Randomness in a dynamical system

Kenshi Miyabe

Feb 14, 2011

Randomness in a dynamical system

Randomness on a Cantor space

♣ AIT

- Random sequence
- Questions?
- Computability

Martin-Löf randomness

Complexity

✤ Martingale

van Lambalgen's Theorem

An extension

Random closed set

Generalization

Randomness and Ergodic Theory

Probability

Randomness on a Cantor space

AIT

Randomness on a Cantor space

♣ AIT

- Random sequence
- Questions?
- Computability
- Martin-Löf randomness
- Complexity
- Martingale
- van Lambalgen's Theorem
- An extension
- Random closed set
- Generalization
- Randomness and Ergodic Theory
- Probability

Algorithmic randomness is a subfield of Algorithmic Information Theory.

AIT is the result of putting Shannon's information theory and Turing's computability theory into a cocktail shaker and shaking vigorously. (G. J. Chaitin)

- From "for almost every" to "for all random points"
- Random deficiency
- Computable points with statistical properties
- Three approaches to a concept.

Random sequence

Randomness on a Cantor space

♣ AIT

Random sequence

Questions?

Computability

Martin-Löf randomness

Complexity

 Martingale
 van Lambalgen's Theorem

✤ An extension

Random closed set

Generalization

Randomness and Ergodic Theory

Probability

2^{ω}: Cantor space of infinite binary sequences μ : uniform Bernoulli measure on 2^{ω} T: left shift, $T(x_0x_1x_2...) = x_1x_2x_3...$ T preserves μ . For each $A \subseteq 2^{\omega}$, frequency of $T^n(x) \in A$ is $\mu(A)$ a.e.

Theorem 1 (Kučera 1985, Bienvenu et al.). A point $x \in 2^{\omega}$ is Martin-Löf random iff $(\exists n)T^n(x) \notin A$ for all c.e. open set A with $\mu(A) < 1$.

Moreover there exists universal c.e. open set A.

Questions?

Randomness on a Cantor space

♦ AIT

Random sequence

Questions?

Computability

Martin-Löf randomness

Complexity

Martingale

van Lambalgen's Theorem

An extension

Random closed set

Generalization

Randomness and Ergodic Theory

Probability

- New interpretation via three approaches
- Another relation between a property in ergodic theory and a random concept
- Random deficiency

• Other operator T

General space

Computability

Randomness on a Cantor space

♣ AIT

Random sequence

Questions?

Computability

Martin-Löf randomness

ComplexityMartingale

 van Lambalgen's Theorem

An extension

Random closed set

Generalization

Randomness and Ergodic Theory

Probability

A set $A \subseteq \mathbb{N}$ is *computable* iff $1_A : \mathbb{N} \to \{0, 1\}$ is computable. A set A is *c.e.* iff A = dom(f) for a partial computable function.

A real $r \in [0, 1]$ is *computable* iff its binary expantion is computable.

A real r is c.e. iff $\{q \in \mathbb{Q} : q < r\}$ is c.e.

There exist a c.e. set and a c.e. real that are not computable.

base: a set of $[\sigma] = \{A : \sigma \leq A\}$ A open set U is *c.e.* iff $U = \bigcup_{\sigma \in S} [\sigma]$ for a c.e. set S. μ : generated from $\mu([\sigma]) = 2^{-|\sigma|}$ We often identify 2^{ω} with [0, 1].

Martin-Löf randomness

Randomness on a Cantor space

♦ AIT

Random sequence

Questions?

Computability

Martin-Löf randomness

Complexity

Martingale

van Lambalgen's Theorem

An extension

Random closed set

Generalization

Randomness and Ergodic Theory

Probability

Typicalness: No effective null set contains the point.

Definition 2 (Martin-Löf 1966). $\{U_n\}$: a seq. of open sets $\{U_n\}$ is a test iff it is unifomly c.e. and $\mu(U_n) \leq 2^{-n}$. A real A passes the test iff $A \notin \bigcap_n U_n$. A is ML-radom iff A passes all tests.

There exists a universal test. The set of ML-random reals has measure 1.

Complexity

Randomness on a Cantor space

♣ AIT

Random sequence

Questions?

