preamble

Characterizing randomness by integral tests

Kenshi Miyabe

June 16, 2011

Characterizing randomness by integral tests

Main thesis

✤ Main thesis

My suggestion

Some results

✤ In this talk

Martin-Löf randomness

Versions of integral tests

Proof

Summary

Main thesis

Main thesis

Main thesis

✤ Main thesis

My suggestion

Some results

In this talk

Martin-Löf randomness

Versions of integral tests

Proof

Summary

Randomness

is equivalent to

Differentiability

by Demuth, Nies et al. Then why?

My suggestion

Main thesis

Main thesis

My suggestion

Some results

✤ In this talk

Martin-Löf randomness

Versions of integral tests

Proof

Summary

A test

is equivalent to

an integral test.

Integrationis closed related withDifferentiation.In this talk we will see the former relation.The latter relation needs to be studied further in the point of
view of computability.

Some results

Main thesis ♦ Main thesis	random	integral test	differentiability
My suggestion	weak 2-rd.	a.e. finite	a.e. differentiable
Some resultsIn this talk	Martin-Löf	с.е.	bounded variation
Martin-Löf randomness	computably	?	non-dec. or Lipschitz
Versions of integral tests	Schnorr	c.e. & comp. int.	Lipschitz & comp. in variation norm
Proof	Kurtz	comp	non-dec. & comp. deriv.
Summary			

In this talk

Main thesis

- ✤ Main thesis
- My suggestion
- Some results

✤ In this talk

Martin-Löf randomness

Versions of integral tests

Proof

Summary

- We recall algorithmic randomness notions.
- We review computable functions from [0,1] to $[0,+\infty]$.
- We characterize the algorithmic randomness notions in terms of integral tests.

Main thesis

Martin-Löf randomness

Martin-Löf randomness

✤ Integral test

✤ Differentiability

Versions of integral tests

Proof

Summary

Martin-Löf randomness

Martin-Löf randomness

Martin-Löf randomness Martin-Löf randomness

✤ Integral test

✤ Differentiability

Versions of integral tests

Proof

Summary

On Cantor space 2^{ω} we consider the product topology and the uniform (Lebesgue) measure μ .

The cylinders $[\sigma] = \{A \in 2^{\omega} : \sigma \leq A\}$ are the base for the topology.

A c.e. open set is a union of a c.e. set of cylinders.

Definition 1. A Martin-Löf test (or ML-test) is a sequence $\{U_n\}$ of uniformly c.e. open sets with $\mu(U_n) \leq 2^{-n}$. A sequence A passes a ML-test if $A \notin \bigcap_n U_n$. A sequence is Martin-Löf random if it passes all Martin-Löf tests.

Integral test

Main thesis

Martin-Löf randomness Martin-Löf randomness

✤ Integral test

✤ Differentiability

Versions of integral tests

Proof

Summary

We identify 2^{ω} with [0, 1].

Definition 2. A function $t : [0, 1] \rightarrow [0, +\infty]$ is c.e. if the sets

 $\{x : q < t(x)\}$

are c.e. open uniformly in $q \in \mathbb{Q}$. A c.e. function is an integral test if $\int_{[0,1]} t(x) dx \leq 1$.

Remark 3. We can replace $\int t(x)dx \leq 1$ with $\int t(x)dx < \infty$.

Proposition 4. *TFAE:*

• A real z is ML-random.

• $t(z) < \infty$ for all integral tests.

Differentiability

Main thesis

Martin-Löf randomness

Martin-Löf randomness

✤ Integral test

✤ Differentiability

Versions of integral tests

Proof

Summary

Recall that *f* is of *bounded variation* if

 $\sup \sum |f(t_{i+1}) - f(t_i)| < \infty$

where the sup is taken over all collections $t_1 < t_2 < \ldots < t_n$ in [0, 1].

Theorem 5 (Demuth; Nies, Brattka and Miller). A real $z \in [0, 1]$ is ML-random \iff every comp. func. f of bounded variation is differentiable at z.

Are there any relation between integral tests and differentiability? I believe so, but we start from a simpler case. Main thesis

Martin-Löf randomness

Versions of integral tests

✤ Weak

2-randomness

✤ Proof

✤ Schnorr

randomness

 Computable function

✤ Kurtz randomness

Differentiability

One implication

Proof

Summary

Versions of integral tests

Weak 2-randomness

Main thesis

Martin-Löf randomness

Versions of integral tests

✤ Weak 2-randomness

Proof

Schnorr

randomness

Computable function

✤ Kurtz randomness

✤ Differentiability

One implication

Proof

Summary

Definition 6. A generalized ML-test is a sequence $\{U_n\}$ of uniformly c.e. open sets with $\lim_n \mu(U_n) = 0$. A real is weakly 2-random if it passes all generalized *ML*-tests.

