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Abstract. We generalize the convergenece of an optimal semimeasure
to a real probability in algorithmic probability by using game-theoretic
probability theory and the theory of computable topology. Two lemmas
in the proof give as corollary the existence of an optimal test and an
optimal integral test, which are important from the point of view of
algorithmic randomness. We only consider an SCT3 space, where we
can approximate the measure of an open set. Our proof of almost-sure
convergence to the real probability by a superfarthingale indicates why
the convergence in Martin-Löf sense does not hold.

1 Introduction

Algorithmic probability [11, 9] gives us a formal theory of inductive inference.
The underlying space is the space of sequences over a finite alphabet. The main
tool is a semimeasure. In this setting, Solomonoff’s [18, 19] central result is ex-
plained in the following. Given a finite string, each semimeasure induces a sub-
jective probability of the next alphabet. There exists an optimal semimeasure.
Then the probability induced by the optimal semimeasure converges to the real
computable probability almost surely.

In this paper, we make a first step to generalize algorithmic probability to
a general space. The underlying space will be a space of sequences over a topo-
logical space. Our main results (Theorems 5 and 6) can informally described as
follows. We want the probability that the next point falls in a subset of the space
given a finite sequence of points. There exists an optimal function which induces
the probability. Then the probability induced by the function converges to the
real probability almost surely.

A semimeasure is essentially an equivalent notion for a supermartingale in
algorithmic randomness [3, 14]. Algorithmic randomness over a general space is
studied by some researchers [5, 8, 12]. The generalization uses computable topol-
ogy studied by [21, 22]. To obtain the desired result, we require condition SCT3,
which is a computable separation axiom studied in [23]. To generalize a super-
martingale in algorithmic randomness, Miyabe [12] uses a martingale in proba-
bility theory. In this paper, however, we use a superfarthingale [2, 20], which is
a prequential version of a supermartingale in game-theoretic probability theory
[17]. The effectivization of game-theoretic probability theory is a generalization
of algorithmic probability. In this setting we prove the existence of an optimal
superfarthingale. We also prove convergence to a real probability.
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With lemmas developed in the proof of the existence of an optimal superfar-
thingale, we prove Theorem 3 and Theorem 4 as corollaries. These are important
from the point of view of algorithmic randomness.

Theorem 3 says that there exists an optimal test over an SCT3 space. Hoyrup
and Rojas [8, 7] proved the existence of an optimal test over a computable metric
space and it is known that a computable metric space can be constructed from
an SCT3 space [6]. We give another more direct proof here.

Theorem 4 says that there exists an optimal integral test over an SCT3

space with a computable measure. The existence of an optimal integral test
over Cantor space is well-known [11]. Hoyrup and Rojas [8] proved the existence
of an optimal integral test over a computable metric space with a computable
probability measure. We will prove the existence of an optimal integral test over
a SCT3 space with a computable measure. Note in particular that our proof does
not use the distance function.

In Section 3 we introduce a notion of approximation. Then we prove the
existence of an optimal test. In Sections 4 and 5 we prove the existence of an
optimal integral test and an optimal superfarthingale respectively and discuss
when and to which measure the prediction converges.

2 Preliminaries

We recall relevant results from various fields, as some of the terminology and
notations are not standard. Results in algorithmic probability and algorithmic
randomness are for comparison to our results.

We assume that the readers are familiar with computability theory [15, 16]
on natural numbers. A subset of N is c.e. if there exists a computable function
such that the set is the domain of the function. A function f : X → R is c.e. if
{q ∈ Q : q < f(x)} is c.e. uniformly in x ∈ X. If X is countable, the meaning of
the definition is clear. If X is a topological space, we refer the reader to Section
2.4 for details. A function f : X → R is computable if f and −f are c.e.

2.1 Algorithmic probability

For details see [11, 9]. Here we only consider binary sequences. The set of finite
binary strings is denoted by 2∗. A semimeasure is a function µ : 2∗ → R such that
µ(λ) ≤ 1 and µ(σ) ≥ µ(σ0)+µ(σ1) for all σ ∈ 2∗ where λ is the empty string. If
the equalities hold, then µ is called a probability measure. A c.e. semimeasure µ0

is optimal1 if, for all c.e. semimeasure µ, there exists a constant c > 0 such that
for all σ ∈ 2∗, we have µ0(σ) ≥ c·µ(σ). There exists an optimal c.e. semimeasure.
For σ ∈ 2∗, σn is the n-th bit of σ, σt:n = σtσt+1 · · ·σn−1σn and σ<n = σ1:n−1.
We also let µ(σn|σ<n) = µ(σ1:n)/µ(σ<n).

