On quantum Kolmogorov complexity and their relationships

Research Institute for Mathematical Sciences, Kyoto University

Toru Takisaka

Preface

Why QKC?

- It can be a new tool to analyze quantum state in information theoritical point of view (ex. Miyadera[2012])
- It can be a basic notion to consider "quantum randomness"

- Today I will talk about
 - Two definition of QKC by Berthiaume et al. and Gács and some known facts about them,
 - My conjecture (quantum Levin's coding theorem).

Axioms for quantum mechanics

• To every quantum system S uniquely associated is a Hilbert space H called the state space of S. States of S are represented by unit vectors $|\psi\rangle$ in H.

Ex.) Qubit system ... \mathbb{C}^2 , $\{0\rangle, |1\rangle\}$

• For every unit vector in *H*, there exists a state represented by that vector.

Ex.)
$$\frac{|0\rangle+|1\rangle}{\sqrt{2}}$$

Axioms for quantum mechanics

• The state space of the composite system $S = S_1 + S_2$ consisting of the system S_1 with the state space H_1 and of the system S_2 with the state space H_2 is the tensor product $H_1 \otimes H_2$.

Ex.) the space of n-letter qubit strings ... $\{\mathbb{C}^2\}^{\otimes n}$ $\{0...0\rangle,...,|1...1\rangle\}$

 \rightarrow the space of all qubit strings ... $\bigoplus_{n=0}^{\infty} {\mathbb{C}^2} \otimes^n$

Axioms for quantum mechanics

 (discrete) Time evolution of quantum states is expressed by a unitary operator *U*:

$$|\psi\rangle \rightarrow U|\psi\rangle \rightarrow U^2|\psi\rangle \rightarrow \dots$$

Several definitions of QKC

- Use quantum Turing machine
 - Vitányi [2001]
 - Berthiaume et al. [2001]
- "Quantize" universal semimeasure
 - Gács [2001]

Quantum Turing machine (QTM)

- $M = (Q, \Sigma, \delta)$
- $\delta: Q \times \Sigma \times Q \times \Sigma \times \{L, R\} \rightarrow \tilde{\mathbb{C}}$
- δ uniquely defines an operator U on H_{qtm} :

$$U|q,T,\zeta\rangle = \sum_{\substack{(p,\tau,d)\\ \in Q\times\Sigma\times\{-1,1\}}} \delta(q,T(\zeta),p,\tau,d) |p,T_{\zeta}^{\tau},\zeta+d\rangle$$

We call this machine QTM only if *U* is unitary.

Existence of universal QTM

Theorem (Bernstein – Vazirani, 1997) There exists a QTM M_0 such that

$$\forall M \exists s_m \ \forall T \ \forall \delta > 0 \ \forall |\psi\rangle \quad \left\| M_0(s_m, T, \delta, |\psi\rangle) - M(|\psi\rangle) \right\|_{Tr} < \delta.$$

This machine simulates each QTM with polynomial slowdown.

Qubit complexity (Berthiaume et al. 2001)

•
$$QC^{\delta}(|\psi\rangle) = \min\{l(|\varphi\rangle) | ||M_0(|\varphi\rangle) - |\psi\rangle|_{Tr} < \delta\}$$

•
$$QC^{\downarrow}(|\psi\rangle) = \min \left\{ l(|\varphi\rangle) \mid \forall k ||M_0(|\varphi\rangle, k) - |\psi\rangle|_{Tr} < \frac{1}{k} \right\}$$

Problem (invariance of QC)

• (Classical case) for universal TM M_0 and any TM M, there exists a constant c_M such that

$$C_M(w) \le C_{M_0}(w) + c_M.$$

(Just input $\langle s_M, w \rangle$ to M_0)

Bernstein – Vazirani UQTM requires the
 Halting time as an input ... can't show the
 invariance of qubit complexity in the same
 manner as above.

Strongly UQTM (Müller, 2007)

Theorem (Müller, 2007) There exists a QTM M_1 such that

$$\forall M \; \forall |\psi\rangle \exists |\psi_M\rangle \; \forall \delta > 0 \quad \|M_1(|\psi_M\rangle, \delta) - M(|\psi\rangle)\|_{Tr} < \delta$$

for each $|\psi\rangle$ for which $M(|\psi\rangle)$ is defined, where

$$l(|\psi_{M}\rangle) \leq l(|\psi\rangle) + c_{M}.$$

$$\Rightarrow \begin{cases}
QC_{M_0}^{\Delta}(|\psi\rangle) \leq QC_M^{\delta}(|\psi\rangle) + c_{\Delta,\delta,M} & (\delta < \Delta) \\
QC_{M_1}^{\downarrow}(|\psi\rangle) \leq QC_M^{\downarrow}(|\psi\rangle) + c_M
\end{cases}$$

Relation between classical complexity

Theorem (Müller, 2009)

$$QC^{\downarrow}(x) = C(x) + O(1).$$

Question: Is the notion of QTM indispensable for the definition of qubit complexity? Is there an equivalent definition of qubit complexity on the notion of classical Turing machine?

Density matrix

• $\rho \in M_N$ is called *Density matrix* if

$$\rho \ge 0$$
, $Tr(\rho) = 1$.

$$\rightarrow \rho = \sum_{i=1}^{N} \lambda_i |\psi_i\rangle\langle\psi_i|$$
, where $\lambda_i \ge 0$, $\sum_{i=1}^{N} \lambda_i = 1$.

→ Density matrix represents a probability distribution of quantum states,

$$\{\lambda_1,\ldots,\lambda_N;|\psi_1\rangle,\ldots,|\psi_N\rangle\}$$

Universal semi-density matrix (Gács, 2001)

• Semi-density matrix ρ (that is, $\rho \in \mathbb{M}_{\mathbb{N}}$ with $\rho \geq 0$, $Tr(\rho) \leq 1$) is *lower-semicomputable* if there is a sequence $\{\rho_n\}$ of elementary matrix such that

$$\rho_n \leq \rho_{n+1}, \ \rho_n \to \rho \ (n \to \infty).$$

• Lower-semicomputable semi-density matrix μ is *universal* if for any LSC-SDM ρ there is a constant $c_{\rho} > 0$ such that

$$\rho \leq c_{\rho}\mu$$
.

References

- Miyadera, T. Quantum Kolmogorov complexity and Informationdisturbance theorem. Entropy 2011, 13, 778–789.
- Vitányi, P.M.B. Quantum Kolmogorov complexity based on classical descriptions. IEEE Trans. Inform. Theory. 2001, 47, 2464–2479.
- Berthiaume, A.; van Dam, W.; Laplante, S. Quantum Kolmogorov complexity. J. Comput. System Sci. 2001, 63, 201–221.
- Gács, P. Quantum algorithmic entropy. J. Phys. A: Math. Gen. 2001, 34, 6859-6880.
- Bernstein, E.; Vazirani, U. Quantum complexity theory. SIAM J. Comput. 1997, 26, 5, 1411–1473.
- Müller, M. Strongly universal quantum Turing machines and invariance of Kolmogorov complexity. IEEE Trans. Inform. Theory. 2008, 54, 763–780.
- Müller, M. On the quantum Kolmogorov complexity of classical strings. Int. J. Quant. Inf. 2009, 7, 701–712.