Theorem 7. TFAE:

- A real z is weakly 2-random.
- $t(z) < \infty$ for all c.e. functions t such that $t(x) < \infty$ a.e.
- $t(z) < \infty$ for all c.e. functions t such that $\int f \circ t(x) dx < \infty$ for some order function f.

Main thesis

Martin-Löf randomness

Versions of integral tests • Weak

2-randomness

♦ Proof

 Schnorr randomness

 Computable function

Kurtz randomness

✤ Differentiability

One implication

Proof

Summary

Theorem 8. A real *z* is weakly 2-random iff $t(z) < \infty$ for all *c.e.* functions *t* such that $t(x) < \infty$ a.e.

Proof. For a decreasing generalized ML-test $\{U_n\}$, let $t(x) = \sup_n \{n : x \in U_n\}$. For the converse, let $U_n = \{x : t(x) > n\}$.

Schnorr randomness

Main thesis

Martin-Löf randomness

Versions of integral tests

✤ Weak

2-randomness

Proof

Schnorr
 randomness

 Computable function

Kurtz randomness

✤ Differentiability

One implication

Proof

Summary

Definition 9. A Schnorr test is a ML-test such that $\mu(U_n)$ is computable uniformly in n, and $\lim_n \mu(U_n) = 0$. A real is Schnorr random if it passes all Schnorr tests.

Theorem 10. TFAE:

• A real *z* is Schnorr random.

• $t(z) < \infty$ for all c.e. functions t such that $\int t(x) dx$ is computable.

Computable function

Main thesis

Martin-Löf randomness

Versions of integral tests

♦ Weak

2-randomness

Proof

✤ Schnorr

randomness

 Computable function

Kurtz randomness

Differentiability

One implication

Proof

Summary

The following is a base for the topology of $[0, +\infty]$:

 $[0,q), (p,q), (p,+\infty]$

where $p, q \in \mathbb{Q}^+$.

Let U_i be a computable enumeration of base sets. A function $t : [0,1] \rightarrow [0,+\infty]$ is *computable* if $t^{-1}(U_i) = \{x : t(x) \in U_i\}$ are c.e. open uniformly in *i*.

Remark 11. The same definition is obtained by considering two computable topological spaces: $\mathbf{I} = ([0, 1], \tau, \beta, \nu)$ and $\overline{\mathbf{R}}^+ = (\overline{\mathbb{R}}^+, \overline{\tau}, \overline{\beta}, \overline{\nu}).$

Kurtz randomness

Main thesis

Martin-Löf randomness

Versions of integral tests

♦ Weak

2-randomness

Proof

✤ Schnorr

randomness

 Computable function

✤ Kurtz randomness

* Differentiability

♦ One implication

Proof

Summary

Definition 12. A real *z* is Kurtz random (or weakly 1-random) if it is contained in every c.e. open set with measure 1.

Theorem 13. TFAE:

- A real z is Kurtz random.
- $t(z) < \infty$ for all computable functions t such that $\int t(x)dx < \infty$.

• $t(z) < \infty$ for all computable functions t such that $\int t(x) dx$ is computable.

Differentiability

Main thesis

Martin-Löf randomness

Versions of integral tests

✤ Weak

2-randomness

Proof

Schnorr

randomness

 Computable function

Kurtz randomness

✤ Differentiability

One implication

Proof

Summary

Corollary 14. TFAE:

- A real z is Kurtz random.
- Each non-decreasing computable function f whose derivative is also computable is differentiable at z.

Proof. Suppose $t(z) = \infty$ for such a t. Then $f(x) = \int_0^x t(y) dy$ is non-dec. comp. The derivative of f is t and computable. The f is not differentiable at z. Suppose there exists such an f not differentiable at z. Let t be the derivative of f. Then $t(z) = \infty$. The t is non-negative and computable, and $\int t(x) dx = f(1)$ is computable.

One implication

8.4		1.1	
ΝЛ	010	thes	
11/1	ann	THES	
	our i		

Martin-Löf randomness

Versions of integral tests

♦ Weak

2-randomness

Proof

✤ Schnorr

randomness

 Computable function

✤ Kurtz randomness

✤ Differentiability

One implication

Proof

Summary

Proof. (function \Rightarrow test) $\bigcup_n \{x : t(x) < n\}$ is a c.e. open set with measure 1. Main thesis

