Schnorr triviality is equivalent to being a basis for tt-Schnorr randomness

CCR 2012 2 - 6 July, 2012, Isaac Newton Institute

Kenshi Miyabe Research Institute for Mathematical Sciences, Kyoto University

Overview

	Schnorr random	tt-Schnorr random
trace	comp. traceable	comp. tt-traceable (FS2010)
low	low for SR	low for tt-SR (FS2010)
low	low for c.m.m.	low for t.m.m. (M2011)
trivial	Schnorr trivial	
trivial	wdm-reducible to 0	
basis		basis for tt-SR

ALL DUCTOR

Lowness notions for tt-Schnorr randomness

Four equivalent notions

Theorem (Nies 2005, Hirschfeldt-Nies-Stephan 2007) The following are equivalent for a set A:

- 1. A is low for ML-randomness,
- 2. A is low for K,
- 3. A is K-trivial,
- 4. A is a basis for ML-randomness.

Schnorr randomness version

Similarly we can define

- 1. lowness for Schnorr randomness,
- 2. Schnorr triviality.

Theorem (Downey Griffiths and LaForte)There is a Turing complete Schnorr trivial c.e. set.Hence, lowness for Schnorr randomness is not equivalent to Schnorr triviality.

Schnorr triviality & tt-reducibility

Theorem (Franklin and Stephan 2010) The following are equivalent for a set A:

A is low for tt-Schnorr randomness.
 A is computably tt-traceable,
 A is Schnorr trivial,

tt-Schnorr randomness

X is A-Schnorr random if $d(X \upharpoonright n) \leq h(n) + O(1)$ for all A-computable orders h and martingales $d \leq T A$. **Definition** (Franklin and Stephan 2010) X is A-tt-Schnorr random if $d(X \upharpoonright n) \le h(n) + O(1)$ for all computable orders h and martingales $d \leq_{tt} A$. **Definition** (Franklin and Stephan 2010) A is low for tt-Schnorr randomness if each Schnorr random

set is A-tt-Schnorr random.

Low for tt-reducible measure machine

Theorem (Downey, Greenberg, Mihailović and Nies)
A set is low for computable measure machines
iff it is computably traceable.

Theorem (M.)

A set is low for tt-reducible measure machines iff it is computably tt-traceable.

Table

	Schnorr random	tt-Schnorr random
trace	comp. traceable	comp. tt-traceable (FS2010)
low	low for SR	low for tt-SR (FS2010)
low	low for c.m.m.	low for t.m.m. (M2011)
trivial	Schnorr trivial	
trivial	wdm-reducible to 0	
basis		basis for tt-SR

- Share and

the state of the s

A basis for tt-Schnorr randomness

Recall that A is low for ML-randomness iff

 $(\exists B)A \leq_{\mathrm{T}} B$ and B is A-ML-random.

Consider a set A such that

 $(\exists B)A \leq_{\text{tt}} B$ and B is A-tt-Schnorr random.

Is it equivalent to low for tt-Schnorr randomness?

A basis for tt-Schnorr randomness

Theorem (Franklin and Stephan 2010) If $A \leq_{\text{tt}} B$ and B is A-tt-Schnorr random, then A is Schnorr trivial.

There is a Schnorr trivial set that is not truth-table reducible to a Schnorr random set.

Theorem (Franklin and Stephan 2010) A set A is Schnorr trivial iff $\exists B$ such that $A \leq_{\text{snr}}$ and B is A-tt-Schnorr random.

Question

Is there a notion such that

- 1. the definition uses \leq_{tt} ,
- 2. the definition uses tt-Schnorr randomness,
- 3. the notion is equivalent to Schnorr triviality,

and thus we can call a basis for tt-Schnorr randomness?

Characterization of Schnorr triviality via decidable prefix machines

Table

	Schnorr random	tt-Schnorr random
trace	comp. traceable	comp. tt-traceable (FS2010)
low	low for SR	low for tt-SR (FS2010)
low	low for c.m.m.	low for t.m.m. (M2011)
trivial	Schnorr trivial	
trivial	wdm-reducible to 0	
basis		basis for tt-SR

والمرجا ويجتبون فيتشرك والمراد

Schnorr randomness

Definition (Downey and Griffiths)

A computable measure machine is a prefix-free machine M such that $\mu(\llbracket \operatorname{dom}(M) \rrbracket)$ is computable.

Theorem (Downey and Griffiths) A set A is Schnorr rnadom iff

$$K_M(A \upharpoonright n) \ge n - O(1)$$

for all computable measure machines M.

Schnorr triviality

Definition (Downey and Griffiths) A is Schnorr reducible to B (denoted by $A \leq_{Sch} B$) if each computable measure machine M there is a computable measure machine N such that

 $K_N(A \upharpoonright n) \le K_M(B \upharpoonright n) + O(1).$

A is Schnorr trivial if $A \leq_{\mathrm{Sch}} \emptyset$.

