0 [b0] be least of the form j2�n�k [j2�n�k + 1/3], where
j 2 Z, such that a0 [b0] � min(I).

I Let a
v

= a0 + v2�n�k and b

v

= b0 + v2�n�k. Let r, s be greatest
such that a

r

 max(I) and b

s

 max(I).

Since f is nondecreasing and a

r

�a0 � |I|� 2�n�k+1 � (1� 2�k+1)|I|,
we have S

f

(I) � S

f

(a0, ar)(1� 2�k+1), and therefore S

f

(a0, ar) < q.
(Slope at I is low, slope at [a0, ar] can only be slightly larger.) Then
there is an i < r such that S

f

(a
i

, a

i+1) < q.
Similarly, there is j < s such that S

f

(b
j

, b

j+1) < q.

Claim (Morayne-Solecki trick)

One of the following is true.

(i) z, a

i

, a

i+1 are all contained in a single interval taken from D
n�3.

(ii) z, b

j

, b

j+1 are all contained in a single interval taken from D0
n�3.
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Proving porosity of one of the ⇧0
1 classes

Let ⌘ = Z �
n�3 and ⌘

0 = Y �
n�3.

If (i) holds for this I then there is ↵ of length k + 3 (where
[⌘↵] = [a

i

, a

i+1]) such that M(⌘↵) < q.

I So by the choice of q < u < v and since M(⌘) � u there is � of
length k + 3 such that M(⌘�) > r.

I This yields a hole in E , large and near z = 0.Z on the scale of I,
which is required for porosity of E at Z.

Similarly, if (ii) holds for this I, then there is ↵ of length k + 3 (where
[⌘0↵] = [b

j

, b

j+1]) such that M 0(⌘0↵) < q. This yields a hole large and
near z � 1/3 = 0.Y on the scale of I required for porosity of E 0 at Y .

Thus, if case (i) applies for arbitrarily short intervals I, then E is
porous at Z, whence z is a porosity point. Otherwise (ii) applies for
intervals below a certain length. Then E 0 is porous at Y , whence
z � 1/3 is a porosity point. Either case is a contradiction.
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Some open questions

Question

Study e↵ective analogs of Rademacher’s theorem that every Lipschitz
function on Rn is a.e. di↵erentiable.

Question

If Z is a ML-random density-one point, is it Oberwolfach random?
Equivalently, does it fail to compute some K-trivial?

Full proofs of the two theorems are on the 2013 Logic blog, available
on my web site.
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