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Algorithmic randomness is a subfield of Algorithmic
Information Theory.

AIT is the result of putting Shannon’s information
theory and Turing’s computability theory into a
cocktail shaker and shaking vigorously. (G. J.
Chaitin)

● From “for almost every” to “for all random points”

● Random deficiency

● Computable points with statistical properties

● Three approaches to a concept.



Random sequence

Randomness on a
Cantor space

❖ AIT

❖ Random sequence

❖ Questions?

❖ Computability

❖ Martin-Löf
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2ω: Cantor space of infinite binary sequences
µ: uniform Bernoulli measure on 2ω

T : left shift, T (x0x1x2 . . .) = x1x2x3 . . .

T preserves µ.
For each A ⊆ 2ω, frequency of T n(x) ∈ A is µ(A) a.e.

Theorem 1 (Kučera 1985, Bienvenu et al.). A point x ∈ 2ω

is Martin-Löf random iff (∃n)T n(x) 6∈ A for all c.e. open set
A with µ(A) < 1.

Moreover there exists universal c.e. open set A.
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● New interpretation via three approaches

● Another relation between a property in ergodic theory
and a random concept

● Random deficiency

● Other operator T

● General space
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A set A ⊆ N is computable iff 1A : N → {0, 1} is computable.
A set A is c.e. iff A = dom(f) for a partial computable
function.
A real r ∈ [0, 1] is computable iff its binary expantion is
computable.
A real r is c.e. iff {q ∈ Q : q < r} is c.e.
There exist a c.e. set and a c.e. real that are not
computable.
base: a set of [σ] = {A : σ � A}
A open set U is c.e. iff U =

⋃

σ∈S[σ] for a c.e. set S.
µ: generated from µ([σ]) = 2−|σ|

We often identify 2ω with [0, 1].
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randomness

❖ Complexity

❖ Martingale

❖ van Lambalgen’s
Theorem

❖ An extension

Random closed set

Generalization

Randomness and
Ergodic Theory

Probability

Randomness in a dynamical system 7 / 39

Typicalness: No effective null set contains the point.

Definition 2 (Martin-Löf 1966). {Un}: a seq. of open sets
{Un} is a test iff it is unifomly c.e. and µ(Un) ≤ 2−n.
A real A passes the test iff A 6∈

⋂

n Un.
A is ML-radom iff A passes all tests.

There exists a universal test.
The set of ML-random reals has measure 1.
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Incompressibility: The prefix is hard to compress or
describe.

Definition 3. A set A ⊆ 2∗ is prefix-free iff no string is a
prefix of another.
A function f : 2∗ → 2∗ is prefix-free iff its domain is
prefix-free.
A machine is a partial computable function.
The Kolmogorov complexity of σ is

K(σ) = min{|τ | : V (τ) = σ}.

where V is a universal prefix-free machine.

Proposition 4 (Levin, Schnorr). A is ML-random iff
K(A � n) > n − O(1).
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Unpredictability: It is hard to predict the next bit.

Definition 5. A function d : 2∗ → R+ ∪ {0} is a martingale iff

d(σ) =
d(σ0) + d(σ1)

2
.

Proposition 6 (Schnorr 1971). A is ML-random iff
supn d(A � n) < ∞ for all c.e. martingales.

There exists a universal c.e. martingale.
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Two parts of random sequence is relatively random each
other.
Let A ⊕ B = A(0)B(0)A(1)B(1) · · · .

Theorem 7 (van Lambalgen’s Theorem 1987). A ⊕ B is
ML-random iff A is ML-random and B is A-ML-random.

This theorem holds for many randomnesses and is a
criterion for a proper randomness.
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Theorem 8 (M. 2010). Ai: ML-random relative to ⊕j<iAj

∃Bi s.t. Bi =∗ Ai and ⊕Bi is ML-random.

Theorem 9 (Bienvenu et al.). In the above theorem we can
replace Bi =∗ Ai with deleting finite prefixes or adding finite
strings.
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d: a martingale
h: an order (unbounded non-decreasing)

Definition 10 (h-success set of d; Schnorr 1971).

Sh[d] = {A : lim sup
n

d(A � n)

h(n)
= ∞}.

Definition 11 (s-gale: Lutz 2000).

f(σ) = 2−s(f(σ0) + f(σ1)).

Theorem 12 (Lutz 2000). X ⊆ 2ω

dimH(X) = inf{s : (∃f)X ⊆ S[f ]}

= inf{s : (∃d)X ⊆ S2(1−s)n [d]}
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Definition 13 (Effective Hausdorff dimension; Lutz 2000).
d: a c.e. martingale

dim(X) = inf{s : (∃d)X ⊆ S2(1−s)n[d]}

We also have a direct characterization with a cover.

