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% Main thesis
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+ Differentiability
% Integral tests
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randomness

ézrtssions of integral M a i n t h es i s
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Main thesis

Main thesis RandomneSS

% My suggestion

< Differentiability IS equivalent to

% Integral tests

«» Contents

Martin-Lf Differentiability

randomness

Versions of integral

tests by Demuth, Pathak, Nies et al.

Proof Then why?

dhplestion The Lebesgue Differentiation Theorem is (a part of) an
explanation.
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My suggestion

Main thesis A teSt

< Main thesis

“ My suggestion

+ Differentiability

% Integral tests
% Contents

Martin-Lof
randomness

Versions of integral

tests Integration

Proof

Applications

IS equivalent to

IS closed related with

an integral test.

Differentiation.
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Differentiability

Main thesis More preC|Se|y

< Main thesis

My suggestion A way from randomness to differentiability

% Integral tests

% Contents o paSS d teSt,

Martin-Lof

randomness ® finite for an integral teSt,

Versions of integral
tests

® LDT holds for an integral test,

Proof

Applications

@ differentiable for f s.t. f’ is an integral test,

® their "difference” versions.
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Integral tests

pTo— randomness notion  integral test

% My suggestion weak 2-randomness a.e. finite

+ Differentiability Martln-LOf c.e

"

*# Contents computably ?

MarinLo Schnorr c.e. with a comp. integration
?/ertsions of integral Kurtz CompUtable

esls

Proof

Applications
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Contents

Main thesis @ algorithmic randomness notions

< Main thesis

% My suggestion ]
 Differentiability ® extended computable functions from |0, 1] to [0, +o0]

% Integral tests

M __ ® characterizations in terms of integral tests
artin-Lo
randomness

Versions of integral
tests

Proof

Applications

Characterizing randomness by integral tests 7/35



Main thesis

Martin-Lof
< Martin-Lof
randomness

% Integral test
% Differentiability

Versions of integral

— Martin-L6f randomness
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Martin-Lof randomness

Main thests 2¢: Cantor space with the product topology

endomness (0] ={A €2 : 5 < A}: base sets

1 uniform (Lebesgue) measure

ey A c.e. open set is a union of a c.e. set of cylinders.
e Definition 1. A Martin-Lof test (or ML-test) is a sequence
Proof {U,} of uniformly c.e. open sets with (U,,) < 27".

Applications A passes a ML-testif A ¢ (), U,.

A Martin-Lof random /f it passes all Martin-Lof tests.
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Integral test

Main thesis We |dent|fy 2% Wlth [O, 1]
Martin-Lof
randomness

+ Martin Lof Definition 2. ¢ : [0,1] — [0, +o0] is c.e. if

randomness

% Differentiability {Qj’ - q < t(ﬂ?)}

Versions of integral
tests

are c.e. open uniformly in q € Q.
t is called integral test if f[o jt(z)de < 1.

Proof

Applications

Remark 3. We can replace [ t(x)dx < 1 with [ t(x)dz < oco.
Proposition 4. TFAE:
® A real z is ML-random.

® t(z) < oo for all integral tests.
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Differentiability

Main thess f is of bounded variation if

Martin-Lof

randomness

% Martin-Lo6f n

randomness

% Integral test Sup Z ’f(ti—l-l) o f(tZ)‘ < 0
i=1

Versions of integral .

tests where t; <t, <...<t,in|0,1].

Proof

Applications Theorem 5 (Demuth; Nies, Brattka and Miller). z € [0,1] is

ML-random <— every comp. func. f of bounded variation
is differentiable at z.

Relation btw. integral tests and differentiability?
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Main thesis

Martin-Lof
randomness

Versions of integral
tests

<+ Weak
2-randomness
< Proof

< Schnorr
randomness

% Computable
function

% Kurtz randomness

Proof

Applications

Versions of integral tests
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Weak 2-randomness

Min thesis Definition 6. generalized ML-test: {U,,} of uniformly c.e.
Martin-Lof . .

e open sets with lim,, u(U,) = 0.

B EhE z IS weakly 2-random if it passes all generalized ML-tests.
R —

m”ess Theorem 7. TFAE:

< Schnorr

i ® A real z Is weakly 2-random.

function

% Kurtz randomness ® i(z) < oo for all c.e. functions t such thatt(x) < co a.e.
Proof

Asellcaflons ® t(z) < oo for all c.e. functions t such that

[ fot(z)dz < oo for some order function f.
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Main thesis

Martin-Lof
randomness

Versions of integral
tests

% Weak
2-randomness

< Schnorr
randomness
% Computable
function

% Kurtz randomness

Proof

Applications

Proof

Theorem 8. 2 is weakly 2-random ifft(z) < oo for all c.e.
functions t such thatt(z) < oo a.e.

