Weak L^1-computability and Limit L^1-computability

Ninth International Conference on Computability and Complexity in Analysis 24 - 27 June, 2012, University of Cambridge

Kenshi Miyabe Research Institute for Mathematical Sciences, Kyoto University

Table of Contents

Schnorr random	ML-random	weak 2- random
integral test for SR	integral test	integral test for W2R
Effective L^1- comp	weak L^1- comp	limit L^1- comp
Schnorr layerwise comp. + comp. L^1-norm	?	٠ ٢

Motivation

When the second for any station of the second of the secon

Mater - But - Marchan

Randomness and differentiability

Theorem (Demuth, Brattka-Miller-Nies)
A real is Martin-Löf random iff each computable function of bounded variation is differentiable at the real.

Other randomness versions have been obtained such as

- 1. weak 2-randomness,
- 2. computable randomness,
- 3. Schnorr randomness,
- 4. Kurtz randomness.

Effective LDT

Theorem (Effective Lebesgue Differentiation Theorem; Pathak-Rojas-Simpson, Rute) For all $x \in [0, 1]$, x is Schnorr random iff

$$\hat{f}(x) = \lim_{r \to 0} \frac{\int_{x-r}^{x+r} f d\mu}{2r}$$

for all effective L^1 -computable functions. What are other randomness versions of effective L^1 computable functions?

Coincidence

Miyabe showed that, roughly speaking, the following are equivalent.

- 1. A difference between two integral tests for Schnorr randomness.
- 2. An effective L^1 -computable function.
- 3. A Schnorr layerwise computable function whose L^1 norm is computable.

Do we have other randomness versions of this coincidence?

Weak and limit L^1-computability

A MARTIN A . ANY

Seconda ta their in D' Low die The transmistight

Table of Contents

Schnorr random	ML-random	weak 2- random
integral test for SR	integral test	integral test for W2R
Effective L^1- comp	weak L^1- comp	limit L^1- comp
Schnorr layerwise comp. + comp. L^1-norm	Ş	5

Finite rational step function

Definition

A finite rational step function is a finite sum

$$s = \sum_{k=1}^{n} q_k \mathbf{1}_{(q_k, r_k)}$$

where $q_k \in \mathbb{Q}$ and $q_k, r_k \in \mathbb{Q} \cap [0, 1]$.

Effective L^1-computability

Definition

A function $f :\subseteq [0,1] \to \mathbb{R}$ is effective L^1 -computable if there exists a computable sequence $\{s_n\}$ of finite rational step functions such that

 $f(x) = \lim_{n \to \infty} s_n(x)$ and $||s_{n+1} - s_n||_1 \le 2^{-n}$ for all n.

An integral test for Schnorr randomness

Definition (M.)

An integral test for Schnorr randomness is a nonnegative lower semicomputable function $f : [0,1] \to \mathbb{R}^+$ such that $\int f d\mu$ is a computable real.

Theorem (M.)

A real x is Schnorr random iff $f(x) < \infty$ for each integral test for Schnorr randomness.

Coincidence

Definition (M.)

Two functions f, g are Schnorr equivalent if f(x) = g(x) for all Schnorr random reals x.

Theorem (M.)

For an effective L^1 -computable function $f :\subseteq [0,1] \to \mathbb{R}$, f is Schnorr equivalent to a difference between two integral tests for Schnorr randomness, and vice versa.

Table of Contents

Schnorr random	ML-random	weak 2- random
integral test for SR	integral test	integral test for W2R
Effective L^1- comp	weak L^1- comp	limit L^1- comp
Schnorr layerwise comp. + comp. L^1-norm	?	5

Weak L^1-computability

A weakly computable real $r = \lim_{n \to \infty} q_n$ such that

$$\sum_{n} |q_{n+1} - q_n| < \infty$$

by Ambos-Spies et al. (2000).

Definition (M.)

A function $f :\subseteq [0,1] \to \mathbb{R}$ is weakly L^1 -computable if

$$f(x) = \lim_{n \to \infty} s_n(x)$$
 and $\sum_{n \to \infty} ||s_{n+1} - s_n||_1 < \infty$

П

Coincidence

Definition (M.) Two functions f, g are ML-equivalent if f(x) = g(x) for all ML-random reals x.

Theorem (M.) For a weakly L^1 -computable function $f :\subseteq [0,1] \to \mathbb{R}$, f is ML-equivalent to a difference between two integral tests, and vice versa.

Table of Contents

Schnorr random	ML-random	weak 2- random
integral test for SR	integral test	integral test for W2R
Effective L^1- comp	weak L^1- comp	limit L^1- comp
Schnorr layerwise comp. + comp. L^1-norm	?	5

Limit L^1-computability

A real $r \in \Delta_2^0$ iff it is a limit computable point.

$\mathbf{Definition}(\mathbf{M}.)$

A function $f :\subseteq [0,1] \to \mathbb{R}$ is limit L^1 -computable if f is defined a.e. and

$$f(x) = \lim_{n} s_n(x).$$

An (weakly or limit) L^1 -computable function is, roughly speaking, a (weakly or limit) computable point in the L^1 space.