Computability

Martin-Löf randomness

Complexity

Martingale
van Lambalgen's Theorem

An extension

Random closed set

Generalization

Randomness and Ergodic Theory

Probability

Incompressibility: The prefix is hard to compress or describe.

Definition 3. A set $A \subseteq 2^*$ is prefix-free *iff no string is a prefix of another.* A function $f : 2^* \rightarrow 2^*$ is prefix-free *iff its domain is prefix-free.* A machine is a partial computable function

A machine is a partial computable function. The Kolmogorov complexity of σ is

 $K(\sigma) = \min\{|\tau| \ : \ V(\tau) = \sigma\}.$

where V is a universal prefix-free machine.

Proposition 4 (Levin, Schnorr). A is ML-random iff $K(A \upharpoonright n) > n - O(1)$.

Martingale

Randomness on a Cantor space

♦ AIT

- Random sequence
- Questions?
- Computability

Martin-Löf randomness

Complexity

✤ Martingale

van Lambalgen's Theorem

An extension

Random closed set

Generalization

Randomness and Ergodic Theory

Probability

Unpredictability: It is hard to predict the next bit.

Definition 5. A function $d: 2^* \to \mathbb{R}^+ \cup \{0\}$ is a martingale iff

$$d(\sigma) = \frac{d(\sigma 0) + d(\sigma 1)}{2}.$$

Proposition 6 (Schnorr 1971). *A is ML-random iff* $\sup_n d(A \upharpoonright n) < \infty$ for all c.e. martingales.

There exists a universal c.e. martingale.

van Lambalgen's Theorem

Randomness on a Cantor space

- ♣ AIT
- Random sequence
- Questions?
- Computability

Martin-Löf randomness

Complexity

✤ Martingale

van Lambalgen's Theorem

An extension

Random closed set

Generalization

Randomness and Ergodic Theory

Probability

Two parts of random sequence is relatively random each other.

Let $A \oplus B = A(0)B(0)A(1)B(1)\cdots$.

Theorem 7 (van Lambalgen's Theorem 1987). $A \oplus B$ is *ML*-random iff A is *ML*-random and B is A-ML-random.

This theorem holds for many randomnesses and is a criterion for a proper randomness.

An extension

Randomness on a Cantor space

- ♣ AIT
- Random sequence
- Questions?
- Computability

Martin-Löf randomness

ComplexityMartingale

van Lambalgen's
 Theorem

An extension

Random closed set

Generalization

Randomness and Ergodic Theory

Probability

Theorem 8 (M. 2010). A_i : *ML-random relative to* $\bigoplus_{j < i} A_j$ $\exists B_i \text{ s.t. } B_i =^* A_i \text{ and } \bigoplus B_i \text{ is ML-random.}$

Theorem 9 (Bienvenu et al.). In the above theorem we can replace $B_i =^* A_i$ with deleting finite prefixes or adding finite strings.

Randomness on a Cantor space

Random closed set

✤s-gale

Effective Hausdorff dimension

Weakly

s-ML-randomness

Other dimensions

Random closed set

Generalization

Randomness and Ergodic Theory

Probability

Random closed set

s-gale

Randomness on a Cantor space

Random closed set

✤s-gale

Effective Hausdorff dimension

Weakly

s-ML-randomness

Other dimensions

Random closed set

Generalization

Randomness and Ergodic Theory

Probability

d: a martingaleh: an order (unbounded non-decreasing)

Definition 10 (*h*-success set of *d*; Schnorr 1971).

$$S_h[d] = \{A : \limsup_{n} \frac{d(A \upharpoonright n)}{h(n)} = \infty\}.$$

Definition 11 (s-gale: Lutz 2000).

$$f(\sigma) = 2^{-s}(f(\sigma 0) + f(\sigma 1)).$$

Theorem 12 (Lutz 2000). $X \subseteq 2^{\omega}$

 $\dim_{H}(X) = \inf\{s : (\exists f)X \subseteq S[f]\}$ $= \inf\{s : (\exists d)X \subseteq S_{2^{(1-s)n}}[d]\}$

Effective Hausdorff dimension

Randomness on a Cantor space

Random closed set

✤s-gale

Effective Hausdorff dimension

♦ Weakly

s-ML-randomness

Other dimensions

Random closed set

Generalization

Randomness and Ergodic Theory

Probability

Definition 13 (Effective Hausdorff dimension; Lutz 2000). *d: a c.e. martingale*

 $\dim(X) = \inf\{s : (\exists d) X \subseteq S_{2^{(1-s)n}}[d]\}$

We also have a direct characterization with a cover.

