Definability of Randomness via Another Randomness

NingNing Peng Join work with Kojiro Higuchi

Mathematical Institute, Tohoku University. sa8m42@math.tohoku.ac.jp

May. 15, 2013

ELC Workshop on Randomness and Probability Through Computability

May. 15, 2013 ELC Workshop on Rando

26

NingNing Peng Join work with Kojiro HigiDefinability of Randomness via Another Ra

Outline

Randomness Notions 2

- Answers to Questions 3
 - Positive Answer
 - Negative Answer

/ 26

1. Questions

May. 15, 2013 ELC Workshop on Randor NingNing Peng Join work with Kojiro HigtDefinability of Randomness via Another Ri / 26

Questions

Question 1

Can we define some randomness notions in terms of another randomness notions?

26

Question 2

How can we define it?

May. 15, 2013 ELC Workshop on Rando NingNing Peng Join work with Kojiro Hig Definability of Randomness via Another R

Questions

Question 1

Can we define some randomness notions in terms of another randomness notions?

Question 2

How can we define it?

Liang Yu: Characterizing strong randomness via Martin-Löf randomness. Annals of Pure and Applied Logic, vol. 163, no. 3, pp. 214-224 (2012).

Question 1

Can we define some randomness notions in terms of another randomness notions?

26

Question 2

How can we define it?

Question 1

Can we define some randomness notions in terms of another randomness notions?

Question 2

How can we define it?

Let ${\rm R}$ and ${\rm S}$ be two randomness notions.

Questoin 1'

$$(\exists \Gamma \subset 2^{\omega})[R = \bigcap_{X \in \Gamma} X \cdot S]$$
 or $(\exists \Gamma \subset 2^{\omega})[R = \bigcup_{X \in \Gamma} X \cdot S]$?

where X-R and X-S are relativizations of R and S to X, respectively.

Question 2'

What kinds of Γ satisfy above relations ?

2. Randomness Notions

May. 15, 2013 ELC Workshop on Randon NingNing Peng Join work with Kojiro HigDefinability of Randomness via Another R: // 26

ML-randomness

ML-randomness is a central notion of algorithmic randomness for subsets of $\mathbb N,$ which defined in the following way.

Definition (Martin-Löf, 1966)

- (i) A Martin-Löf test, or ML-test for short, is a uniformly c.e. sequence $(G_m)_{m\in\mathbb{N}}$ of open sets such that $\forall m\in\mathbb{N}\ \mu(G_m)\leq 2^{-m}$.
- (ii) A set $Z \subseteq \mathbb{N}$ fails the test if $Z \in \bigcap_m G_m$, otherwise Z passes the test.

(iii) Z is ML-random if Z passes each ML-test.

Let $MLR = \{X \mid X \text{ is ML-random }\}$. Let X-MLR= $\{Z \mid Z \text{ is ML-random relative to } X \}$

Weak 2-randomness

Weak 2-randomness, like ML-randomness, is defined in terms of tests.

Definition (Kurtz, 1981)

- (i) A generalized ML-test is a uniformly c.e. sequence $(G_m)_{m \in \mathbb{N}}$ of open sets such that $\mu(\bigcap_m G_m) = 0$.
- (ii) Z is weakly 2-random if it passes every generalized ML-test.

Let $W2R = \{X \mid X \text{ is weakly 2-random }\}.$

Schnorr randomness

Definition (Schnorr, 1971)

A Schnorr test is a ML-test $(G_m)_{m \in \mathbb{N}}$ such that μG_m is computable uniformly in *m*. A set $Z \subseteq \mathbb{N}$ fails the test if $Z \in \bigcap_m G_m$, otherwise Z passes the test. Z is Schnorr random if Z passes each Schnorr test.

26

Let $SR = \{X \mid X \text{ is Schnorr-random }\}$.

Martingale

Another important notion of randomness is computable randomness, whose definition involves the concept of a martingle.