1 The terminology “universal” is more common.
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Theorem 1. Let µ0 be an optimal c.e. semimeasure and µ be a computable
probability measure. Then

µ0(σn|σ<n)

µ(σn|σ<n)
→ 1 as n→ ∞ (1)

with µ-probability 1.

Informally speaking µ0(σn|σ<n) is the prediction induced from µ0. If the se-
quence is sampled by the measure space with computable µ, then the prediction
converges to the real probability almost surely.

2.2 Algorithmic randomness

For details see [14, 3]. Cantor space 2ω (the set of infinite sequences) is equipped
with the topology generated by cylinders [[σ]] = {A ∈ 2ω : σ ≺ A} where σ ≺ A
means that σ is a prefix of A. An open set U on 2ω is c.e. if U =

∪
{[[σ]] : σ ∈ S}

where S is a c.e. set of binary strings. Let µ be a measure on 2ω.
A µ-Martin-Löf test is a sequence {Un} of uniformly c.e. open sets with

µ(Un) ≤ 2−n. A sequence α ∈ 2ω is µ-Martin-Löf random if α ̸∈
∪

n Un for
all µ-Martin-Löf tests. A µ-Martin-Löf test {Un} is optimal if, for any other
µ-Martin-Löf test {Vn}, there exists c such that Vn+c ⊆ Un for all n. Let M be
an optimal semimeasure. Then a sequence α is µ-Martin-Löf random iff there is
a constant c such that M(α1:n) ≤ c · µ(α1:n) for all n. The set of µ-Martin-Löf
random sequences has µ-measure 1. By Theorem 1 the set of sequences satisfying
(1) also has µ-measure 1. Remarkably, the latter set does not contain the former
set in general. We will consider this problem in Section 5.2.

Theorem 2 (Hutter and Muchnik [10]). There exists an optimal semimea-
sure M and a computable measure µ and µ-Martin-Löf random sequence α such
that

M(αn|α<n) ̸→ µ(αn|α<n) for n→ ∞.

2.3 Game-theoretic probability

Game-theoretic probability theory [17] is influenced by Dawid’s prequential prin-
ciple [1], which says that our evaluation of the quality of the forecasts p1, p2 . . .
in light of the observed outcomes x1, x2 . . . should not depend on Forecaster’s
model even if it exists and is known. In view of this a (super)farthingale was
introduced in [2].

Let X be a topological space and M be a space of probability measures on
X. Let Π = (M×X)∞ and Π⋄ = (M×X)∗. For π = (p1, x1, p2, x2, . . .) ∈ Π,
let πn = (p1, x1, . . . , pn, xn) ∈ Π⋄.

Definition 1 (superfarthingale). A farthingale is a function V : Π⋄ →
[−∞,∞] satisfying

V (p1, y1, . . . , pn−1, yn−1) =

∫
X

V (p1, y1, . . . , pn−1, yn−1, pn, x)dpn (2)
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for all n, all (p1, y1, p2, y2, . . .) ∈ Π. If we replace “=” by “≥” in the equation
(2), we get the definition of a superfarthingale.

If Forecaster behaves well, then a (super)farthingale V is bounded almost
surely and a property stemming from the boundedness holds almost surely. Such
a theorem can be easily converted to a theorem in measure-theoretic probability.

In [20], the case Ω = {0, 1} is considered and the existence of an optimal
superfarthingale is shown. Furthermore a game-random sequence is defined as
the sequence π such that supn V (πn) < ∞ for all c.e. superfarthingales V . The
game-randomness is a generalization of Martin-Löf randomness. To define op-
timality of a superfarthingale, we need the definition that a superfarthingale is
c.e.

2.4 Computable topology

We mainly refer to [22, 23] for computable topology. Let Σ∗ and Σω be the
respective sets of the finite and infinite sequences, respectively, of symbols from
a finite alphabet. A function mapping finite or infinite sequences of symbols from
Σ is computable if it can be computed by a Type-2 machine. A representation
of M is a surjective function γ :⊆ Y →M where Y ∈ {Σ∗, Σω}. An object x is
γ-computable if it has a computable representation p such that γ(p) = x.

