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Introduction

Background on game-theoretic probability (GTP)

Kolmogorov’s Grundbegriffe (1933) established measure theoretic
probability. It justifies mathematical operations such as limiting
operations.

On this firm ground, probability theory found applications in many
fields.

Axiomatic construction: probability is not defined by itself, like
“points” or “lines”. This actually broadened the applicability of
probability theory.

“Probability is just the Lebesgue measure”, K.Ito, 1944.

On the other hand, foundational arguments, such as Richard von
Mises’s collectives, have been almost forgotten by probabilists.

Kolmogorov himself was somewhat hesitant:
→ proposal of Kolmogorov complexity
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Shafer and Vovk (2001)

Shafer and Vovk (2001) “Probability and Finance, It’s Only a Game!”
appeared.

Vladimir Vovk (PhD, 1988, Moscow State U) is one of the last
students of Kolmogorov.

Around 2003, Takeuchi started to tell me that the book is very
interesting. I gave a course on GTP for studying the book.

In my opinion, at present it is the only alternative framework to
measure-theoretic probability.

Important theorems, such as the strong law of large numbers (SLLN),
central limit theorem (CLT), the law of the iterated logarithm (LIL),
can be proved in game-theoretic probability without requiring measure
theory.
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Introduction

Strength and weakness of game-theoretic probability
(GTP)

Strength

Some clever proofs are very short. For example, even high school
students can understand game-theoretic proof of SLLN.

Black-Scholes formula and CLT are equivalent. In Shafer and Vovk,
CLT and the Black-Scholes formula are proved “simultaneously”.
Their proof shows that these are equivalent. (They do not use
characteristic functions, but use the heat equation.)

In GTP, the set of measure-zero is often more explicitly treated, by an
explicit betting strategy with its capital diverging to +∞ on the set.

Probability is not assume a priori. A game is assumed. Under the
game, the players are forced to act probabilistically. (Why stock
prices look random?)
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Introduction

Strength and weakness of GTP

Weakness

Some proofs are, of course, almost the same in measure-theoretic
probability and GTP.

Some simple notions under usual probability, such as independence,
identical distribution, are not easy to formulate. (GTP inherently
assumes martingale.)

In 2001 book, continuous stochastic processes were treated by
nonstandard analysis, which was probably not very convincing to
many people.

This difficulty was overcome based on the idea in “A new formulation
of asset trading games in continuous time . . .” by Takeuchi, Kumon
and Takemura, Bernoulli, 2009, and completely generalized in
“Continuous-time trading and the emergence of probability” by
Vladimir Vovk, Finance and Stochastics, 2012.
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Introduction to GTP by a coin-tossing game

Complete information game between players (two players version)
Skeptic (statistician, investor) bets on some outcome.
Reality (nature, market) decides the outcome.

Skeptic → Reality → S → R → .
They play in turn.

One round: (Skeptic’s turn, Reality’s turn) in this order

n = 1, 2, . . . denote rounds.

Skeptic’s initial capital: K0 = 1

At each round, Skeptic first announces how much he bets: Mn ∈ R.
Mn can be any real number and can be arbitrarily small. Negative Mn

allowed (short selling).
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Introduction

Introduction to GTP by a coin-tossing game

After knowing Mn, Reality chooses the outcome xn = 0 or xn = 1.

Payoff to Skeptic : Mn(xn − p), where the “price” 0 < p < 1 of the
“ticket” is given before the game. p is the success probability or the
“risk neutral probability”.

Skeptic’s capital changes as Kn = Kn−1 +Mn(xn − p).

In summary:
K0 = 1, 0 < p < 1: given
FOR n = 1, 2, . . .

Skeptic announces Mn ∈ R.
Reality announces xn ∈ {0, 1}.
Kn := Kn−1 +Mn(xn − p).

END FOR
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Introduction to GTP by a coin-tossing game

Reality can choose the sign of xn − p as the opposite of the sign of
Mn. Therefore Reality can always decrease Skeptic’s capital.

No-win situation for Skeptic?

But then Reality is forced to observe SLLN!

Theorem There exists Skeptic’s strategy P. (He can announce
P even before the start of the game.) If Skeptic uses P, then he
is never bankrupt and whenever Reality violates

lim
n→∞

1

n
(x1 + · · ·+ xn) = p,

then
lim
n→∞

Kn = ∞.
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Introduction to GTP by a coin-tossing game

“In the coin-tossing game there exists a non-negative martingale
which succeeds on the set”

{ x1x2 . . . | x1 + · · ·+ xn
n

%→ p} ⊂ {0, 1}∞ (1)

We say that in the coin-tossing game “Skeptic can force SLLN”.

Reality can also have strategies (not fully explored yet).

Bounded forecasting game: (1) is still true even if Reality can choose
any real number in [0, 1], and {0, 1}∞ is replaced by [0, 1]∞.
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Introduction

Coin-tossing game with the third player

Complete information game between three players.

Forecaster decides the price of the ticket

Skeptic bets on the outcome.

Reality decides the outcome.

K0 = 1: given
FOR n = 1, 2, . . .

Forecaster announces pn ∈ [0, 1].
Skeptic announces Mn ∈ R.
Reality announces xn ∈ {0, 1}.
Kn := Kn−1 +Mn(xn − pn).

END FOR
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Introduction

Coin-tossing game with the third player

In this game Skeptic can force

lim
n→∞

1

n

n∑

i=1

(xi − pi ) = 0

He can also force
∑

n

pn < ∞ ⇔
∑

n

xn < ∞

Forecaster can also have strategies.
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Bayesian Skeptic for a coin-tossing game (without
Forecaster)

Although the proof of SLLN in Shafer and Vovk (2001) is short, we
gave an alternative proof (just for a coin-tossing game) based on
Bayesian Skeptic (in Stochastic Analysis and Applications, 2008).