Definition

A martingale is a function $d: 2^{<\mathbb{N}} \to \mathbb{R}_{\geq 0}$ that satisfies for every $\sigma \in 2^{<\mathbb{N}}$ the averaging condition $d(\sigma) = \frac{d(\sigma 0) + d(\sigma 1)}{2}$.

A martingale d succeeds on a set A if $\limsup_{n\to\infty} d(A \upharpoonright n) = \infty$.

Definition

We say that Z is computably random if no computable martingale succeeds on Z.

NingNing Peng Join work with Kojiro HigiDefinability of Randomness via Another R

Lowness and Higness

Definition

Let R and S be two randomness notions. We identify these notions with the sets of all random reals in the sense of these notions.

$$Low(\mathbf{R}, \mathbf{S}) = \{ X \in 2^{\omega} : \mathbf{R} \subset X \cdot \mathbf{S} \}$$
$$High(\mathbf{R}, \mathbf{S}) = \{ X \in 2^{\omega} : X \cdot \mathbf{R} \subset \mathbf{S} \}$$

26

where X-R and X-S are relativizations of R and S to X, respectively.

Remark

Questoin 1'

$$(\exists \Gamma \subset 2^{\omega})[\mathrm{R} = igcap_{X \in \Gamma} X \text{-} \mathrm{S}] \text{ or } (\exists \Gamma \subset 2^{\omega})[\mathrm{R} = igcup_{X \in \Gamma} X \text{-} \mathrm{S}]?$$

We can prove easily Q1' is equivalent to Q1'':

Questoin 1"

$$\mathbf{R} = \bigcap_{X \in \text{Low}(\mathbf{R}, \mathbf{S})} X$$
-S or $\bigcup_{X \in \text{High}(\mathbf{R}, \mathbf{S})} X$ -R = S?

This is because that: $R \subset \bigcap_{X \in low(R,S)} X - S \subset \bigcap_{X \in \Gamma} X - S$ for any $\Gamma \subset low(R, S)$. And if Γ satisfies the first equality of Q1', then $\Gamma \subset low(R, S).$

26

3. Answers to Questions

May. 15, 2013 ELC Workshop on Randor NingNing Peng Join work with Kojiro HigpDefinability of Randomness via Another Ri / 26

Questoin 1'

$$(\exists \Gamma \subset 2^{\omega})[\mathrm{R} = \bigcap_{X \in \Gamma} X \cdot \mathrm{S}]$$
 or $(\exists \Gamma \subset 2^{\omega})[\mathrm{R} = \bigcup_{X \in \Gamma} X \cdot \mathrm{S}]$?

where X-R and X-S are relativizations of R and S to X, respectively.

26

Question 2'

What kinds of Γ satisfy above relations ?

Theorem (Yu, 2012)

$$\emptyset'$$
-Schnorr randomness = $\bigcap_{X \in \mathbb{L}} X - MLR$.

where \mathbb{L} is the set of all the low sets.

Questoin 1'

$$(\exists \Gamma \subset 2^{\omega})[\mathrm{R} = \bigcap_{X \in \Gamma} X \cdot \mathrm{S}]$$
 or $(\exists \Gamma \subset 2^{\omega})[\mathrm{R} = \bigcup_{X \in \Gamma} X \cdot \mathrm{S}]$?

where X-R and X-S are relativizations of R and S to X, respectively.

Question 2'

What kinds of Γ satisfy above relations ?

Theorem (Yu, 2012)

$$\emptyset'$$
-Schnorr randomness = $\bigcap_{X \in \mathbb{L}} X - MLR$.

where ${\mathbb L}$ is the set of all the low sets.

Question, (Yu, 2012)

Does \emptyset' -Schnorr randomness = $\bigcap_{X \in \mathbb{L} \cap \mathbb{G}} X - MLR$?

where G is the set of all the 1-generic sets. NingNing Peng Join work with Kojiro Hig Definability of Randomness via Another R: /26

Theorem

For any \emptyset' -Schnorr test $\{\mathcal{U}_e\}_{e \in \omega}$, there exist a low 1-generic real Z and a *Z*-Martin-Löf test $\{\mathcal{V}_e\}_{e \in \omega}$ with $\bigcap_{e \in \omega} \mathcal{U}_e \subset \bigcap_{e \in \omega} \mathcal{V}_e$.