Decidable machines

A machine M is decidable if dom(M) is computable. An order is an unbounded nondecreasing function from N to N. **Theorem** (Bienvenu and Merkle) A is Schnorr random iff for all decidable prefix-free machines M and computable orders g, we have

$$K_M(A \upharpoonright n) \ge n - g(n) - O(1).$$

Can we use the machines to characterize Schnorr triviality?

wdm-reducibility

Definition (M.)

A is weakly decidable prefix-free machine reducible to B(denoted by $A \leq_{\text{wdm}} B$) if for each decidable prefix-free machine M and a computable order g there exists a decidable prefix-free machine N such that

 $K_N(A \upharpoonright n) \le K_M(B \upharpoonright n) + g(n) + O(1).$

Characterization

Theorem (M.) A is Schnorr trivial iff $A \leq_{wdm} \emptyset$. Actually,

$A \leq_{\mathrm{wdm}} B \iff A \leq_{\mathrm{Sch}} B$

for all sets A, B.

Being a basis for tt-Schnorr randomness

Table

	Schnorr random	tt-Schnorr random
trace	comp. traceable	comp. tt-traceable (FS2010)
low	low for SR	low for tt-SR (FS2010)
low	low for c.m.m.	low for t.m.m. (M2011)
trivial	Schnorr trivial	
trivial	wdm-reducible to 0	
basis		basis for tt-SR

- stranger

Similar forms

A is Schnorr trivial iff $\forall M \exists N \text{ s.t. } K_N(A \upharpoonright n) \leq K_M(n) + O(1)$ iff $\forall M, g \exists N \text{ s.t. } K_N(A \upharpoonright n) \leq K_M(n) + g(n) + O(1)$ iff $\forall f \leq_{\text{tt}} A \exists \{T_n\} \text{ s.t. } f(n) \in T_n \text{ for all } n$ iff $\forall h \exists M \text{ s.t. } K_M(A \upharpoonright h(n)) < n.$

Similar form for a basis for tt-Schnorr randomness?

The proof of one implication

Recall that the following does not hold: A is low for tt-Schnorr randomness $\Rightarrow A \leq_{\text{tt}} \exists B \text{ and } B \text{ is } A\text{-tt-Schnorr random.}$ How do we prove the direction for ML-randomness: A is low for ML-randomness $\Rightarrow A \leq_T \exists B \text{ and } B \text{ is } A\text{-ML-random?}$ It suffices to choose a ML-random set B such that $A \leq_T B$, which follows by the Kućera-Gács Theorem.

Space Lemma

Lemma (Merkle and Mihailović) Given a rational $\delta > 1$ and integer k > 0, we can compute a length $l(\delta, k)$ such that, for any martingale d and any σ ,

 $|\{\tau \in 2^{l(\delta,k)} : d(\sigma\tau) \le \delta d(\sigma)\}| \ge k.$

tt-Schnorr randomness

Definition (M.) Let $d \leq_{\text{tt}} A$ be a martingale. X is A-tt-Schnorr random for d if $d(X \upharpoonright n) \le h(n) + O(1)$ for all computable orders h. X is A-tt-reducible random for d if $d(X \upharpoonright n) \leq O(1)$. Then X is A-tt-Schnorr random iff X is A-tt-Schnorr random for each maritingale $d \leq_{\text{tt}} A$.

A basis for tt-Schnorr randomness

Definition (M.)

A is a basis for tt-Schnorr randomness if, for each martingale $d \leq_{tt} A$ there exists a set B such that $A \leq_{tt} B$ and B is A-tt-Schnorr random for d. A is a basis for tt-reducible randomness if, for each martingale $d \leq_{tt} A$ there exists a set B such that $A \leq_{tt} B$ and B is A-tt-reducible random for d.

Coincidence

Theorem (M.) The following are equivalent for a set A:

1. A is Schnorr trivial,

2. A is a basis for tt-reducible randomness,

3. A is a basis for tt-Schnorr randomness.

Proof sketch

Lemma

computable tt-traceable

 \Rightarrow a basis for tt-reducible randomness

For each Φ such that $d = \Phi^A$ is a martingale, We need to construct B such that

1. $A \leq_{\text{tt}} B$, 2. $d(B \upharpoonright n) \leq O(1)$.

With the Space Lemma, construct B which has the information of A so that one can calculate d from B.

Summary

Schnorr random	tt-Schnorr random
comp. traceable	comp. tt-traceable (FS2010)
low for SR	low for tt-SR (FS2010)
low for c.m.m.	low for t.m.m. (M2011)
Schnorr trivial	
wdm-reducible to 0	
	basis for tt-SR
	comp. traceable low for SR low for c.m.m. Sc