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Abstract

We prove both the validity and the sharpness of the law of the iter-
ated logarithm in game-theoretic probability with quadratic and stronger
hedges.

1 Background and the main result

The law of the iterated logarithm (LIL) in game-theoretic probability was stud-
ied in Shafer and Vovk [8] under two protocols. The first protocol “unbounded
forecasting” only contains a quadratic hedge.

Unbounded Forecasting
Players: Forecaster, Skeptic, Reality
Protocol:

K0 := 1.
FOR n = 1, 2, . . .:

Forecaster announces mn ∈ R and vn ≥ 0.
Skeptic announces Mn ∈ R and Vn ≥ 0.
Reality announces xn ∈ R.
Kn := Kn−1 +Mn(xn −mn) + Vn((xn −mn)

2 − vn).
Collateral Duties: Skeptic must keep Kn non-negative. Reality
must keep Kn from tending to infinity.

When Forecaster announces the range of xn at each round n, the game is
called “predictably unbounded forecasting”.

Predictably Unbounded Forecasting
Players: Forecaster, Skeptic, Reality

∗Research Institute for Mathematical Sciences, Kyoto University
†Graduate School of Information Science and Technology, University of Tokyo
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Protocol:
K0 := 1.
FOR n = 1, 2, . . .:

Forecaster announces mn ∈ R, cn ≥ 0, and vn ≥ 0.
Skeptic announces Mn ∈ R and Vn ≥ 0.
Reality announces xn ∈ R such that |xn −mn| ≤ cn.
Kn := Kn−1 +Mn(xn −mn) + Vn((xn −mn)

2 − vn).
Collateral Duties: Skeptic must keep Kn non-negative. Reality
must keep Kn from tending to infinity.

Let An =
∑n

i=1 vi. Shafer and Vovk [8] showed the following two theorems.

Theorem 1.1 (Theorem 5.1 in [8]). In the predictably unbounded forecasting
protocol, Skeptic can force(

An → ∞ & cn = o

(√
An

ln lnAn

))
=⇒ lim sup

n→∞

∑n
i=1(xi −mi)√
2An ln lnAn

= 1.

Theorem 1.2 (Theorem 5.2 in [8]). In the unbounded forecasting protocol, Skep-
tic can force(

An → ∞ & |xn −mn| = o

(√
An

ln lnAn

))
=⇒ lim sup

n→∞

∑n
i=1(xi −mi)√
2An ln lnAn

≤ 1.

In the unbounded forecasting protocol, it seems difficult to give a natural
sufficient condition to force the lower bound of the LIL (cf. Proposition 5.1
of [8]). Then we would like to find a non-predictable protocol under which a
natural sufficient condition for the LIL exists. A clue can be found in Takazawa
[10, 11] where he has showed a weaker upper bound with double hedges. Another
clue is the original proof [2] of the Hartman-Wintner LIL that uses a delicate
truncation (see also Petrov [6]). Thus we consider a game with stronger hedges
large enough to do the truncation.

The Unbounded Forecasting Game With Quadratic and
Stronger Hedges (UFQSH)
Parameter: h : R → R
Players: Forecaster, Skeptic, Reality
Protocol:

K0 := 1.
FOR n = 1, 2, . . .:

Forecaster announces mn ∈ R, vn ≥ 0 and wn ≥ 0.
Skeptic announces Mn ∈ R, Vn ∈ R and Wn ≥ 0.
Reality announces xn ∈ R.
Kn := Kn−1 +Mn(xn −mn) + Vn((xn −mn)

2 − vn)
+Wn(h(xn −mn)− wn).

Collateral Duties: Skeptic must keep Kn non-negative. Reality
must keep Kn from tending to infinity. Forecaster must keep the
game coherent.
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For simplicity we only consider an extra hedge h with the following condi-
tions.

Assumption 1.3.

(i) h is an even function.

(ii) h ∈ C2 and h(0) = h′(0) = h′′(0) = 0.

(iii) h′′(x) is strictly increasing, unbounded and concave (upward convex) for
x ≥ 0.

