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.
Maritin-Löf randomness

Measure theoretic approach for randomness:
Let µ be a fair-coin measure on 2ω.
For given A ⊆ 2<ω, [A ] := {X ∈ 2ω | ∃σ ∈ A σ ⊆ X}.
A sequence {An ⊆ 2<ω}n∈ω is (uniformly) c.e. if
{(σ, n) | σ ∈ An} is c.e.

.

Definition

.

.

.

. ..

.

.

A c.e. sequence {An}n∈ω is said to be a Martin-Löf test (ML-test) if
µ([An]) ≤ 2−n.
A real X is said to be a Maritin-Löf random if X !

⋂
n[An] for any

ML-test {An}n∈ω.
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Partial randomness

We can generalize the previous notion of randomness:
instead of using measure, we use “weight functions”.

Let h : 2<ω → ω be a computable function.
For A ⊆ 2<ω, define

dwth(A) =
∑

σ∈A
2−h(σ).

A set P ⊆ 2<ω is said to be prefix-free if
∀σ, τ ∈ P(σ ⊆ τ⇔ σ = τ).
For A ⊆ 2<ω, define

pwth(A) = sup{dwth(P) | P is a prefix-free subset of A }.
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.
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A c.e. sequence {An}n∈ω is said to be an h-test if dwth(An) ≤ 2−n.
A real X is said to be an h-random if X !

⋂
n[An] for any h-test

{An}n∈ω.

.

Definition

.

.

.

. ..

.

.

A c.e. sequence {An}n∈ω is said to be a strong-h-test if
pwth(An) ≤ 2−n.
A real X is said to be a strong-h-random if X !

⋂
n[An] for any

strong-h-test {An}n∈ω.
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Prefix-free complexity

A Turing machine (partial computable function)
M : ⊆2<ω → 2<ω is said to be prefix-free if dom(M) is
prefix-free.
A prefix-free Turing machine U is said to be universal if for any
prefix-free Turing machine M, there exists τ ∈ 2<ω such that
M(σ) = U(τ$σ).
There exists a universal prefix-free Turing machine.

.

Definition (prefix-free complexity)

.

.

.

. ..

.

.

The prefix-free complexity KP : 2<ω → ω is define as follows:

KP(σ) := min{|τ| | U(τ) = σ},

where U is a prefix-free universal Turing machine.
Note that this is well-defined up to constant.
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Prefix-free complexity

Using a complexity function, we can say that a real X is
complex/random if it is not compressible:

.

Definition

.

.

.

. ..

.

.

A real X ∈ 2ω is said to be weakly Chaitin random or KP-complex if
there exists c ∈ ω such that for any n ∈ ω,

KP(X ! n) ≥ n − c.

Similarly, if h : 2<ω → ω be a computable function, then X ∈ 2ω is
said to be KP-h-complex if there exists c ∈ ω such that for any
n ∈ ω,

KP(X ! n) ≥ h(X ! n) − c.
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Characterization by the Kraft inequality

KP can be characterized as a minimal (abstract) complexity which
satisfies the following Kraft inequality.

.

Proposition (the Kraft ienequality)

.

.

.

. ..

. .

∑

σ∈2<ω
2−KP(σ) < 1.

A function K : 2<ω → ω ∪ {∞} is said to be an abstract
complexity if K is right c.e., or equivalently, there exists a c.e.
set A ⊆ 2<ω × ω such that K(σ) = min{n | (σ, n) ∈ A }.
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Characterization by the Kraft inequality

.

Theorem (the Kraft/Chaitin theorem)

.

.

.

. ..

.

.

For any abstract complexity K such that
∑

σ∈2<ω
2−K(σ) < 1,

there exists c ∈ ω such that for any σ ∈ 2<ω,

K(σ) ≥ KP(σ) − c.

This theorem means that KP is minimal up to constant in all
abstract complexities which satisfy the Kraft inequality.

In fact, several complexity functions can be defined in this way.
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Several other complexities

.

Definition (Uspensky/Shen)

.

.

.

. ..

.

.

The a priori complexity KA is defined as a minimal complexity
which satisfies the following:

for any prefix-free P ⊆ 2<ω,
∑
σ∈P 2−K(σ) < 1.

The simple complexity KS is defined as a minimal complexity
which satisfies the following:
{σ ∈ 2<ω | K(σ) < n}# < 2n.

The decision complexity KD is defined as a minimal
complexity which satisfies the following:

for any prefix-free P ⊆ 2<ω, {σ ∈ P | K(σ) < n}# < 2n.

We can also define KA-h-complex, KS-h-complex and
KD-h-complex similarly to KP-h-complex.
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Levin/Schnorr’s theorem

The previous two definitions of randomness have a nice
correspondence.

.

Theorem (Levin/Schnorr’s theorem)

.

.

.

. ..

.

.

A real X ∈ 2ω is ML-random if and only if it is KP-complex.

More generally, the following holds.

.

Theorem (Tadaki/Calude/Staiger/Terwijn)

.

.

.

. ..

.

.