Theorem 14 (Mayordomo 2002). For $A \in 2^{\omega}$,

$$\dim(X) = \liminf_{n} \frac{K(A \upharpoonright n)}{n}.$$

Weakly s-ML-randomness

Randomness on a Cantor space

Random closed set

✤ s-gale

Effective Hausdorff dimension

Weakly
 s-ML-randomness

Other dimensions

Random closed set

Generalization

Randomness and Ergodic Theory

Probability

Definition 15 (Tadaki 2002). $\{U_n\}$ *is a* test for weak *s*-ML-randomness *iff they are uniformly c.e. sets of strings* with $\sum_{\sigma \in V_n} 2^{-s|\sigma|} \leq 2^{-n}$. A is weakly *s*-ML-random *iff* $A \notin \bigcap_n \llbracket V_n \rrbracket$.

A is weakly s-random if $K(A \upharpoonright n) \ge sn - O(1)$.

Theorem 16 (Tadaki 2002). *A is weakly s-ML-random iff A is weakly s-random.*

Proposition 17.

 $\dim(A) = \sup\{s : A \text{ is weakly } s \text{-random}\}.$

A characterization by martingales is unknown.

Other dimensions

Randomness on a Cantor space

Random closed set

✤s-gale

Effective Hausdorff dimension

Weakly

s-ML-randomness

Other dimensions

Random closed set

Generalization

Randomness and Ergodic Theory

Probability

Some researchers also study the relation with the following dimension.

box counting dimension

packing dimension

Random closed set

Randomness on a Cantor space

Random closed set

✤s-gale

Effective Hausdorff dimension

♦ Weakly

s-ML-randomness

Other dimensions

Random closed set

Generalization

Randomness and Ergodic Theory

Probability

• Barmpalias et al. (2007) introduced it.

 Kjos-Hanssen (2009) uses Galton-Watson trees to obtain a similar notion.

 Axon uses a notion of "random closed set" in probability theory.

Diamondstone et al. (2009) proved the equivalence of the first two.

Axon proved the equivalence on 2^{ω} .

Randomness on a Cantor space

Random closed set

Generalization

Type-2 Theory of Effectivity

Representation

*****CTS

Representations

ML-randomness over a CTS

Randomness over a CMS

 Computability of measures

By martingales

Complexity randomness

Randomness and Ergodic Theory

Probability

Generalization

Type-2 Theory of Effectivity

Randomness on a Cantor space

Random closed set

Generalization Type-2 Theory of Effectivity

✤ Representation

• OTO

* CTS

Representations

ML-randomness over a CTS

Randomness over a CMS

Computability of measures

By martingales

Complexity randomness

Randomness and Ergodic Theory

Probability

Let $Y_0, \ldots, Y_n \in {\Sigma^*, \Sigma^\omega}$ and $Y = Y_1 \times \ldots \times Y_n$. A function $f :\subseteq Y \to Y_0$ is *computable* if it is computed by Type-2 machine. Informally, a *Type-2 machine* is a Turing machine, which

Informally, a *Type-2 machine* is a Turing machine, which reads from input tapes with finite or infinite inscription, operates on work tapes and write one-way to an output tape.

On Σ^* we consider the discrete topology.

On Σ^{ω} we consider the topology generated by the base $\{w\Sigma^{\omega} : w \in \Sigma^*\}$ of open sets.

Every computable function is continuous.

Representation

Randomness on a Cantor space

Random closed set

Generalization

Type-2 Theory of Effectivity

Representation

♦CTS

```
Representations
```

ML-randomness over a CTS

Randomness over a CMS

 Computability of measures

By martingales

Complexity randomness

Randomness and Ergodic Theory

Probability

A representation of a set M is a surjective function $\gamma :\subseteq Y \to M$ where $Y \in \{\Sigma^*, \Sigma^\omega\}$.

```
Example 18. (i) \nu_{\mathbb{Q}} :\subseteq \Sigma^* \to \mathbb{Q}
```

(ii) $\rho :\subseteq \Sigma^{\omega} \to \mathbb{R}$

A point is γ -computable if it has a computable representation by γ .