A computable topological space is a 4-tuple X = (X, τ, β, ν) such that (X, τ)
is a topological T0-space, ν :⊆ Σ∗ → β is a notation of a base β of τ , dom(ν) is
computable and ν(u) ∩ ν(w) =

∪
{ν(w) : (u, v, w) ∈ S} for all u, v ∈ dom(ν) for

some c.e. set S ⊆ (dom(ν))3. For the points, the open sets and the closed sets,
we use representations δ, θ and ψ− that are defined as follows. For p ∈ Σω and
x ∈ X, δ(p) = x iff p is a list of all u ∈ dom(ν) such that x ∈ ν(u), θ(p) is the
union of all ν(u) where u is listed by p, and ψ−(p) = X\θ(p).

Computable separations are studied in [23] in detail but we use only SCT3.

Definition 2 (SCT3). There are a c.e. set R ⊆ dom(ν) × dom(ν) and a com-
putable function r :⊆ Σ∗ × Σ∗ → Σω such that for all u,w ∈ dom(ν), ν(w) =∪
{ν(u) : (u,w) ∈ R} and (u,w) ∈ R⇒ ν(u) ⊆ ψ− ◦ r(u,w) ⊆ ν(w).

For computability of measures we refer to [13]. Let M(X) be the space of
finite non-negative Borel measures on X. The following sets form a countable
subbase of the A-topology on M(X): {µ : µ(G) > q}, {µ : µ(X) < q} where
G is the finite union of base sets and q ∈ Q. Let βA denote the base generated
from the above subbase and νA denote a natural computable notation of the
base βA. Then the 4-tuple M = (M(X), τA, βA, νA) is a computable topological
space. The representation δ of points in M(X) is denoted by δA.

3 Optimal test

In this section we give a proof of Lemma 1, which states an important property
of a SCT3 space with a computable measure and plays a central role in the proof
of Theorem 5. As a corollary we obtain the existence of an optimal test over a
SCT3 space.
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3.1 Approximation

Let X = (X, τ, β, ν) be a computable topological space. Let µ be a measure on
X. Note that µ need not be computable.

We give an approximation of the measure of an open set. An approximation
is usually a sequence of rationals or sometimes a sequence of computable re-
als. However, the following approximation may be neither and carries a weaker
notion.

Definition 3 (Approximation). A µ-approximation of an open set U ⊆ X is
a sequence (Un, an) such that Un is the finite union of base sets, Un ↑ U , an is
a rational, µ(Un) ≤ an and an − µ(Un) ≤ 2−n for each n.

As is usual we say that a µ-approximation (Un, an) is (
∪
νfs, ρ)-computable

if Un is uniformly
∪
νfs-computable and an is uniformly ρ-computable.

To state lemmas and propositions clearly and concisely, we introduce the
notion of γ-relativeness for a representation γ.

Definition 4 (Relative computability). Let Xi = (Xi, τi, βi, νi) be com-
putable topological spaces for i = 1, 2. A point x2 ∈ X2 is δ2-computable δ1-
relative to x1 ∈ X1 if there exists a (δ1, δ2)-computable function f :⊆ X1 → X2

such that f(x1) = x2.

Relative computability of open sets, closed sets and functions are similarly
defined.

Lemma 1. Let X be a SCT3 space. For an open set U we can uniformly con-
struct a µ-approximation that is (

∪
νfs, ρ)-computable (θ, δA)-relative to (U, µ).

Proof. It suffices to show the lemma for a base set ν(w). Let R and r be the
c.e. set and the computable function for SCT3 from Definition 2. Let {ui} be a
computable enumeration of the c.e. set {u ∈ dom(ν) : (u,w) ∈ R}.

For each m, let Um =
∪m

i=1 ν(ui) and Vm =
∪m

i=1 ψ
− ◦ r(ui, w). Note that

Um is open and Vm is closed. Then Um ⊆ Vm ⊆ ν(w) and Um ↑ ν(w). It follows
that µ(Um) → µ(ν(w)) and µ(Vm)− ν(Um) → 0 as m→ ∞.

Note that the measure µ(Um) is approximated from below and µ(Vm) from
above δA-relative to µ. Then we can compute mn from a representation of µ
such that µ(Vmn)− ν(Umn) ≤ 2−n.