Let h : 2<ω → ω be a computable function.
A real X ∈ 2ω is h-random if and only if it is KP-h-complex.
A real X ∈ 2ω is strongly-h-random if and only if it is
KA-h-complex.
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Levin/Schnorr’s theorem

For KS and KD, we need new weight functions.
Let h : 2<ω → ω be a computable function.

For A ⊆ 2<ω, define

dcth(A) = sup
n∈ω
{σ ∈ A | h(σ) < n}#/2n.

For A ⊆ 2<ω, define

pcth(A) = sup{dcth(P) | P is a prefix-free subset of A }.

We can define dcth-randomness or pcth-randomness similar to
h-randomness or strong-h-randomness.
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Levin/Schnorr’s theorem

Then, we have the following.

.

Theorem (Some more variations)

.

.

.

. ..

.

.

Let h : 2<ω → ω be a computable function.
A real X ∈ 2ω is h-random if and only if it is KP-h-complex.
A real X ∈ 2ω is strongly-h-random if and only if it is
KA-h-complex.
A real X ∈ 2ω is dcth-random if and only if it is KS-h-complex.
A real X ∈ 2ω is pcth-random if and only if it is KD-h-complex.
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We have seen that there are several versions of
randomness/complexity defined by a “measure-like”
function/complexity function.

Questions.
Is there a generalization of all of these randomness or
complexity notions?
Can we generalize the correspondence of randomness and
complexity?
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Weight function

We first generalize a notion of randomness defined by a wight
function.

.

Definition

.

.

.

. ..

.

.

A weight function is a computable function m : [2<ω]<ω → [0,∞)
which satisfies the following:

.

.

.

1 m(∅) = 0,

.

.

.

2 if F1 ⊆ F2, then m(F1) ≤ m(F2),

.

.

.

3 m(F1 ∪ F2) ≤ m(F1) + m(F2).
For arbitrary A ⊆ 2<ω, we expand m : [2<ω]≤ω → [0,∞) as follows:

m(A) = sup{m(F) | F ⊆fin A }.

Note that m(A) = inf{∑i∈ωm(Fi) |
⋃

i∈ω Fi ⊇ A } if m is bounded.
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Randomness defined by a weight function

All of the following are weight functions:

dwth(F) :=
∑

σ∈F
2−h(σ),

pwth(F) := sup{dwth(P) | P ⊆ F is prefix free},

dcth(F) := sup
n∈ω

{σ ∈ F | h(σ) < n}#
2n ,

pcth(F) := sup{dcth(P) | P ⊆ F is prefix free}.

.

Definition

.

.

.

. ..

.

.

An m-test is a c.e. sequence {Ai}i∈ω such that m(Ai) ≤ 2−i .
A real X ∈ ω is said to be m-random if X !

⋂
i[Ai] for any m-test

{Ai}i∈ω.
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Universal test

.

Proposition

.

.

.

. ..

.

.

For any weight function m, a universal m-test exists,
i.e., there exists an m-test {Ai}i∈ω such that X ∈ 2ω is m-random if
and only if X !

⋂
i[Ai].

.

Corollary

.

.

.

. ..

.

.

The class of all m-random reals is Σ0
2.
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In fact, any Σ0
2-subclass of Cantor space can be considered as a

set of m-random reals as follows:

Let P ⊆ 2ω be a Σ0
2-class. Take a computable sequence of trees

{Ti | i ∈ ω} such that X ∈ P if and only if X is a path of Ti for some
i ∈ ω. Define weight functions mi and m as follows:

mi(F) =




1 if F ∩ Ti " ∅,
0 otherwise,

m(F) =
∑

i∈ω
2−imi(F).

Then, we can easily check that X is m-random if and only if X ∈ P.
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Rule for a complexity

Next, we generalize complexity functions.
For this, we consider a generalization of the Kraft/Chaitin theorem.

A finite complexity function is a finite set r ⊆ 2<ω × Z,
we identify r as a function Kr(σ) = min{d | (σ, d) ∈ r} ∪ {∞}.
Given a finite complexity r ⊆ 2<ω × Z,

r̊ := {σ ∈ 2<ω | ∃d ∈ ω (σ, d) ∈ r},
r+i := {(σ, d + i) | (σ, d) ∈ r},
given a computable function h : 2<ω → ω,
r+h := {(σ, d + h(σ)) | (σ, d) ∈ r}.

Let r , s ⊆ 2<ω × ω be finite complexity functions.
We say that r is stronger than s (s ≺ r) if Ks(σ) ≤ Kr(σ) for
any σ ∈ 2<ω.
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Rule for a complexity

Now, we construct a complexity function from finite complexity
functions.

.

Definition

.

.

.

. ..

. .

A rule (for a complexity function) is a computable set
R ⊂ [2<ω × Z]<ω which satisfies the following:

.

.

.

1 ∅ ∈ R.

.

.

.

2 If r ∈ R and s ≺ r, then s ∈ R.

.

.

.

3 If r , s ∈ R, then (r ∪ s)+1 ∈ R.

Condition 3 means that any two finite complexity functions can be
combined into one function with an additional step.
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Optimal complexity function

.

Definition (Complexity as a minimal function)

.

.

.