We found that the strategy was already discussed in Jean Ville (1939
ls ) “Étude critique de la notion de collectif” (English translation by
G.Shafer).

Kullback-Leibler divergence very naturally comes out from our
strategy. So Ville might have known KL-divergence.
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Bayesian Skeptic for a coin-tossing game (without
Forecaster)

We suppose that Skeptic uses a strategy based on a beta prior
distribution for p

p ∼ pα−1(1− p)β−1/B(α,β),

where α,β are prior numbers of heads and tails.
Then his prediction of success probability for the n-th round is

p̂n =
“Number of heads up to n − 1” + α

n − 1 + α+ β
.

Consider Skeptics strategy

P : Mn = Kn−1
p̂n − p

p(1− p)

In the following we let 1 = α = β for notational simplicity (uniform
prior).
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Bayesian Skeptic for a coin-tossing game

If Skeptic uses this P, then his capital at time n is explicitly given as

Kn =
hn!tn!

(n + 1)!phn(1− p)tn
=

∫ 1
0 phn(1− p)tndp

phn(1− p)tn
, (2)

where hn = x1 + · · ·+ xn (# of heads), and tn = n − hn.

Proof is easy by induction

This is a likelihood ratio of Bayes marginal distribution and the
binomial distribution with the risk neutral probability p.

In general, a capital process Kn is “always” a likelihood ratio.

LR process is a non-negative martingale process.
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KL divergence and capital process

Stirling’s formula for x!

log x! =

(
x +

1

2

)
log x − x + O(1) = x log x − x + O(log x)

Asymptotic behavior of logKn

logKn = log hn! + log tn!− log(n + 1)!− hn log p − tn log(1− p)

= hn log hn + tn log tn − n log n − (hn + tn − n)

− hn log p − tn log(1− p) + O(log n)

= hn log
hn
np

+ tn log
tn

n(1− p)
+ O(log n).
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KL divergence and capital process

The sum of the first two terms is the KL divergence.

Hence

logKn = nD
(hn
n
‖p) + O(log n).

If hn/n deviates from p, then Skeptic’s capital Kn grows exponentially
with the rate D

(
hn
n ‖p

)
.

This is the “large deviation principle”.
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Non-negative martingales and likelihood ratios

As a standard textbook material, it can be easily checked that in the
measure-theoretic framework the following two things are equivalent.

...1 Non-negative martingales with expected value 1.

...2 Likelihood ratios

Martingale ⇒ LR

Let Fn, n = 0, 1, 2, . . . be a filtration.

Let F = F∞ be the smallest σ-field containing them.

Fix a probability measure P on F and let Kn, n = 0, 1, 2, . . . be a
non-negative martingale under P with E (Kn) = 1, ∀n.
Define Qn on Fn by

Qn(A) =

∫

A
KndP , A ∈ Fn.
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Non-negative martingales and likelihood ratios

Then it is an easy exercise to show that Qn’s are a consistent (i.e.
Qn(A) = Qn+1(A), ∀A ∈ Fn) family of distributions and Kn is the
likelihood ratio: Kn = dQn/dPn.

LR ⇒ Martingale

Let Q1,Q2, . . . be a consistent family of probability distributions on
Fn, n = 0, 1, . . . , such that each Qn is absolutely continuous with P .

Define

Kn =
dQn

dP
.

Then

E (Kn) =

∫

Ω

dQn

dP
dP =

∫

Ω
dQn = Qn(Ω) = 1.

Furthermore it can be easily shown that E (Kn+1|Fn) = Kn and this is
equivalent to the consistency condition.
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Non-negative martingales and likelihood ratio (GTP)

From GTP, the capital process Kn ≥ 0 is a non-negative martingale
with expected value 1 under any risk neutral probability measure.

However not all non-negative measure-theoretic martingales with
expected value 1 can be realized as a capital process. It depends on
how rich is the move space of Skeptic, i.e., what kind of strategies are
allowed to Skeptic.

If the game is “complete”, such as the coin-tossing game, then the
converse is true.
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A sequential test can be constructed from betting

Let Kn be a non-negative martingale with E (Kn) = 1.

By Markov inequality

P(sup
n

Kn ≥ 1/α) ≤ α.

Hence a sequential testing procedure with the level of significance α
is constructed by rejecting the null hypothesis as soon as Kn ≥ 1/α.

Suppose that the data generating process for X1,X2, . . . , is given as a
null hypothesis. If you are allowed to bet on X1,X2, . . . and if you
can multiply your capital 20-fold, then the null hypothesis is rejected
with the significance level of 5%.

See for example, “New procedures for testing whether stock price
processes are martingales” in Computational Economics, 2010.
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A sequential test can be constructed from betting

In this sequential setting, betting strategies need not be formal or
fully specified. Any betting is OK as long as the future observations
are never used (of course).

On the other hand, when we obtain a batch sample of size n, we
often have to be careful that we should have decided to use a
particular procedure before seeing the actual data.

This “hindsight” effect even exists in the maximized likelihood. Then
various information criteria are needed to take the hindsight effect
into consideration.

Compared to the standard batch sample setting, use of betting in a
sequential test can be more informal.
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Summary of the talk

I have discussed background for game-theoretic probability.

I did some mathematics of Bayesian betting strategy for coin-tossing
games.

I tried to explain why likelihood ratio appears as the capital process.

I indicated that capital process (i.e. LR) can be used as a measure of
departure from the null hypothesis, leading to a simple sequential test.
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