Let µ(Umn)[s] and µ(Vmn)[s] be an approximation of rationals. Let sn be
the first stage such that µ(Vmn)[sn]− ν(Umn)[sn] ≤ 2−n. Let an = µ(Vmn)[sn].
Then an is uniformly ρ-computable δA-relative to µ. Note that µ(Umn

)[sn] ≤
µ(Umn) ≤ µ(Vmn) ≤ µ(Vmn)[sn] = an. It follows that an−µ(Umn) ≤ 2−n. Hence
(Umn

, an) is a µ-approximation. ⊓⊔

3.2 Existence of an optimal test

Definition 5. A µ-test over X is a sequence {Vn} of uniformly θ-computable
sets with µ(Vn) ≤ 2−n. A µ-test {Wn} is optimal if, for each µ-test {Vn}, there
exists c such that Vn+c ⊆Wn for each n.
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Theorem 3. Let X be a SCT3 space and µ be a computable measure on X.
Then there exists an optimal µ-test over X.

Proof. There exists a computable enumeration Vm,n of θ-computable sets. For
each Vm,n, there exists a µ-approximation (Us, as) by Lemma 1, which is uni-

formly (
∪
νfs, ρ)-computable. Let Ṽm,n = Usup{s:as<2−n}. Then

µ(Ṽm,n) = µ(Usup{s:as<2−n}) = sup{as : as < 2−n} ≤ 2−n.

Hence {Ṽm,n}n is a µ-test for each m.
Suppose µ(Vm,n) < 2−n. Then there exists s0 such that µ(Vm,n)+2−s < 2−n

for all s ≥ s0. For such s we have as ≤ µ(Us) + 2−s ≤ µ(Vm,n) + 2−s < 2−n.

Hence Ṽm,n = Vm,n.

Let Wn =
∪

m Ṽm,n+m+1. We claim that {Wn} is an optimal µ-test. Note
that µ(Wn) ≤

∑
m 2−n−m−1 ≤ 2−n. Hence {Wn} is a µ-test.

Let An be a µ-test. Then {Bn}n = {An+1}n is also a µ-test with µ(Bn) ≤
2−n−1. Hence there exists m such that Bn = Vm,n. It follows that Wn ⊇
Vm,n+m+1 = Bn+m+1 ⊇ An+m+2 for each n. Then {Wn} is optimal. ⊓⊔

4 Optimal integral test

The goal in this section is to establish the existence of an optimal integral test
over a SCT3 space. The key of the proof is Lemma 2. As in Section 3, this lemma
is also the key to proving Theorem 5 in the next section.

4.1 Computable bound

We gave an approximation of an open set in the previous subsection. By using
this we give an approximation of a (δ, ρ<)-continuous function.

Lemma 2. Let f : X → R+
be a total function and c be a ρ-computable real.

Then there exists a ([δ → ρ<], δA, [δ → ρ<])-computable function bc such that (i)∫
bc(f, µ)dµ ≤ c, (ii)

∫
fdµ < c⇒ bc(f, µ) = f .

Proof. Let Q+ be the set of all non-negative rationals. Let Qn = {qi : i ≤ n}
where {qi} is a computable enumeration of Q+. Then Qn ↑ Q+. Let s(n, i) be
the index of min{r ∈ Qn : r > qi}. If qi is the maximum element in Qn and the
set is empty, then s(n, i) = ∞. Then

µ(f) =

∫
X

fdµ = lim
n→∞

∑
i≤n

qi · µ({x : f(x) > qi}\{x : f(x) > qs(n,i)})

where q∞ = ∞.
Let U i = {x : f(x) > qi}. Note that U i is a θ-computable open set. Then it

has a µ-approximation (U i
n, a

i
n) satisfying the condition in Lemma 1. Note that

there exists a computable function b : N → N such that
∑∞

i=0 qi · 2−b(i) ≤ 1. Let

V i
n = U i

n+b(i)\U
s(n,i)
n+b(s(n,i)).
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Then µ(V i
n) → µ(U i\Us(n,i)). Note that µ(f) ≤

∑n
i=0 qi · µ(V i

n) for each n and
µ(f) = limn→∞

∑n
i=0 qi · µ(V i

n).

Let c(n, i) = ain+b(i) − a
s(n,i)
n+b(s(n,i)). Then a

i
n+b(i) − 2−(n+b(i)) ≤ µ(U i

n+b(i)) ≤
ain+b(i) for each n and i. It follows that

c(n, i)− 2−(n+b(i)) ≤ µ(V i
n) ≤ c(n, i) + 2−(n+b(s(n,i))).