A function $f :\subseteq M_1 \to M_2$ is (γ_1, γ_2) -computable if it has a computable realization.

$$M_{1} \xrightarrow{f} M_{2}$$

$$\uparrow^{\gamma_{1}} \gamma_{2} \uparrow$$

$$Y_{1} \xrightarrow{\text{comp}} Y_{2}$$

CTS

Randomness on a Cantor space

Random closed set

Generalization

Type-2 Theory of Effectivity

Representation

*****CTS

Representations

ML-randomness over a CTS

Randomness over a CMS

 Computability of measures

By martingales

Complexity randomness

Randomness and Ergodic Theory

Probability

Definition 19 (Hertling and Weihrauch 2009). *A* computable topological space is a 4-tuple $\mathbf{X} = (X, \tau, \beta, \nu)$ such that

• (X, τ) is a topological T_0 -space,

• $\nu :\subseteq \Sigma^* \to \beta$ is a notation of a base β of τ ,

• $dom(\nu)$ is recursive and

• $\nu(u) \cap \nu(v) = \bigcup \{\nu(w) : (u, v, w) \in S\}$ for all $u, v \in dom(\nu)$ for some r.e. set $S \subseteq (dom(\nu))^3$.

Representations

Randomness on a Cantor space

Random closed set

Generalization

Type-2 Theory of Effectivity

Representation

CTS

Representations

 ML-randomness over a CTS
 Randomness over a CMS

 Computability of measures

By martingales

Complexity randomness

Randomness and Ergodic Theory

Probability

Definition 20. Let $\mathbf{X} = (X, \tau, \beta, \nu)$ be a computable topological space. Define a representation $\delta :\subseteq \Sigma^{\omega} \to X$ of the points as

 $x = \delta(p) \iff (\forall w \in \Sigma^*) (w \ll p \iff x \in \nu(w))$

and a representation $\theta :\subseteq \Sigma^{\omega} \to \tau$ of the set of open sets as

$$W = \theta(p) \iff \begin{cases} w \ll p \Rightarrow w \in dom(\nu) \\ W = \bigcup \{\nu(w) : w \ll p\} \end{cases}$$

ML-randomness over a CTS

Randomness on a Cantor space

Random closed set

Generalization

Type-2 Theory of Effectivity

✤ Representation

♦CTS

Representations

ML-randomness over a CTS

Randomness over a CMS

 Computability of measures

By martingales

Complexity randomness

Randomness and Ergodic Theory

Probability

Definition 21 (Hertling and Weihrauch 2003). $\{U_n\}$: open sets

 $\{U_n\}$ is a test iff uniformly θ -comp. with $\mu(U_n) \leq 2^{-n}$. x is measure μ -random iff $x \notin \bigcap_n U_n$ for each test.

Universality needs an unnatural condition.

Randomness over a CMS

Randomness on a Cantor space

Random closed set

Generalization

Type-2 Theory of Effectivity

Representation

♦CTS

Representations

ML-randomness over a CTS

♦ Randomness over a CMS

 Computability of measures

By martingales

Complexity randomness

Randomness and Ergodic Theory

Probability

Randomness over a computable metric space gets much attention.

 Gács (2005) first gave a restricted characterization by complexity.

• Hoyrup and Rojas (2009) gave a complete characterization by complexity.

The most important point was computability of measures.

Computability of measures

Randomness on a Cantor space

Random closed set

Generalization

Type-2 Theory of Effectivity

Representation

♦CTS

Representations

ML-randomness over a CTS

Randomness over a CMS

 Computability of measures

By martingales

Complexity randomness

Randomness and Ergodic Theory

Probability

M(X): the space of bounded non-negative Borel measures

Proposition 22. *G*: the finite union of base sets A countable subbase of the A-topology τ_A :

 $\{\mu \ : \ \mu(G) > q\}, \ \{\mu \ : \ \mu(X) < q\}$

Theorem 23. $(M(X), \tau_A, \beta_A, \nu_A)$ is a CTS.