. ..

.

.

A complexity function is a right c.e. function K : 2<ω → Z.

Given a rule R, a complexity function K = KR is said to be
R-optimal if

.

.

.

1 R-function: for any finite F ⊆ 2<ω, {(σ,K(σ)) | σ ∈ F} ∈ R.

.

.

.

2 R-minimal: if K ′ is also an R-function, then there exists c ∈ ω
such that for any σ ∈ 2<ω,

K ′(σ) ≥ K(σ) − c.

Note that KR is defined uniquely up to constant.

.

Proposition

.

.

.

. ..

.

.

For any rule R, R-optimal complexity function KR exists.
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Complex defined by a complexity function

.

Definition

.

.

.

. ..

.

.

X ∈ 2ω is said to be R-complex if there exists c ∈ ω such that
KR(X ! n) ≥ n − c for any n ∈ ω.

Examples.
Let RKP := {r ∈ [2<ω × Z]<ω | ∑σ∈2<ω 2−Kr (σ) < 1}, then,
KP is an RKP-optimal complexity.
Let RKPh := R+|·|−h

KP = {r+|·|−h | r ∈ RKP}, then,
KRKPh (σ) = KP(σ) + |σ| − h(σ),
i.e., X is RKPh-complex iff it is KP-h-complex.
We can define RKAh, RKSh, and RKDh similarly.
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Generalized correspondence

Now, we construct a concrete correspondence of randomness and
complexity.

For r ∈ [2<ω × Z]<ω,
‖r‖ := min{|σ| − d | (σ, d) ∈ r} ∈ Z ∪ {∞} (‖∅‖ = ∞).

We can easily check that s ≺ r if s̊ ⊆ r̊ and ‖s‖ ≤ ‖r‖.

.

Definition

.

.

.

. ..

.

.

Let m be a weight function, and let R be a rule. Then, we define
m
√
⊆ [2<ω × Z]<ω and R

√
: [2<ω]<ω → [0,∞) as follows:

m
√

:= {r ∈ [2<ω × Z]<ω | ∀s ⊆ r m(̊s) ≤ 2−‖s‖},
R
√
(F) := inf{2−‖r1‖ + · · ·+ 2−‖rl‖ | r1, . . . , rl ∈ R , F ⊆ r̊1 ∪ · · · ∪ r̊l}.

We can check that m
√

is a rule and R
√

is a weight function.
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Generalized correspondence

.

Proposition

.

.

.

. ..

.

.

Let m be a weight function, and let R be a rule. Then,

.

.
.

1 m ≤ m
√√
≤ 2m,

.

.

.

2 R ⊆ R
√√
⊆ R−2 = {s | ∃r ∈ R s ≺ r−2},

thus, KR − c ≤ KR
√√ ≤ KR + c for some c ∈ ω.

.

Definition

.

.

.

. ..

.

.

Let m be a weight function, and let R be a rule.
Then, R is said to be a dual rule of m, or m is said to be a dual
weight function of R,
if there exists c ∈ ω such that KR − c ≤ Km

√ ≤ KR + c,
or equivalently, there exists c > 0 such that 1/c ·m ≤ R

√
≤ cm.
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Generalized correspondence

Now, we have the following.

.

Theorem (Generalized Levin/Schnorr’s theorem)

.

.

.

. ..

.

.

Let m be a weight function, and let R be its dual rule. Then, X ∈ 2ω

is m-random if and only if it is R-complex.

We can easily check the following:
RKPh is a dual of dwth,
RKAh is a dual of pwth,
RKSh is a dual of dcth,
RKDh is a dual of pcth.
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.
Characterizing basic properties

We can characterize some basic properties of randomness:
Non-triviality:
X is not m-random relative to X
⇔

limn→∞ sup{m({σ}) | n < |σ|} = 0.
Tail invariance:
X is m-random iff its tail is m-random
⇔
∀τ ∈ 2<ω ∃c ∈ ω r ∈ m

√
→ {(τ$σ, d + c) | (σ, d) ∈ r} ∈ m

√
.

Next, we focus on the property of relativization to a complete
Π0

1-class.
This is related to behaviors of randomness in arithmetic.
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Monotonicity and propagation to CPA

For A ,B ⊆ 2<ω, we write A ≺ B if for any σ ∈ A there exists
τ ∈ B such that τ ⊆ σ.
A weight function m is said to be monotonic if for any
A ,B ⊆ 2<ω, m(A) ≤ m(B) if A ≺ B.
For a given weight function m, define a monotonic closure m∗

of m as
m∗(F) := inf{m(C) | C ⊆ 2<ω, F ≺ C}.

.

Theorem

.

.

.

. ..

.

.

Let m be a weight function. Then, the following are equivalent.

.

.

.

1 X is m∗-random.

.

.

.

2 X is m∗-random relative to CPA.

.

.

.

3 X is m-random relative to CPA.
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.
Questions

Can we characterize specific properties of randomness?
What is needed for the van Lambalgen theorem?
What is needed for the ample excess lemma?
. . .

.

Question

.

.

.

. ..

.

.

Which condition is needed to define “randomness”?
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