An integral test for weak 2-randomness

Definition (M.)

An integral test for weak 2-randomness is a nonnegative lower semicomputable function $f : [0,1] \to \mathbb{R}^+$ such that $f(x) < \infty$ almost everywhere.

Theorem (M.)

A real x is weakly 2-random iff $f(x) < \infty$ for each integral test for weak 2-randomness.

Coincidence

Definition (M.)

Two functions f, g are weakly 2-equivalent if f(x) = g(x)for all weakly 2-random reals x.

Theorem (M.)

For a limit L^1 -computable function $f :\subseteq [0,1] \to \mathbb{R}$, f is weakly 2-equivalent to a difference between two integral tests for weak 2-randomness, and vice versa.

Solovay reducibility for functions

the is ter and it man we competed the in at the

the the second with the second the states

Table of Contents

Schnorr random	ML-random	weak 2- random
integral test for SR	integral test	integral test for W2R
Effective L^1- comp	weak L^1- comp	limit L^1- comp
Schnorr layerwise comp. + comp. L^1-norm	?	5

The second se

rana on defeit and an electron Alaskalistic del - dura de-

the faile the local core post in the local

Webstown for the state building market are used and an experimentary a second second state of the second second

CONTRACT PRODUCT DE PROPERTO

the second second second second

and the second second

Schnorr layerwise computability

Definition (Hoyrup-Rojas)

Let $\{U_n\}$ be a universal ML-test. A function $f :\subseteq [0,1] \rightarrow \mathbb{R}$ is layerwise computable if f is computable on $[0,1] \setminus U_n$ uniformly in n.

Definition (M.)

A function $f :\subseteq [0,1] \to \mathbb{R}$ is Schnorr layerwise computable if there exists a Schnorr test $\{U_n\}$ such that f is computable on $[0,1]\setminus U_n$ uniformly in n.

Another coincidence

Theorem (M.)

Let f be a function such that

1. f is a Schnorr layerwise computable function, 2. $||f||_1$ is a computable real.

Then f is Schnorr equivalent to a difference between two integral tests for Schnorr randomness.

Conversely, any integral test for Schnorr randomness is Schnorr equivalent to a Schnorr layerwise computable function.

Table of Contents

Schnorr random	ML-random	weak 2- random
integral test for SR	integral test	integral test for W2R
Effective L^1- comp	weak L^1- comp	limit L^1- comp
Schnorr layerwise comp. + comp. L^1-norm	Ş	Ş

Observation

- For a layerwise computable function f,
 f(x) is computable from x if x is ML-random.
- However, an integral test does not have such a property,
 e.g., f(x) is Chaitin's omega for all x.

To calculate f(x), we need to know how close a rational step function is. This reminds me of Solovay reducibility.

Solovay reducibility

Theorem (Downey, Hirschfeldt and Nies) Let α, β be left-c.e. reals.

$$\alpha \leq_S \beta \iff \exists d \exists \gamma \text{ s.t. } d\beta = \alpha + \gamma$$

Definition (M.)

Let f, g be nonnegative lower semicomputable functions.

 $f \leq_S g \iff \exists d \exists h \text{ s.t. } dg =_{\mathrm{WR}} f + h$

where $=_{WR}$ denotes Kurtz equivalence.

Basic properties

Proposition(M.) Let $f \leq_S g$.

If g is a.e. computable, then so is f.
 If g has a computable integral, then so is f.
 If g is integrable, then so is f.
 If g(x) < ∞ almost everywhere, then so is f.

Characterizations

Proposition (M.)

Let f be bounded by $M \in \mathbb{N}$. Then f is a.e. computable iff $f \leq_S M$.

Proposition (M.)

There exsits t such that f is integrable iff $f \leq_S t$.

Solovay test

Definition

A Solovay test for Schnorr randomness is a sequence $\{U_n\}$ of uniformly c.e. open sets such that $\sum_n \mu(U_n)$ is computable.

Proposition

A real is Schnorr random iff $x \in U_n$ for at most finitely many *n* for each Solovay test for Schnorr randomness.

Schnorr version

Theorem

Let f be a nonnegative lower semicomputable function. Then f has a computable integral iff there exists

1. a computable sequence $\{a_n\}$ of natural numbers and 2. a Solovay test $\{U_n\}$ for Schnorr randomness such that

$$f \leq_S \sum_n a_n \cdot \mathbf{1}_{U_n}$$

and $\sum_{n} a_n \mu(U_n)$ is computable.

Summary

the second s

A MORE AND A LOCAL OF

Schnorr random	ML-random	weak 2- random
integral test for SR	integral test	integral test for W2R
Effective L^1- comp	weak L^1- comp	limit L^1- comp
Schnorr layerwise comp. + comp. L^1-norm	?	۲.

the American Street and

Summary

We study the relation between integral tests for randomness notions and variants of L^1computability.

Solovay reducibility for functions can be seen as a generalization of Schnorr layerwise computability.