Definition 24. A measure is computable if it is a computable point in the CTS.

By martingales

all $A \in \mathcal{A}_n$.

Randomness on a Cantor space

Random closed set

Generalization

Type-2 Theory of Effectivity

Representation

♦CTS

Representations

ML-randomness over a CTS

Randomness over a CMS

 Computability of measures

✤ By martingales

Complexity randomness

Randomness and Ergodic Theory

Probability

Let (X, \mathcal{A}, μ) be a measure space. A *filtration* is a sequence of sub- σ -algebra (\mathcal{A}_n) such that $\mathcal{A}_n \subseteq \mathcal{A}_{n+1}$ for each n. A sequence of \mathcal{A} -measurable functions (f_n, \mathcal{A}_n) is called a *supermartingale* if $\int f_n d\mu < \infty$ and $\int_A f_n d\mu \ge \int_A f_{n+1} d\mu$ for

Theorem 25. A point x is measure μ -random iff $\sup_n f_n(x) < \infty$ for each $([\nu_N, \delta], \overline{\rho}_<)$ -computable supermartingale (f_n, \mathcal{A}_n)

Proof idea. Let $U_{k,m} = \{y : \sup_{n \le m} f_n(y) > 2^k\}$ and use Doob's maximal inequality.

Complexity randomness

Randomness on a Cantor space

Random closed set

Generalization

Type-2 Theory of Effectivity

Representation

♦CTS

Representations

ML-randomness over a CTS

Randomness over a CMS

 Computability of measures

By martingales

Complexity randomness

Randomness and Ergodic Theory

Probability

Suppose that the base is complete.

Definition 26. A point x is complexity μ -random *iff*

$$x \in \xi(u) \Rightarrow K(u) \ge -\log \mu \xi(u) - O(1)$$

where $\xi(u) = \nu(u)^c$.

Theorem 27. Suppose that the space has almost decidability and the measure is effectively regular. Then two randomnesses coincide and van Lambalgen's Theorem holds for it.

Randomness on a Cantor space

Random closed set

Generalization

Randomness and Ergodic Theory

 Effective Birkhoff's ergodic theorem

Other results

Probability

Randomness and Ergodic Theory

Effective Birkhoff's ergodic theorem

Randomness on a Cantor space

Random closed set

Generalization

Randomness and Ergodic Theory Effective Birkhoff's ergodic theorem

Other results

Probability

Definition 28. T is \ln^2 -ergodic if $\forall f, g$ $\gamma_n(f,g) = \left|\frac{1}{n} \sum_{i < n} \int f \circ T^i \cdot g d\mu - \int f d\mu \int g d\mu\right| \leq \frac{c_{f,g}}{(\ln(n))^2}$

Theorem 29 (Birkhoff's ergodic theorem for random points; V'yugin '97, Nandakumar '08, Hoyrup and Rojas '09). (X, μ) : a CPS $T : X \to X$ an effectively measurable measure-preserving map $f \in L^1(X,\mu)$ an effectively measurable function $T: \ln^2$ -ergodic Then $\exists n(c, \epsilon)$ comp. function s.t. if $x \in K_c$ then for all $n > n(c, \epsilon)$, $|\frac{1}{n} \sum_{i < n} f \circ T^i \cdot gd\mu - \int fd\mu \int gd\mu| < \epsilon$

The effectiveness of the convergence speed can be also seen in Davie('01).

Other results

Randomness on a Cantor space

Random closed set

Generalization

Randomness and

ergodic theorem

Other results

Probability

- Under a appropriate condition computable typical points are dense.
- Not all computable dynamical systems have a computable invariant measure.
- The complexity of the orbits of random points equals the Kolmogorov-Sina[¨]ı entropy of the system,

Randomness on a Cantor space

Random closed set

Generalization

Randomness and Ergodic Theory

Probability

♦ What is probability?

Von Mises's philosophy

Collective

Sigma-algebra

Probability axioms

Random sequence

✤ Practically

impossibile

End

Probability

What is probability?

Randomness on a Cantor space

Random closed set

Generalization

Randomness and Ergodic Theory

Probability

♦ What is probability?