Proof. {U,}: a decreasing generalized ML-test
Let t(z) =sup, {n : v € U,}.
Let U, ={x : t(z) > n}.
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Schnorr randomness

Main thes’s Definition 9. Schnorr test: a ML-test s.t. ;1(U,,) is
jandomness computable uniformly in n, and lim,, ;(U,,) = 0.

Versions of ntegra z Is Schnorr random if it passes all Schnorr tests.

 Weak

2 andormss Theorem 10. TFAE:

.

P ® A real » is Schnorr random.

function

iz randomness ® {(z) < oo for all c.e. functions t such that [ t(x)dx is
::::caﬁons computable.
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Computable function

Main thesie a base for the topology of [0, +00]?

Martin-Lof

raidtomnoess

;/ezrtssions of integral [07 q)’ (p7 q)’ (p7 —|—OO]

% Weak

2-randomness Where D, q € Q+_

% Proof -

o Schnor U;: a computable enumeration of base sets.

t:10,1] — [0, +o0] is extended computable (or ext-comp.) if
S e— "YU;)) = {x : t(z) € U;} are c.e. open uniformly in i.
Proof ;

Apjicaﬁons Remark 11. by the representation approach
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Kurtz randomness

Main thesis Definition 12. 2 is Kurtz random (or weakly 1-random)

jandomness if = € U for every c.e. open set with u(U) = 1.

Versions of integral

PR Theorem 13. TFAE:

2-randomness

+ Somor ® A real z is Kurtz random.

randomness

% Computabl .

e ® ((2) < oo for all extended computable functions t such
e that [ t(x)dz < .

Proof

AgleEon: ® t(z) < oo for all extended computable functions t such

that [ t(x)dz is computable.
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Main thesis

Martin-Lof
randomness

Versions of integral
tests

% One implication
% Proof idea
% Proof idea 2

% Proof

% Proof 2
% Proof 3
% Proof 4
% Proof 5

Applications

Proof
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One implication

Main thesis Proof (funCtion — teSt)
Martin-Lof

randomness U, {z : t(z) <n}isac.e. open setwith u(U) = 1. ]

Versions of integral
tests

Proof

% One implication

% Proof idea
% Proof idea 2

% Proof

% Proof 2
% Proof 3
% Proof 4
% Proof 5

Applications
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Main thesis

Martin-Lof
randomness

Versions of integral
tests

Proof

% One implication
% Proof idea 2

% Proof

% Proof 2

% Proof 3

% Proof 4

% Proof 5

Applications

Proof idea

(test = function)
U: a c.e. open set with u(U) = 1.
Divide U into uniformly c.e. open sets {U,, },>1 S.t.

p(Up) =277
A
t
4 _
Uy
3
Us
2
Us
1
Ur
U X
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Main thesis

Martin-Lof
randomness

Versions of integral
tests

Proof

% One implication
% Proof idea

% Proof

% Proof 2

% Proof 3

% Proof 4

% Proof 5

Applications

Proof idea 2

To make the function computable and so continuous ...

4

A
(8

Characterizing randomness by integral tests 21/35



Proof

ma‘”‘“fsf‘s g :[0,1] — [0, +oc]: the polyline s.t.

artin-L6

randomness

Versions of integra| ’ the Set Of endeintS iS {1 - 2—7’1, . n Z O},
tests

Proof @ g(l - 2—7?,) =,

% One implication
% Proof idea

< Proof idea 2 . g(l) — 0
% Proof 2 g and the integration are computable.

< Proof 3
< Proof 4
< Proof 5

Applications
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Main thesis

Martin-Lof
randomness

Versions of integral
tests

Proof

% One implication
% Proof idea

% Proof idea 2

% Proof

% Proof 3

% Proof 4

% Proof 5

Applications

bDlPJ________

A~
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Main thesis

Martin-Lof
randomness

Versions of integral
tests

Proof

% One implication
% Proof idea

% Proof idea 2

% Proof

% Proof 2

% Proof 4

% Proof 5

Applications

Proof 3

FINITE pairs (p;, ¢;) s.t. U,\ U, (p:, ¢;) contains only rationals
A

1A
4

0

[ t(xz)dz is computable.

Di
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Proof 4

L e Is ¢ computable?

jandomness Are t1([0,¢)),t *((p,q)),t *((p, +o0]) uniformly c.e.?
?/ezrtssions of integral The Slet Of paIrS (pz7 Qz) 1S f|n|te fOF each n

Proof =t ([O’ n))

% One implication — t_l([07 q)) and t_l((p, Q))

% Proof idea
% Proof idea 2
% Proof

% Proof 2

% Proof 3

< Proof 5

Applications
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Proof 5

e ness How to compute ¢~*((p, +o0])?

artin-Lo . . .
randomness Pick up n > p and enumerate all pairs (p;, ¢;) until n.
Vorsions of integra t maps the complement more than n.