26

Proof.

A finite injury argument.

Corollary

$$\emptyset'$$
-Schnorr randomness = $\bigcap_{X \in \mathbb{L} \cap \mathbb{G}} X - MLR$.

This give an affirmative answer to Yu's problem.

Application

Recall that a real A is said to be *LR*-reducible to B, abbreviated $A \leq_{\text{LR}} B$, if every real Martin-Löf random relative to B is also Martin-Löf random relative to A.

Theorem (Diamondstone, 2012)

For any low real X, Y, there exists a low c.e. real Z such that $X, Y \leq_{\text{LR}} Z$.

26

Application

Recall that a real A is said to be *LR-reducible* to B, abbreviated $A \leq_{\text{LR}} B$, if every real Martin-Löf random relative to B is also Martin-Löf random relative to A.

Theorem (Diamondstone, 2012)

For any low real X, Y, there exists a low c.e. real Z such that $X, Y \leq_{LR} Z$.

We have the following similar theorem:

Theorem

For any low real X, Y, there exists a low 1-generic real Z such that $X, Y \leq_{LR} Z$.

Questoin 1'

$$(\exists \Gamma \subset 2^{\omega})[\mathrm{R} = \bigcap_{X \in \Gamma} X \cdot \mathrm{S}] \text{ or } (\exists \Gamma \subset 2^{\omega})[\mathrm{R} = \bigcup_{X \in \Gamma} X \cdot \mathrm{S}]?$$

Theorem (Yu, 2012)

 $\bigcup_{X \in \mathrm{High}(\mathrm{MLR}, \emptyset' - \mathrm{SR})} X - \mathrm{MLR} = \emptyset' - \mathrm{SR}$

This is a positive answer for Q1' in the uniou part. In fact, Yu also shown that Γ can be $MLR \cap High(ML, \emptyset' - SR)$. This is a interesting answer of Q2.

26

May. 15, 2013 ELC Workshop on Rando NingNing Peng Join work with Kojiro HigtDefinability of Randomness via Another Re

Questoin 1'

$$(\exists \Gamma \subset 2^{\omega})[\mathrm{R} = \bigcap_{X \in \Gamma} X \cdot \mathrm{S}] \text{ or } (\exists \Gamma \subset 2^{\omega})[\mathrm{R} = \bigcup_{X \in \Gamma} X \cdot \mathrm{S}]?$$

Question 2'

What kinds of Γ satisfy above relations ?

A New Characterization of MLR.

Theorem

 $\bigcup_{X \in PA} X \text{-} CR = MLR.$

Proof.

Franklin, Stephan and Yu (2011) proved that High(CR, MLR) includes all PA-complete reals. Reimann and Slaman showed that any Martin-Löf random is Martin-Löf relative to some PA-complete real. Since X-MLR $\subset X$ -CR, it is known that any Martin-Löf random is computably random relative to some PA-complete real. This implies the desired equality.

Negative Answer: W2R vs MLR

Questoin 1'

$$(\exists \Gamma \subset 2^{\omega})[\mathrm{R} = \bigcap_{X \in \Gamma} X \cdot \mathrm{S}] \text{ or } (\exists \Gamma \subset 2^{\omega})[\mathrm{R} = \bigcup_{X \in \Gamma} X \cdot \mathrm{S}]?$$

Theorem (Yu, 2012)

$$\neg \exists \Gamma \subset 2^{\omega}$$
 such that $W2R = \bigcap_{x \in \Gamma} X - MLR$.

NingNing Peng Join work with Kojiro Hig Definability of Randomness via Another Ri / 26

Negative Answer: W2R vs MLR

Questoin 1' $(\exists \Gamma \subset 2^{\omega})[R = \bigcap_{X \in \Gamma} X \cdot S]$ or $(\exists \Gamma \subset 2^{\omega})[R = \bigcup_{X \in \Gamma} X \cdot S]$?

