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We present some new characterizations of Schnorr triviality. The well-known
notion of K-triviality is defined using complexity K via a prefix-free machine,
with which Martin-Löf randomness has a characterization. In a similar man-
ner, Schnorr triviality is defined using complexity via a computable measure
machine, with which Schnorr randomness has a characterization. Further, we
have a characterization of Schnorr randomness via decidable prefix-free ma-
chine. Hence, we should also have a characterization of Schnorr triviality using
complexity via a decidable prefix-free machine.

Definition 1. A set A ∈ 2ω is called weakly decidable prefix-free machine
reducible to a set B ∈ 2ω (denoted by A ≤wdm B) if for each decidable prefix-
free machine M and a computable order g, there exists a decidable prefix-free
machine N such that

(∃d)(∀n)KN (A � n) ≤ KM (B � n) + g(n) + d.

It can be clearly observed that the relation ≤wdm is reflexive and transitive.
This reducibility has a strong connection with Schnorr randomness.

Theorem 2 (Bienvenu and Merkle [1]). A set X is Schnorr random iff

(∃d)(∀n)KM (X � n) ≥ n− g(n)− d

for all decidable prefix-free machines M and all computable orders g.

Theorem 3. If a set A is Schnorr random and A ≤wdm B, then B is Schnorr
random.

Definition 4. We say that a set A is weakly trivial for decidable prefix-free
machines if A is weakly decidable prefix-free machine reducible to ∅.

Theorem 5. A set is Schnorr trivial iff it is weakly trivial for decidable prefix-
free machines.

It should be noted that numerous characterizations of Schnorr triviality have
the following form: for any computable object, there exists another computable
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object such that the real is in some object. By defining a basis for Schnorr
randomness in a similar manner, we can show the equivalence to Schnorr trivi-
ality while Franklin and Stephan [2] showed that there exists a Schnorr trivial
set that is not truth-table reducible to any Schnorr random set. Further, it
should be noted that Franklin, Stephan and Yu [3] studied a base for Schnorr
randomness, which is however a notion different from the one considered in this
study.

At the same time, we also consider a basis for tt-reducible randomness. For
the definition of tt-reducible randomness, refer to [4].

Definition 6. Let d be a tt-reducible martingale. Then, a set X is A-tt-reducible
random for d if

(∃d)(∀n)dA(X � n) ≤ d.

Further, a set X is A-tt-Schnorr random for d if for each computable order g,

(∃d)(∀n)dA(X � n) ≤ h(n) + d.

Definition 7. A set A is a basis fot tt-reducible randomness if, for each tt-
reducible martingale d, there exists a set X such that A ≤tt X and X is A-tt-
reducible random for d.

A set A is a basis fot tt-Schnorr randomness if, for each tt-reducible martin-
gale d, there exists a set X such that A ≤tt X and X is A-tt-Schnorr random
for d.

Theorem 8. The following are equivalent for a set A:

(i) A is Schnorr trivial,

(ii) A is a basis for tt-reducible randomness,

(iii) A is a basis for tt-Schnorr randomness.
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