Proof

% One implication
% Proof idea

% Proof idea 2

% Proof

% Proof 2

% Proof 3

% Proof 4

Applications
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Main thesis

Martin-Lof
randomness

Versions of integral
tests

Proof

Applications

< Remove
"non-negative”
“ Lebesgue
Differentiation
Theorem

+ Differentiability
% Summary for Kurtz
randomness

< Version of Schnorr
randomness

< Version of
Martin-Lof
randomness

< Another a.e.
< End

Applications
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Remove “non-negative”

Main thesis Corollary 14 (by Jason Rute). TFAE:

Martin-Lof
randomness

Versions of integral ® IS Kurtz I’andOm

tests

Proof ® f(z) converges for each a.e. comp. func.

Applications

Remark 15. f, g: ext-comp. integral tests
* Lebesgue f — g is an a.e. comp. func.

Differentiation
Theorem

% Differentiability
% Summary for Kurtz
randomness

< Version of Schnorr
randomness

< Version of
Martin-Lof
randomness

< Another a.e.
< End
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Lebesqgue Differentiation Theorem

Theorem 16. TFAE:

Martin-Lof
randomness

Versions of integral ® =z IS Kurtz fandOm

tests

Proof @) Ar f (

z)
Applications
z)

< Remove ‘ A f(
r

"non-negative”

converges for each ext-comp. integral test.

converges for each a.e. comp. L'-func.

“ Lebesgue

Arf (@) = 5 [y gy [ l@)da

% Differentiability
% Summary for Kurtz
randomness

< Version of Schnorr
randomness

< Version of
Martin-Lof
randomness

< Another a.e.
< End
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Differentiability

Main Thests Corollary 17. TFAE:

Martin-Lof

randomness

Versions of infegral ® A real z is Kurtz random.

tests

Proof ® { is differentiable at = for each non-dec. comp. func.
Hasleaion: whose derivative is comp.

’:non-negative”

sLebesque ® f is differentiable at » for each comp. f s.t. f' is a.e.
Theorem Comp.

% Differentiability

% Summary for Kurtz
randomness

< Version of Schnorr
randomness

< \Version of
Martin-Lof
randomness

< Another a.e.
< End
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Summary for Kurtz randomness

Main thesis ® : is Kurtz random.

Martin-Lof

randomness .

Versions of integral ® i(2) < oo for all ext-comp. integral test.

tests

Proof ® f(z) converges for each a.e. comp. func. (by Jason

Applications RUte)

% Remove

"non-negative”

& Lobesgue ® A.f(z) converges for each ext-comp. integral test.

Theorem

o e ® A, f(z) converges for each a.e. comp. L'-func.

= Version of Schnorr ® f is differentiable at z for each non-dec. comp. func.

= version of whose derivative is comp.

randomness

Soneras ® f is differentiable at ~ for each comp. f s.t. f’ is a.e.
comp.
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Version of Schnorr randomness

Main thesis ® - is Schnorr random.
Martin-Lof
randomness

Versions of infegral ® i(z) < oo for all integral tests with a comp. integration.

tests

Proof ® A, f(z) converges for all L'-computable functions.

Applications

* Remove ® [ is differentiable at = for each effectively absolutely

"non-negative”

# Lebesgue continous functions. (by J. Rute)

Differentiation
Theorem

% Differentiability

% Summary for Kurtz
randomness

< Version of Schnorr
randomness

< Version of
Martin-Lof
randomness

< Another a.e.
< End
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Version of Martin-Lof randomness

Main thesis ® : is Martin-Lof random.
Martin-Lof
randomness

Versions of integral ® i(2) < oo for all integral tests.

tests

Proof ® A, f(z) converges for all integrable functions s.t.
Applications [, f(t)dz is computable.

“ Remove
"non-negative”

% Lebesgue ® F' is differentiable at = for all absolutely continous

Differentiation

S comp. functions F'. (by Freer, Kjos-Hansen and Nies)
+ Differentiability

% Summary for Kurtz

randomness

< Version of Schnorr
randomness

< Version of

Martin-Lof
randomness

< Another a.e.
< End
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Another a.e.

Min thesis Theorem 18. 2 is Kurtz random iff f(z) = 0 for each a.e.

Martin-Lof

randomness Comp f Wlth f \f(x)]d:v = 0.

Versions of integral

= Remark 19. f: continuous with [ | f(z)|dz = 0.
= f(z)=0forall x € |0, 1].

Proof

Applications

“ Remove
"non-negative”
% Lebesgue
Differentiation
Theorem

% Differentiability

% Summary for Kurtz
randomness

% Version of Schnorr
randomness

% Version of
Martin-Lof
randomness

< Another a.e.

< End
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End

Main thesis

Martin-Lof
randomness

Versions of integral
tests

Proof

Applications

“ Remove
"non-negative”
% Lebesgue
Differentiation
Theorem

% Differentiability

% Summary for Kurtz
randomness

% Version of Schnorr
randomness

% Version of
Martin-Lof
randomness

< Another a.e.

Thank you!
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