We construct b = b(f, µ) as the limit of functions bn. We define bn inductively
on n. Let b0(x) = 0 for all x. If∑

i≤n

qi · (c(n, i) + 2−(n+b(s(n,i)))) < c,

then let bn(x) = max{qi : x ∈ U i
n+b(i)}, otherwise bn = bn−1.

Since U i
n is increasing on n, bn(x) ≥ bn−1(x) for all n and x. Note that∫
bndµ =

∑
i≤n

qi · µ(V i
n) ≤

∑
i≤n

qi · (c(n, i) + 2−(n+b(s(n,i))) < c.

It follows that
∫
bdµ =

∫
limn bndµ = limn

∫
bndµ ≤ c.

Suppose
∫
fdµ < c. Then

∫
fdµ+ 2−n+1 < c for a large n. Then for such n,

c >
∑
i≤n

qi · µ(V i
n) + 2−n+1 ≥

∑
i≤n

qi · c(n, i)− 2−n + 2−n+1.

Combining the previous two results, we obtain∑
i≤n

qi · (c(n, i) + 2−(n+b(s(n,i))) ≤
∑
i≤n

qi · c(n, i) + 2−n < c.

It follows that b(x) = limn bn(x) = sup{q : f(x) > q} = f(x) for all x. ⊓⊔

4.2 Computable enumeration

Now it suffices to show that we have a computable enumeration of (δX , ρ<)-
computable functions.

Lemma 3. There is a computable enumeration of (δX , ρ<)-computable func-

tions fn : X → R+
.

To prove this, we use the following representation.

Definition 6 (δ4-representation; see [23]). Define a multi-representation
−→
δ4

of the set CP(X1, X2) of all partial continuous functions f :⊆ X1 → X2 as
follows:

f ∈
−→
δ4(p) ⇐⇒

{
(w ≪ p⇒ (∃u ∈ dom(ν1), v ∈ dom(ν2))w = ⟨u, v⟩)
and f−1[ν2(v)] =

∪
⟨u,v⟩≪p ν1(u) ∩ dom(f).
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Proof (Proof of Lemma 3). Let p be a
−→
δ4 -representation of a partial continuous

function f :⊆ X → R+
. Then there exists only one total continuous function

f ′ : X → R+
in

−→
δ4(p). Hence

−→
δ4 is also a representation of the set C(X,R+

)
of all total continuous functions. The function represented by p is determined
by the set {w ∈ Σ∗ : w ≪ p}. Then there is a computable enumeration of all

computable
−→
δ4 -representations. ⊓⊔

4.3 The existence of an optimal integral test

Definition 7. A µ-integral test on X is a (δ, ρ<)-computable function f : X →
R+

with µ(f) ≤ 1. A µ-integral test f0 is optimal if, for each µ-integral test f ,
there exists c such that f(x) ≤ c · f0(x) for all x ∈ X.

Theorem 4. Let X be a SCT3 space. For an arbitrary measure µ on X, there
exists an optimal µ-integral test. Furthermore we can construct an optimal µ-
integral test uniformly from δA-representation of µ.

Proof (Proof of Theorem 4). By Lemma 3 there exists a computable enumeration

fn : X → R+
of (δX , ρ<)-computable functions. Let f =

∑∞
n=0 2

−n−1b1(fn, µ)
where b1 is in Lemma 2. Then

∫
b1(fn, µ)dµ ≤ 1 and

∫
fdµ ≤ 1. Hence f is an

integral test.
If

∫
fndµ < 1, then b1(fn, µ) = fn and fn(x) ≤ 2n · f(x) for all x ∈ X.

Suppose
∫
fndµ = 1. Then there exists m such that fn(x) = 2fm(x) for all x.

It follows that
∫
fmdµ = 1/2 and fn(x) = 2fm(x) ≤ 2m+1 · f(x) for all x ∈ X.

Hence f is optimal. ⊓⊔

5 Optimal superfarthingale

5.1 Effectivization of game-theoretic probability

In the following we often use a ([δA, [δ → ρ<], δ]
∗, δA, δ, ρ<)-computable super-

farthingale. For simplicity we call it a c.e. superfarthingale. Let V be the class
of all non-negative c.e. superfarthingales V with V (Λ) = 1.

