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Randomness is equivalent to Differentiabilityby Demuth, Nies et al.Then why?
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A test is equivalent to an integral test.Integration is losed related with Differentiation.In this talk we will see the former relation.The latter relation needs to be studied further in the point ofview of omputability.
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random integral test differentiabilityweak 2-rd. a.e. �nite a.e. differentiableMartin-L¨of .e. bounded variationomputably ? non-de. or LipshitzShnorr .e. & omp. int. Lipshitz & omp.in variation normKurtz omp non-de. & omp. deriv.
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l We reall algorithmi randomness notions.l We review omputable funtions from [0; 1℄ to [0;+1℄.l We haraterize the algorithmi randomness notions interms of integral tests.
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On Cantor spae 2! we onsider the produt topology andthe uniform (Lebesgue) measure �.The ylinders [�℄ = fA 2 2! : � � Ag are the base for thetopology.A .e. open set is a union of a .e. set of ylinders.De�nition 1. A Martin-L¨of test (or ML-test) is a sequenefUng of uniformly .e. open sets with �(Un) � 2�n.A sequene A passes a ML-test if A 62 Tn Un.A sequene is Martin-L¨of random if it passes all Martin-L¨oftests.
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We identify 2! with [0; 1℄.De�nition 2. A funtion t : [0; 1℄! [0;+1℄ is .e. if the setsfx : q < t(x)gare .e. open uniformly in q 2 Q .A .e. funtion is an integral test if R[0;1℄ t(x)dx � 1.Remark 3. We an replae R t(x)dx � 1 with R t(x)dx <1.Proposition 4. TFAE:l A real z is ML-random.l t(z) <1 for all integral tests.
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Reall that f is of bounded variation if

sup nXi=1 jf(ti+1)� f(ti)j <1

where the sup is taken over all olletions t1 < t2 < : : : < tnin [0; 1℄.Theorem 5 (Demuth; Nies, Brattka and Miller). A realz 2 [0; 1℄ is ML-random () every omp. fun. f ofbounded variation is differentiable at z.Are there any relation between integral tests anddifferentiability?I believe so, but we start from a simpler ase.
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De�nition 6. A generalized ML-test is a sequene fUng ofuniformly .e. open sets with limn �(Un) = 0.A real is weakly 2-random if it passes all generalizedML-tests.Theorem 7. TFAE:l A real z is weakly 2-random.l t(z) <1 for all .e. funtions t suh that t(x) <1 a.e.l t(z) <1 for all .e. funtions t suh thatR f Æ t(x)dx <1 for some order funtion f .
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Theorem 8. A real z is weakly 2-random iff t(z) <1 for all.e. funtions t suh that t(x) <1 a.e.Proof. For a dereasing generalized ML-test fUng, lett(x) = supnfn : x 2 Ung.For the onverse, let Un = fx : t(x) > ng.
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De�nition 9. A Shnorr test is a ML-test suh that �(Un) isomputable uniformly in n, and limn �(Un) = 0.A real is Shnorr random if it passes all Shnorr tests.Theorem 10. TFAE:l A real z is Shnorr random.l t(z) <1 for all .e. funtions t suh that R t(x)dx isomputable.
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The following is a base for the topology of [0;+1℄:[0; q); (p; q); (p;+1℄where p; q 2 Q +.Let Ui be a omputable enumeration of base sets.A funtion t : [0; 1℄! [0;+1℄ is omputable ift�1(Ui) = fx : t(x) 2 Uig are .e. open uniformly in i.Remark 11. The same de�nition is obtained by onsideringtwo omputable topologial spaes: I = ([0; 1℄; �; �; �) andR+ = (R +; � ; �; �).
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De�nition 12. A real z is Kurtz random (or weakly1-random) if it is ontained in every .e. open set withmeasure 1.Theorem 13. TFAE:l A real z is Kurtz random.l t(z) <1 for all omputable funtions t suh thatR t(x)dx <1.l t(z) <1 for all omputable funtions t suh thatR t(x)dx is omputable.
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Corollary 14. TFAE:l A real z is Kurtz random.l Eah non-dereasing omputable funtion f whosederivative is also omputable is differentiable at z.Proof. Suppose t(z) =1 for suh a t.Then f(x) = R x0 t(y)dy is non-de. omp.The derivative of f is t and omputable.The f is not differentiable at z.Suppose there exists suh an f not differentiable at z.Let t be the derivative of f . Then t(z) =1.The t is non-negative and omputable, and R t(x)dx = f(1)is omputable.
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Proof. (funtion) test)Snfx : t(x) < ng is a .e. open set with measure 1.
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(test) funtion)Let U be a .e. open set with measure 1.We divide U into uniformly .e. open sets fUngn�1 suh that�(Un) = 2�n.
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To make the funtion omputable and so ontinuous ...
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Let g : [0; 1℄! [0;+1℄ be the polyline satisfying thefollowing:l the set of endpoints is f1� 2�n : n � 0g,l g(1� 2�n) = n,l g(1) =1Then g is omputable.Furthermore the integration is also omputable.
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For eah n there uniformly exists FINITE pairs (pi; qi) s.t.UnnSi(pi; qi) ontains only rationals.
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Then the integration R t(x)dx is omputable.
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Is the t really omputable?It suf�es to show that t�1([0; q)); t�1((p; q)); t�1((p;+1℄)are uniformly .e.The pairs (pi; qi) are at most �nite for eah n.Hene we an ompletely determine t�1([0; n)) for eah n.Then t�1([0; q)) and t�1((p; q)) are uniformly .e.
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To ompute t�1((p;+1℄), pik up n � p and enumerate allpairs (pi; qi) until n.Then t maps the omplement more than n.
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random integral test differentiabilityweak 2-rd. a.e. �nite a.e. differentiableMartin-L¨of .e. bounded variationomputably ? non-de. or LipshitzShnorr .e. & omp. int. Lipshitz & omp.in variation normKurtz omp non-de. & omp. deriv.l We haraterized some randomness notions in termsof integral tests.l We gave a haraterization of Kurtz randomness interms of differentiability.
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l Can we drop �non-dereasing� or replae it with�Lipshitz� in the haraterization of Kurtzrandomness?l Are there any relation between �.e.� and �omputablein variation norm� in the haraterizations of Shnorrrandomness?l Can we release omputability in the haraterization ofML-randomness or weak 2-randomness?
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Thank you!
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