Theorem 14 (Mayordomo 2002). For A ∈ 2ω,

dim(X) = lim inf
n

K(A � n)

n
.
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Definition 15 (Tadaki 2002). {Un} is a test for weak
s-ML-randomness iff they are uniformly c.e. sets of strings
with

∑

σ∈Vn
2−s|σ| ≤ 2−n. A is weakly s-ML-random iff

A 6∈
⋂

n[[Vn]].

A is weakly s-random if K(A � n) ≥ sn − O(1).

Theorem 16 (Tadaki 2002). A is weakly s-ML-random iff A

is weakly s-random.

Proposition 17.

dim(A) = sup{s : A is weakly s-random}.

A characterization by martingales is unknown.
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Some researchers also study the relation with the following
dimension.

● box counting dimension

● packing dimension
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● Barmpalias et al. (2007) introduced it.

● Kjos-Hanssen (2009) uses Galton-Watson trees to
obtain a similar notion.

● Axon uses a notion of “random closed set” in
probability theory.

Diamondstone et al. (2009) proved the equivalence of the
first two.
Axon proved the equivalence on 2ω.
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Let Y0, . . . , Yn ∈ {Σ∗, Σω} and Y = Y1 × . . . × Yn.
A function f :⊆ Y → Y0 is computable if it is computed by
Type-2 machine.
Informally, a Type-2 machine is a Turing machine, which
reads from input tapes with finite or infinite inscription,
operates on work tapes and write one-way to an output
tape.
On Σ∗ we consider the discrete topology.
On Σω we consider the topology generated by the base
{wΣω : w ∈ Σ∗} of open sets.
Every computable function is continuous.
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A representation of a set M is a surjective function
γ :⊆ Y → M where Y ∈ {Σ∗, Σω}.

Example 18. (i) νQ :⊆ Σ∗ → Q

(ii) ρ :⊆ Σω → R

A point is γ-computable if it has a computable
representation by γ.
A function f :⊆ M1 → M2 is (γ1, γ2)-computable if it has a
computable realization.

M1
f

// M2

Y1

γ1

OO

comp
// Y2

γ2

OO
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Definition 19 (Hertling and Weihrauch 2009). A
computable topological space is a 4-tuple X = (X, τ, β, ν)
such that

● (X, τ) is a topological T0-space,

● ν :⊆ Σ∗ → β is a notation of a base β of τ ,

● dom(ν) is recursive and

● ν(u) ∩ ν(v) =
⋃

{ν(w) : (u, v, w) ∈ S} for all
u, v ∈ dom(ν) for some r.e. set S ⊆ (dom(ν))3.



Representations

Randomness on a
Cantor space

Random closed set

Generalization
❖ Type-2 Theory of
Effectivity

❖ Representation

❖ CTS

❖ Representations

❖ ML-randomness
over a CTS
❖ Randomness over a
CMS
❖ Computability of
measures

❖ By martingales

❖ Complexity
randomness

Randomness and
Ergodic Theory

Probability

Randomness in a dynamical system 22 / 39

Definition 20. Let X = (X, τ, β, ν) be a computable
topological space.
Define a representation δ :⊆ Σω → X of the points as

x = δ(p) ⇐⇒ (∀w ∈ Σ∗)(w � p ⇐⇒ x ∈ ν(w))

and a representation θ :⊆ Σω → τ of the set of open sets as

W = θ(p) ⇐⇒

{

w � p ⇒ w ∈ dom(ν)

W =
⋃

{ν(w) : w � p}
.
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Definition 21 (Hertling and Weihrauch 2003). {Un}: open
sets
{Un} is a test iff uniformly θ-comp. with µ(Un) ≤ 2−n.
x is measure µ-random iff x 6∈

⋂

n Un for each test.

Universality needs an unnatural condition.
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Randomness over a computable metric space gets much
attention.

● Gács (2005) first gave a restricted characterization by
complexity.

● Hoyrup and Rojas (2009) gave a complete
characterization by complexity.

The most important point was computability of measures.
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M(X): the space of bounded non-negative Borel measures

Proposition 22. G: the finite union of base sets
A countable subbase of the A-topology τA:

{µ : µ(G) > q}, {µ : µ(X) < q}

Theorem 23. (M(X), τA, βA, νA) is a CTS.

Definition 24. A measure is computable if it is a
computable point in the CTS.
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Let (X,A, µ) be a measure space.
A filtration is a sequence of sub-σ-algebra (An) such that
An ⊆ An+1 for each n.
A sequence of A-measurable functions (fn,An) is called a
supermartingale if

∫

fndµ < ∞ and
∫

A
fndµ ≥

∫

A
fn+1dµ for

all A ∈ An.