Martin-Löf randomness

Versions of integral tests

Proof

✤ Proof idea

Proof idea 2

♦ Proof

Proof 2

Proof 3

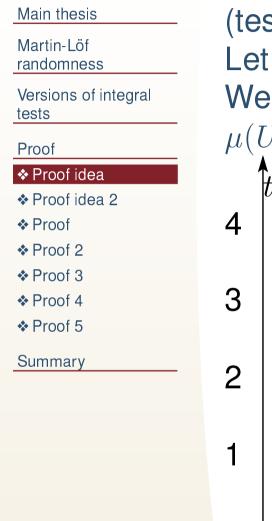
Proof 4

♦ Proof 5

Summary

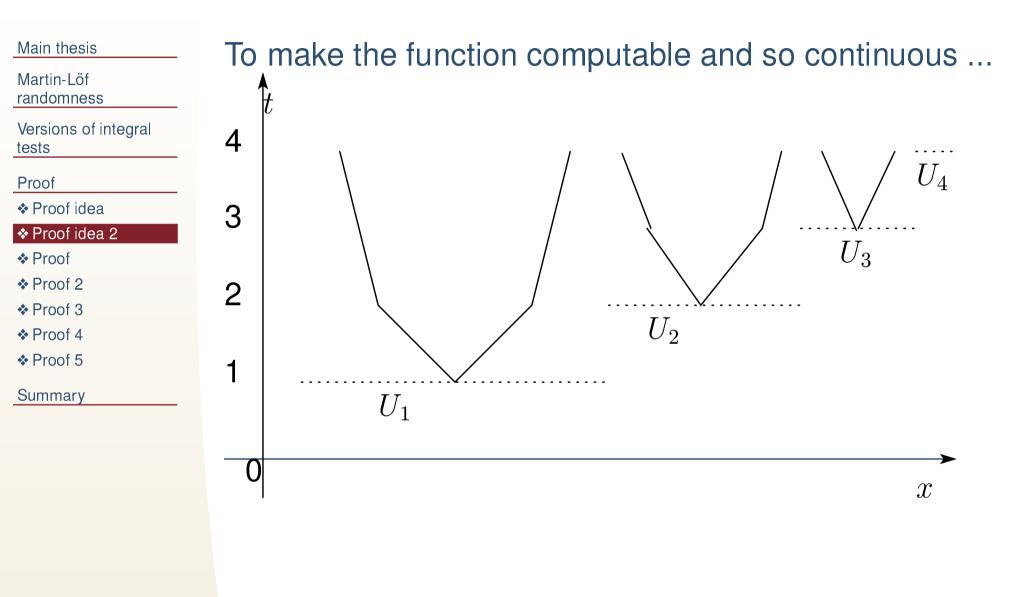
Proof

Proof idea



 $(\text{test} \Rightarrow \text{function})$ Let U be a c.e. open set with measure 1. We divide U into uniformly c.e. open sets $\{U_n\}_{n>1}$ such that $\mu(U_n) = 2^{-n}.$ U_4 U_3 U_2 U_1 U \mathcal{X}

Proof idea 2



Main thesis

Martin-Löf randomness

Versions of integral tests

Proof

Proof idea

Proof idea 2

♦ Proof

Proof 2

Proof 3

Proof 4

Proof 5

Summary

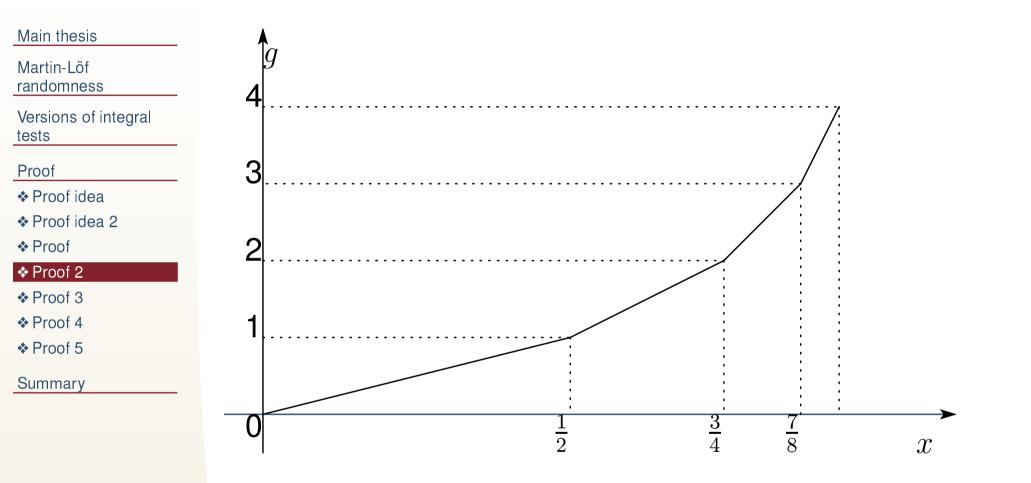
Let $g: [0,1] \rightarrow [0,+\infty]$ be the polyline satisfying the following:

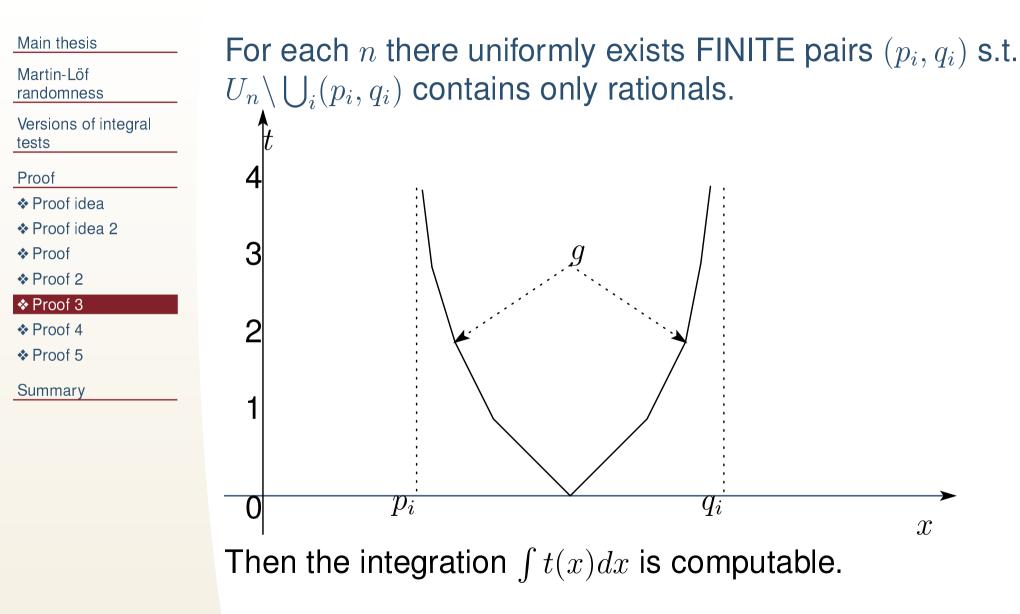
• the set of endpoints is $\{1 - 2^{-n} : n \ge 0\}$,

• $g(1-2^{-n}) = n$,

• $g(1) = \infty$

Then *g* is computable. Furthermore the integration is also computable.





Main thesis

Martin-Löf randomness

Versions of integral tests

Proof

Proof idea

Proof idea 2

Proof

Proof 2

Proof 3

Proof 4

Proof 5

Summary

Is the *t* really computable? It suffices to show that $t^{-1}([0,q)), t^{-1}((p,q)), t^{-1}((p,+\infty])$ are uniformly c.e. The pairs (p_i, q_i) are at most finite for each *n*. Hence we can completely determine $t^{-1}([0,n))$ for each *n*. Then $t^{-1}([0,q))$ and $t^{-1}((p,q))$ are uniformly c.e.

Main thesis Martin-Löf randomness Versions of integral	To compute $t^{-1}((p, +\infty))$, pick up $n \ge p$ and enumerate all pairs (p_i, q_i) until n . Then t maps the complement more than n .
tests Proof Proof idea Proof idea 2 Proof Proof Proof Proof 2 Proof 3 Proof 4	
♦ Proof 5 Summary	r

Main thesis

Martin-Löf randomness

Versions of integral tests

Proof

Summary

✤ What we have done

Future works

✤ End

Summary

What we have done

Main thesis	random	integral test	differentiability
Martin-Löf randomness	weak 2-rd.	a.e. finite	a.e. differentiable
Versions of integral tests	Martin-Löf	c.e.	bounded variation
Proof	computably	?	non-dec. or Lipschitz
Summary	Schnorr	c.e. & comp. int.	Lipschitz & comp.
 What we have done Future works 			in variation norm
✤ End	Kurtz	comp	non-dec. & comp. deriv.

- We characterized some randomness notions in terms of integral tests.
- We gave a characterization of Kurtz randomness in terms of differentiability.

Future works

Main thesis

Martin-Löf randomness

Versions of integral tests

Proof

Summary

What we have done

✤ Future works

♦ End

- Can we drop "non-decreasing" or replace it with "Lipschitz" in the characterization of Kurtz randomness?
- Are there any relation between "c.e." and "computable in variation norm" in the characterizations of Schnorr randomness?
- Can we release computability in the characterization of ML-randomness or weak 2-randomness?

End

8.4			1.1		
ΝЛ	2	n	th	ies	
111	a		- U I I	103	0

Martin-Löf randomness

Versions of integral tests

Proof

Summary

✤ What we have done

Future works

♦ End

Thank you!