Definition 8. A non-negative c.e. superfarthingale V is optimal if, for any su-
perfarthingale V ′ ∈ V, there exists a constant c such that, for any σ ∈ Π⋄,
cV (σ) ≥ V ′(σ).

Theorem 5. If X is a SCT3 space, then there is an optimal superfarthingale.

Definition 9. A superfarthingale V is strict if the equation (2) in Definition 1
holds as a strict inequality (“>”) for all n.

Lemma 4. For a non-negative superfarthingale V , there exists a strict super-
farthingale V ′ such that 2V ′ ≥ V .
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Proof. Let V ′(πn) = 2n

2n+1−1 ·V (πn). Then 2V ′ > V and
∫
X
V ′(πn−1, pn, x)dpn ≤

2n

2n+1−1 · 2n−1
2n−1 × 2n−1

2n−1 · V (πn−1) = 22n−2n

22n−2n−1 × V ′(πn−1) < V ′(πn−1). ⊓⊔

Lemma 5. There exists a computable enumeration {Vm} ⊂ V such that each
non-negative c.e. strict superfarthingale with V (Λ) = 1 appears in the enumera-
tion.

Proof. Let V ′(πn) = supq<V ′(πn−1) bq(V (πn), pn) for all n ≥ 1 and V ′(Λ) = 1.

Then
∫
X
V ′(πn−1, pn, x)dpn ≤ V ′(πn−1). Hence V ′ ∈ V.

Suppose that V is strict. We prove V ′(πn) = V (πn) inductively on n. Suppose
that V ′(πn−1) = V (πn−1). Then

∫
X
V (πn−1, pn, x)dpn < q ⇒ bq(V (πn), pn) =

V (πn). Hence
∫
X
V (πn−1, pn, x)dpn < V ′(πn−1) ⇒ V ′(πn) = V (πn). By the

strictness of V and the assumption, V ′(πn) = V (πn). ⊓⊔

Proof (Proof of Theorem 5). Let Vn be a computable enumeratation of strict
superfarthingales. Let V = 2−n−1Vn. We prove that V is optimal. Let V ′ be a
superfarthingale. Then by Lemma 4 and Lemma 5 there exists n and c such that
cVn ≥ V ′. Then c · 2nV ≥ c · 2n2−nVn ≥ V ′. ⊓⊔

5.2 Convergence to a measure

We will prove a generalized version of Theorem 1. Let νn be the measures induced
by the optimal superfarthingale V , that is, νn(A) =

∫
A
V (πn−1, pn, x)dpn where

V (πn) = V (πn)
V (πn−1) . We discuss what is the limit of the measures νn(A).

Fix π = (p1, y1, p2, y2, . . .) ∈ Π. LetW be a non-negative c.e. farthingale and
µn be the measures induced by W . The Hellinger distance is defined by

hn =

∫
X

(√
V (πn−1, pn, x)−

√
W (πn−1, pn, x)

)2

dpn

Let Nn =
∫
X

√
V (πn)W (πn)dpn. Then Nn ≤ 1− hn

2 ≤ exp(−hn

2 ). The first

inequality follows from hn =
∫
X
V (πn)dpn +

∫
X
W (πn)dpn − 2Nn ≤ 2 − 2Nn.

The second inequality follows from 1− x ≤ e−x. Then Nn exp(
hn

2 ) ≤ 1.
There exists a superfarthingale Y such that

Y (µ1, y1, µ2, y2, . . .) =

√
V (πn)

W (πn)
· exp(1

2

n∑
i=i

hi),

because
∫
X

Y (πn)dµn

Y (πn−1) =
∫ √

V (πn)W (πn)dpn exp(
hn

2 ) = Nn exp(
hn

2 ) ≤ 1.

Theorem 6. If supn Y <∞ then hn → 0 as n→ ∞.

Proof. By optimality of Y we have
∑∞

i=1 hi <∞. Recall hi is non-negative. ⊓⊔
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Hence we conclude that hn → 0 as n → ∞ almost surely. By Theorem 2, Y
is not c.e. in general. This is because hi is not. To obtain the convergence on a
random sequence, we need a stronger randomness notion such as 2-randomness
or difference randomness [4].

The author thanks Akimichi Takemura for encouragements and comments.
This work was partly supported by GCOE, Kyoto University.
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