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Randomness is equivalent to Differentiabilityby Demuth, Nies et al.Then why?
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A test is equivalent to an integral test.Integration is 
losed related with Differentiation.In this talk we will see the former relation.The latter relation needs to be studied further in the point ofview of 
omputability.
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l We re
all algorithmi
 randomness notions.l We review 
omputable fun
tions from [0; 1℄ to [0;+1℄.l We 
hara
terize the algorithmi
 randomness notions interms of integral tests.
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On Cantor spa
e 2! we 
onsider the produ
t topology andthe uniform (Lebesgue) measure �.The 
ylinders [�℄ = fA 2 2! : � � Ag are the base for thetopology.A 
.e. open set is a union of a 
.e. set of 
ylinders.De�nition 1. A Martin-L¨of test (or ML-test) is a sequen
efUng of uniformly 
.e. open sets with �(Un) � 2�n.A sequen
e A passes a ML-test if A 62 Tn Un.A sequen
e is Martin-L¨of random if it passes all Martin-L¨oftests.
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We identify 2! with [0; 1℄.De�nition 2. A fun
tion t : [0; 1℄! [0;+1℄ is 
.e. if the setsfx : q < t(x)gare 
.e. open uniformly in q 2 Q .A 
.e. fun
tion is an integral test if R[0;1℄ t(x)dx � 1.Remark 3. We 
an repla
e R t(x)dx � 1 with R t(x)dx <1.Proposition 4. TFAE:l A real z is ML-random.l t(z) <1 for all integral tests.
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Re
all that f is of bounded variation if

sup nXi=1 jf(ti+1)� f(ti)j <1

where the sup is taken over all 
olle
tions t1 < t2 < : : : < tnin [0; 1℄.Theorem 5 (Demuth; Nies, Brattka and Miller). A realz 2 [0; 1℄ is ML-random () every 
omp. fun
. f ofbounded variation is differentiable at z.Are there any relation between integral tests anddifferentiability?I believe so, but we start from a simpler 
ase.
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De�nition 6. A generalized ML-test is a sequen
e fUng ofuniformly 
.e. open sets with limn �(Un) = 0.A real is weakly 2-random if it passes all generalizedML-tests.Theorem 7. TFAE:l A real z is weakly 2-random.l t(z) <1 for all 
.e. fun
tions t su
h that t(x) <1 a.e.l t(z) <1 for all 
.e. fun
tions t su
h thatR f Æ t(x)dx <1 for some order fun
tion f .
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Theorem 8. A real z is weakly 2-random iff t(z) <1 for all
.e. fun
tions t su
h that t(x) <1 a.e.Proof. For a de
reasing generalized ML-test fUng, lett(x) = supnfn : x 2 Ung.For the 
onverse, let Un = fx : t(x) > ng.
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De�nition 9. A S
hnorr test is a ML-test su
h that �(Un) is
omputable uniformly in n, and limn �(Un) = 0.A real is S
hnorr random if it passes all S
hnorr tests.Theorem 10. TFAE:l A real z is S
hnorr random.l t(z) <1 for all 
.e. fun
tions t su
h that R t(x)dx is
omputable.
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The following is a base for the topology of [0;+1℄:[0; q); (p; q); (p;+1℄where p; q 2 Q +.Let Ui be a 
omputable enumeration of base sets.A fun
tion t : [0; 1℄! [0;+1℄ is 
omputable ift�1(Ui) = fx : t(x) 2 Uig are 
.e. open uniformly in i.Remark 11. The same de�nition is obtained by 
onsideringtwo 
omputable topologi
al spa
es: I = ([0; 1℄; �; �; �) andR+ = (R +; � ; �; �).
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De�nition 12. A real z is Kurtz random (or weakly1-random) if it is 
ontained in every 
.e. open set withmeasure 1.Theorem 13. TFAE:l A real z is Kurtz random.l t(z) <1 for all 
omputable fun
tions t su
h thatR t(x)dx <1.l t(z) <1 for all 
omputable fun
tions t su
h thatR t(x)dx is 
omputable.
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Corollary 14. TFAE:l A real z is Kurtz random.l Ea
h non-de
reasing 
omputable fun
tion f whosederivative is also 
omputable is differentiable at z.Proof. Suppose t(z) =1 for su
h a t.Then f(x) = R x0 t(y)dy is non-de
. 
omp.The derivative of f is t and 
omputable.The f is not differentiable at z.Suppose there exists su
h an f not differentiable at z.Let t be the derivative of f . Then t(z) =1.The t is non-negative and 
omputable, and R t(x)dx = f(1)is 
omputable.
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Proof. (fun
tion) test)Snfx : t(x) < ng is a 
.e. open set with measure 1.
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(test) fun
tion)Let U be a 
.e. open set with measure 1.We divide U into uniformly 
.e. open sets fUngn�1 su
h that�(Un) = 2�n.

x

t
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U2
U3

U4

12
34
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To make the fun
tion 
omputable and so 
ontinuous ...
x

t
0 U1

U2
U3

U4

12
34
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Let g : [0; 1℄! [0;+1℄ be the polyline satisfying thefollowing:l the set of endpoints is f1� 2�n : n � 0g,l g(1� 2�n) = n,l g(1) =1Then g is 
omputable.Furthermore the integration is also 
omputable.
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x

g
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34
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For ea
h n there uniformly exists FINITE pairs (pi; qi) s.t.UnnSi(pi; qi) 
ontains only rationals.
x

t
0

12
34

pi qi
g

Then the integration R t(x)dx is 
omputable.
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Is the t really 
omputable?It suf�
es to show that t�1([0; q)); t�1((p; q)); t�1((p;+1℄)are uniformly 
.e.The pairs (pi; qi) are at most �nite for ea
h n.Hen
e we 
an 
ompletely determine t�1([0; n)) for ea
h n.Then t�1([0; q)) and t�1((p; q)) are uniformly 
.e.
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To 
ompute t�1((p;+1℄), pi
k up n � p and enumerate allpairs (pi; qi) until n.Then t maps the 
omplement more than n.

pn

r
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random integral test differentiabilityweak 2-rd. a.e. �nite a.e. differentiableMartin-L¨of 
.e. bounded variation
omputably ? non-de
. or Lips
hitzS
hnorr 
.e. & 
omp. int. Lips
hitz & 
omp.in variation normKurtz 
omp non-de
. & 
omp. deriv.l We 
hara
terized some randomness notions in termsof integral tests.l We gave a 
hara
terization of Kurtz randomness interms of differentiability.
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l Can we drop �non-de
reasing� or repla
e it with�Lips
hitz� in the 
hara
terization of Kurtzrandomness?l Are there any relation between �
.e.� and �
omputablein variation norm� in the 
hara
terizations of S
hnorrrandomness?l Can we release 
omputability in the 
hara
terization ofML-randomness or weak 2-randomness?
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Thank you!


	Main thesis
	Main thesis
	My suggestion
	Some results
	In this talk

	Martin-Löf randomness
	Martin-Löf randomness
	Integral test
	Differentiability

	Versions of integral tests
	Weak 2-randomness
	Proof
	Schnorr randomness
	Computable function
	Kurtz randomness
	Differentiability
	One implication

	Proof
	Proof idea
	Proof idea 2
	Proof
	Proof 2
	Proof 3
	Proof 4
	Proof 5

	Summary
	What we have done
	Future works
	End