Theorem 25. A point x is measure µ-random iff
supn fn(x) < ∞ for each ([νN, δ], ρ<)-computable
supermartingale (fn,An)

Proof idea. Let Uk,m = {y : supn≤m fn(y) > 2k} and use
Doob’s maximal inequality.
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Suppose that the base is complete.

Definition 26. A point x is complexity µ-random iff

x ∈ ξ(u) ⇒ K(u) ≥ − log µξ(u) − O(1)

where ξ(u) = ν(u)c.

Theorem 27. Suppose that the space has almost
decidability and the measure is effectively regular.
Then two randomnesses coincide and van Lambalgen’s
Theorem holds for it.
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Definition 28. T is ln2-ergodic if ∀f, g

γn(f, g) = | 1
n

∑

i<n

∫

f ◦ T i · gdµ −
∫

fdµ
∫

gdµ| ≤
cf,g

(ln(n))2

Theorem 29 (Birkhoff’s ergodic theorem for random points;
V’yugin ’97, Nandakumar ’08, Hoyrup and Rojas ’09).
(X,µ): a CPS
T : X → X an effectively measurable measure-preserving
map
f ∈ L1(X.µ) an effectively measurable function
T : ln2-ergodic
Then ∃n(c, ε) comp. function s.t.
if x ∈ Kc then for all n > n(c, ε),
| 1
n

∑

i<n f ◦ T i · gdµ −
∫

fdµ
∫

gdµ| < ε

The effectiveness of the convergence speed can be also
seen in Davie(’01).



Other results

Randomness on a
Cantor space

Random closed set

Generalization

Randomness and
Ergodic Theory

❖ Effective Birkhoff’s
ergodic theorem

❖ Other results

Probability

Randomness in a dynamical system 30 / 39

● Under a appropriate condition computable typical
points are dense.

● Not all computable dynamical systems have a
computable invariant measure.

● The complexity of the orbits of random points equals
the Kolmogorov-Sina ı̈ entropy of the system,
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● Frequency probability

● Subjective probability

● Propensity probability

Modern mathematical formalization is by Kolmogorov
(1933).
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Von Mises took a very different approach.

● His first paper on this subject is in 1919.

● His standpoint is empiricism.

● He claims that probability can be defined only for
repetitive events.

● First the collective, then the probability (as its
frequency).
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A collective is a set of sequences s.t.

● their limits of relative frequency exist and are the same

● relative frequency are not affected by appropriate place
selections

Ville (1940) constructed a sequence for which LIL does not
hold.
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Σ0 is an algebra on S iff

(i) S ∈ Σ0,

(ii) F ∈ Σ0 ⇒ F c = S\F ∈ Σ0,

(iii) F,G ∈ Σ0 ⇒ F ∪ G ∈ Σ0.

Σ is a σ-algebra iff it is an algebra and

Fn ∈ Σ ⇒
⋃

n

Fn ∈ Σ
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P is a finite probability function on Σ0 iff

(i) P (A) ≥ 0 for A ∈ Σ0,

(ii) P (S) = 1,

(iii) (finite additivity)
A ∩ B = φ ⇒ P (A ∪ B) = P (A) + P (B).

P is a probability function on Σ iff it satisfies above and
(countable additivity) P (

⋃

Fn) =
∑

n P (Fn) for pairwise
disjoint Fn ∈ Σ.
Note that P need not to be a measure.
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Now we can consider a CTS X
N.

We define frequency as

F (A) = lim
n

#{i ≤ n : xi ∈ A}

n
.

Theorem 30. Suppose that the base is uniformly almost
decidable.
A: the minimal algebra containing the base

F |A = µ|A

We can not extend to Borel sets.
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E ∈ A: an observable set

µ(E) = 0 ⇒ E ∩ cRND(µ) = φ

µ(E) = 1 ⇒ cRND(µ) ⊆ E

We need restricted countable additivity.
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Thank you!


	Randomness on a Cantor space
	AIT
	Random sequence
	Questions?
	Computability
	Martin-Löf randomness
	Complexity
	Martingale
	van Lambalgen's Theorem
	An extension

	Random closed set
	s-gale
	Effective Hausdorff dimension
	Weakly s-ML-randomness
	Other dimensions
	Random closed set

	Generalization
	Type-2 Theory of Effectivity
	Representation
	CTS
	Representations
	ML-randomness over a CTS
	Randomness over a CMS
	Computability of measures
	By martingales
	Complexity randomness

	Randomness and Ergodic Theory
	Effective Birkhoff's ergodic theorem
	Other results

	Probability
	What is probability?
	Von Mises's philosophy
	Collective
	Sigma-algebra
	Probability axioms
	Random sequence
	Practically impossibile
	End


