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Randomness is equivalent to Differentiabilityby Demuth, Pathak, Nies et al.Then why?The Lebesgue Differentiation Theorem is (a part of) anexplanation.
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A test is equivalent to an integral test.Integration is 
losed related with Differentiation.
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More pre
isely ...A way from randomness to differentiabilityl pass a test,l �nite for an integral test,l LDT holds for an integral test,l differentiable for f s.t. f 0 is an integral test,l their �differen
e� versions.
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randomness notion integral testweak 2-randomness a.e. �niteMartin-L¨of 
.e.
omputably ?S
hnorr 
.e. with a 
omp. integrationKurtz 
omputable
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l algorithmi
 randomness notionsl extended 
omputable fun
tions from [0; 1℄ to [0;+1℄l 
hara
terizations in terms of integral tests
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2!: Cantor spa
e with the produ
t topology[�℄ = fA 2 2! : � � Ag: base sets�: uniform (Lebesgue) measureA 
.e. open set is a union of a 
.e. set of 
ylinders.De�nition 1. A Martin-L¨of test (or ML-test) is a sequen
efUng of uniformly 
.e. open sets with �(Un) � 2�n.A passes a ML-test if A 62 Tn Un.A Martin-L¨of random if it passes all Martin-L¨of tests.
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We identify 2! with [0; 1℄.De�nition 2. t : [0; 1℄! [0;+1℄ is 
.e. iffx : q < t(x)gare 
.e. open uniformly in q 2 Q .t is 
alled integral test if R[0;1℄ t(x)dx � 1.Remark 3. We 
an repla
e R t(x)dx � 1 with R t(x)dx <1.Proposition 4. TFAE:l A real z is ML-random.l t(z) <1 for all integral tests.
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f is of bounded variation if
sup nXi=1 jf(ti+1)� f(ti)j <1

where t1 < t2 < : : : < tn in [0; 1℄.Theorem 5 (Demuth; Nies, Brattka and Miller). z 2 [0; 1℄ isML-random () every 
omp. fun
. f of bounded variationis differentiable at z.Relation btw. integral tests and differentiability?
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De�nition 6. generalized ML-test: fUng of uniformly 
.e.open sets with limn �(Un) = 0.z is weakly 2-random if it passes all generalized ML-tests.Theorem 7. TFAE:l A real z is weakly 2-random.l t(z) <1 for all 
.e. fun
tions t su
h that t(x) <1 a.e.l t(z) <1 for all 
.e. fun
tions t su
h thatR f Æ t(x)dx <1 for some order fun
tion f .
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Theorem 8. z is weakly 2-random iff t(z) <1 for all 
.e.fun
tions t su
h that t(x) <1 a.e.Proof. fUng: a de
reasing generalized ML-testLet t(x) = supnfn : x 2 Ung.Let Un = fx : t(x) > ng.
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De�nition 9. S
hnorr test: a ML-test s.t. �(Un) is
omputable uniformly in n, and limn �(Un) = 0.z is S
hnorr random if it passes all S
hnorr tests.Theorem 10. TFAE:l A real z is S
hnorr random.l t(z) <1 for all 
.e. fun
tions t su
h that R t(x)dx is
omputable.
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a base for the topology of [0;+1℄?[0; q); (p; q); (p;+1℄where p; q 2 Q +.Ui: a 
omputable enumeration of base sets.t : [0; 1℄! [0;+1℄ is extended 
omputable (or ext-
omp.) ift�1(Ui) = fx : t(x) 2 Uig are 
.e. open uniformly in i.Remark 11. by the representation approa
h
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De�nition 12. z is Kurtz random (or weakly 1-random)if z 2 U for every 
.e. open set with �(U) = 1.Theorem 13. TFAE:l A real z is Kurtz random.l t(z) <1 for all extended 
omputable fun
tions t su
hthat R t(x)dx <1.l t(z) <1 for all extended 
omputable fun
tions t su
hthat R t(x)dx is 
omputable.
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Proof. (fun
tion) test)Snfx : t(x) < ng is a 
.e. open set with �(U) = 1.
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(test) fun
tion)U : a 
.e. open set with �(U) = 1.Divide U into uniformly 
.e. open sets fUngn�1 s.t.�(Un) = 2�n.

x

t
0 U1

U2
U3

U4

12
34
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To make the fun
tion 
omputable and so 
ontinuous ...
x

t
0 U1

U2
U3

U4

12
34
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g : [0; 1℄! [0;+1℄: the polyline s.t.l the set of endpoints is f1� 2�n : n � 0g,l g(1� 2�n) = n,l g(1) =1g and the integration are 
omputable.
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x

g
0

12
34

12 34 78
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FINITE pairs (pi; qi) s.t. UnnSi(pi; qi) 
ontains only rationals
x

t
0

12
34

pi qi
g

R t(x)dx is 
omputable.
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Is t 
omputable?Are t�1([0; q)); t�1((p; q)); t�1((p;+1℄) uniformly 
.e.?The set of pairs (pi; qi) is �nite for ea
h n) t�1([0; n))) t�1([0; q)) and t�1((p; q))
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How to 
ompute t�1((p;+1℄)?Pi
k up n � p and enumerate all pairs (pi; qi) until n.t maps the 
omplement more than n.

pn

r
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Corollary 14 (by Jason Rute). TFAE:l z is Kurtz random.l f(z) 
onverges for ea
h a.e. 
omp. fun
.Remark 15. f; g: ext-
omp. integral testsf � g is an a.e. 
omp. fun
.
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Theorem 16. TFAE:l z is Kurtz random.l Arf(z) 
onverges for ea
h ext-
omp. integral test.l Arf(z) 
onverges for ea
h a.e. 
omp. L1-fun
.Arf(x) = 12r R[x�r;x+r℄ f(x)dx
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Corollary 17. TFAE:l A real z is Kurtz random.l f is differentiable at z for ea
h non-de
. 
omp. fun
.whose derivative is 
omp.l f is differentiable at z for ea
h 
omp. f s.t. f 0 is a.e.
omp.
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l z is Kurtz random.l t(z) <1 for all ext-
omp. integral test.l f(z) 
onverges for ea
h a.e. 
omp. fun
. (by JasonRute)l Arf(z) 
onverges for ea
h ext-
omp. integral test.l Arf(z) 
onverges for ea
h a.e. 
omp. L1-fun
.l f is differentiable at z for ea
h non-de
. 
omp. fun
.whose derivative is 
omp.l f is differentiable at z for ea
h 
omp. f s.t. f 0 is a.e.
omp.
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l z is S
hnorr random.l t(z) <1 for all integral tests with a 
omp. integration.l Arf(z) 
onverges for all L1-
omputable fun
tions.l F is differentiable at z for ea
h effe
tively absolutely
ontinous fun
tions. (by J. Rute)
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l z is Martin-L¨of random.l t(z) <1 for all integral tests.l Arf(z) 
onverges for all integrable fun
tions s.t.R x0 f(t)dx is 
omputable.l F is differentiable at z for all absolutely 
ontinous
omp. fun
tions F . (by Freer, Kjos-Hansen and Nies)
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Theorem 18. z is Kurtz random iff f(z) = 0 for ea
h a.e.
omp. f with R jf(x)jdx = 0.Remark 19. f : 
ontinuous with R jf(x)jdx = 0.) f(x) = 0 for all x 2 [0; 1℄.
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Thank you!
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