Von Mises's philosophy

Collective

Sigma-algebra

Probability axioms

Random sequence

Practically

impossibile

End

- Frequency probability
- Subjective probability
- Propensity probability

Modern mathematical formalization is by Kolmogorov (1933).

Von Mises's philosophy

Randomness on a Cantor space

Random closed set

Generalization

Randomness and Ergodic Theory

Probability

What is probability?

Von Mises's philosophy

Collective

Sigma-algebra

Probability axioms

Random sequence

 Practically impossibile

♣ End

Von Mises took a very different approach.

- His first paper on this subject is in 1919.
- His standpoint is empiricism.
- He claims that probability can be defined only for repetitive events.
- First the collective, then the probability (as its frequency).

Collective

Randomness on a Cantor space

Random closed set

Generalization

Randomness and Ergodic Theory

Probability

♦ What is probability?

Von Mises's philosophy

♦ Collective

✤ Sigma-algebra

Probability axioms

Random sequence

Practically

impossibile

End

A collective is a set of sequences s.t.

- their limits of relative frequency exist and are the same
- relative frequency are not affected by appropriate place selections

Ville (1940) constructed a sequence for which LIL does not hold.

Sigma-algebra

Randomness on a Cantor space

Random closed set

Generalization

Randomness and Ergodic Theory

Probability

What is probability?

Von Mises's philosophy

Collective

♦ Sigma-algebra

Probability axioms

Random sequence

Practically

impossibile

End

Σ_0 is an *algebra* on *S* iff

(i) $S \in \Sigma_0$,

(ii) $F \in \Sigma_0 \Rightarrow F^c = S \setminus F \in \Sigma_0$,

(iii) $F, G \in \Sigma_0 \Rightarrow F \cup G \in \Sigma_0$.

 Σ is a $\sigma\text{-algebra}$ iff it is an algebra and

$$F_n \in \Sigma \Longrightarrow \bigcup_n F_n \in \Sigma$$

Probability axioms

Randomness on a Cantor space

Random closed set

Generalization

Randomness and Ergodic Theory

Probability

What is probability?

Von Mises's philosophy

Collective

Sigma-algebra

Probability axioms

Random sequence

Practically

impossibile

End

P is a *finite probability function* on Σ_0 iff

(i) $P(A) \ge 0$ for $A \in \Sigma_0$,

(ii) P(S) = 1,

(iii) (finite additivity) $A \cap B = \phi \Rightarrow P(A \cup B) = P(A) + P(B).$

P is a *probability function* on Σ iff it satisfies above and (countable additivity) $P(\bigcup F_n) = \sum_n P(F_n)$ for pairwise disjoint $F_n \in \Sigma$. Note that *P* need not to be a measure.

Random sequence

Randomness on a Cantor space

Random closed set

Generalization

Randomness and Ergodic Theory

Probability

♦ What is probability?

Von Mises's philosophy

Collective

Sigma-algebra

Probability axioms

Random sequence

Practically impossibile

♦ End

Now we can consider a CTS $\mathbf{X}^{\mathbb{N}}$. We define frequency as

$$F(A) = \lim_{n} \frac{\#\{i \le n : x_i \in A\}}{n}.$$

Theorem 30. Suppose that the base is uniformly almost decidable.

 \mathcal{A} : the minimal algebra containing the base

 $F|\mathcal{A} = \mu|\mathcal{A}|$

We can not extend to Borel sets.

Practically impossibile

Randomness on a Cantor space

 $E \in \mathcal{A}$: an observable set

Random closed set

Generalization

Randomness and Ergodic Theory

Probability

♦ What is probability?

Von Mises's philosophy

Collective

Sigma-algebra

Probability axioms

Random sequence

Practically impossibile

✤ End

 $\mu(E) = 0 \Rightarrow E \cap \mathbf{cRND}(\mu) = \phi$ $\mu(E) = 1 \Rightarrow \mathbf{cRND}(\mu) \subseteq E$

We need restricted countable additivity.

End

Randomness on a Cantor space

Random closed set

Generalization

Randomness and Ergodic Theory

Probability

♦ What is probability?

✤ Von Mises's

philosophy

Collective

✤ Sigma-algebra

Probability axioms

Random sequence

✤ Practically

impossibile

♦ End

Thank you!