Theorem (Yu, 2012)

$$\neg \exists \Gamma \subset 2^{\omega}$$
 such that $W2R = \bigcap_{x \in \Gamma} X - MLR$.

Theorem (Merkle and Yu, unpublished)

 $\neg \exists \Gamma \subset 2^{\omega}$ such that $W2R = \bigcup_{x \in \Gamma} X - MLR$.

May. 15, 2013 ELC Workshop on Randor NingNing Peng Join work with Kojiro HigpDefinability of Randomness via Another R: / 26

26

Negative Answer: SR vs CR

Questoin 1'
$$(\exists \Gamma \subset 2^{\omega})[R = \bigcap_{X \in \Gamma} X \cdot S]$$
 or $(\exists \Gamma \subset 2^{\omega})[R = \bigcup_{X \in \Gamma} X \cdot S]$?

Theorem

$$SR = \bigcap_{X \in Low(CR,SR)} X$$
-SR $\neq CR$

Proof.

Kjos-Hanssen, Nies and Stephan (2006) proved that Low(CR, SR) = Low(SR, SR) holds.

Theorem

$$\emptyset' - SR = \bigcup_{X \in \mathrm{High}(\mathrm{SR}, \mathrm{CR})} X$$
-SR $\neq \mathrm{CR}$

May. 15, 2013 ELC Workshop on Randor NingNing Peng Join work with Kojiro Hig Definability of Randomness via Another Ra

Summary of Results

$$\bigcap_{X \in \text{Low}(\mathbf{R}, \mathbf{S})} X$$
-S = R

R S	0'-SR	W2R	MLR	CR	SR
0'-SR	*****	Yes	Yes	?	Yes
W2R	?	*****	No	No	No
MLR	Yes	No	*****	?	?
CR	?	?	Yes	****	No
SR	Yes	No	No	No	****

$$\bigcup_{X\in\mathrm{High}(\mathrm{R},\mathrm{S})}X\text{-}\mathrm{R}=\mathrm{S}$$

NingNing Peng Join work with Kojiro HigiDefinability of Randomness via Another R

Summary of Results

$$\bigcap_{X \in \text{Low}(R,S)} X$$
-S = R

R S	0'-SR	W2R	MLR	CR	SR
0'-SR	****	Yes	Yes	?	Yes
W2R	?	*****	No	No	No
MLR	Yes	No	******	?	?
CR	?	?	Yes	*****	No
SR	Yes	No	No	No	*****

$$\bigcup_{X \in \mathrm{High}(\mathrm{R},\mathrm{S})} X$$
- $\mathrm{R} = \mathrm{S}$

May. 15, 2013 ELC Workshop on Randor NingNing Peng Join work with Kojiro HigtDefinability of Randomness via Another Ri / 26

Summary

Summary of Results

$$\bigcap_{X \in \text{Low}(\mathbf{R}, \mathbf{S})} X$$
-S = R

R S	0'-SR	W2R	MLR	CR	SR
0'-SR	****	Yes	Yes	?	Yes
W2R	?	*****	No	No	No
MLR	Yes	No	*****	?	?
CR	?	?	Yes	****	No
SR	Yes	No	No	No	****

$$\bigcup_{X \in \mathrm{High}(\mathrm{R},\mathrm{S})} X$$
- $\mathrm{R} = \mathrm{S}$

 May. 15, 2013
 ELC Workshop on Randor

 NingNing Peng Join work with Kojiro Higt
 Definability of Randomness via Another Ri

References

Liang Yu:

Characterizing strong randomness via Martin-Löf randomness. Annals of Pure and Applied Logic, vol. 163, no. 3, pp. 214-224 (2012)

David Diamondstone:

Low upper bounds in the LR degrees. Annals of Pure and Applied Logic, vol. **163**, no.3, pp. 314-320, 2012.

May, 15, 2013 ELC Workshop on Rando

26

Thank you very much!

May. 15, 2013 ELC Workshop on Randor NingNing Peng Join work with Kojiro HigpDefinability of Randomness via Another R: / 26