Let

Sn =
n∑

i=1

xi, bn =

√
An

ln lnAn
.

We state our main result.

Theorem 1.4. In UFQSH with h satisfying Assumption 1.3, Skeptic can force(
An → ∞ and

∑
n

wn

h(bn)
< ∞

)
⇒ lim sup

n→∞

Sn −
∑n

i=1 mi√
2An ln lnAn

= 1.

This theorem is a consequence of Proposition 2.5 (upper bound, validity) and
Proposition 2.7 (lower bound, sharpness) below. This theorem has the following
corollary.

Corollary 1.5. Let h be an extra hedge satisfying Assumption 1.3 and∑
n

1

h(
√
n/ ln lnn)

< ∞. (1)

In UFQSH with this h and mn ≡ m, vn ≡ v and wn ≡ w, the following are
equivalent for m′ ∈ R and v′ ≥ 0.

(i) m′ = m and v′ = v.

(ii) Skeptic can force

lim sup
n→∞

Sn −m′n√
2n ln lnn

=
√
v′. (2)

(iii) Reality can comply with (2).

The definition of “comply” is given in Definition 2.11.

Remark 1.6. The equation (2) can be replaced with

lim inf
n→∞

Sn −m′n√
2n ln lnn

= −
√
v′.
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Examples for h in this case are h(x) = |x|α, 2 < α ≤ 3, and h(x) =
(x+ 1)2 ln2(x+ 1)− x2. See Example 2.3 and Example 2.4 below.

We review some related results. The LIL was proved in Kolmogorov [3]
under the condition of |xn| = o(

√
An/ ln lnAn). Marcinkiewicz and Zygmund

[4] constructed a sequence of independent random variables for which An → ∞
and |xn| = O(

√
An/ ln lnAn) and which does not obey the LIL. A number of

other sufficient conditions for Kolmogorov’s LIL were given in the literature
such as [1, 7]. In an important case of independent, identically distributed
(i.i.d.) random variables, Hartman and Wintner [2] proved that existence of
a second moment suffices for the LIL and Strassen [9] proved conversely that
existence of a second moment is necessary.

A game-theoretic version of Kolmogorov’s LIL was established by Shafer
and Vovk [8], in which a game-theoretic version of Hartman-Wintner’s LIL was
questioned. As we stated, Takazawa [10, 11] also obtained some related results.
Our main result gives a sufficient condition for game-theoretic Kolmogorov’s
LIL with an extra hedge slightly stronger than the quadratic one. The corollary
has a similar form as Hartman-Wintner’s LIL and Strassen’s converse although
stronger hedges are assumed in our case.

2 Facts and proofs

In this section we give a proof of our main theorem and its corollary. For
readability our proof is divided into several sections. We also prove some facts
of independent interest.

2.1 Consequences of the assumptions on the extra hedge

From now on we assume mn ≡ 0 without loss of generality until Section 2.6.

Proposition 2.1. Under Assumption 1.3, we have

(i) limx→0
h′(x)
x = 0 and limx→0

h(x)
x2 = 0.

(ii) h′(x)
x is strictly increasing and unbounded for x ≥ 0.

(iii) For 0 ≤ c ≤ 1 and for x ≥ 0 we have

c3h(x) ≤ h(cx) ≤ c2h(x).

For c ≥ 1 and for x ≥ 0

c2h(x) ≤ h(cx) ≤ c3h(x).

(iv) x2 = o(h(x)).

(v) h(x) = O(x3).

(vi) For any b > 0, maxy≥0(1 + y + y2/2− h(by)/h(b)) < 2.
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Proof. (i) Since h′′(0) = 0 and h′′ is continuous, for each ϵ > 0, there exists
δ > 0 such that

h′′(x) ≤ ϵ for 0 ≤ x ≤ δ.

Then

h′(x) =

∫ x

0

h′′(t)dt ≤
∫ x

0

ϵdt = ϵx.

Thus limx→0 h
′(x)/x = 0. By a similar way, we can show that limx→0

h(x)
x2 = 0.

(ii) The strict monotonicity of h′(x)/x is equivalent to that, for y > 0,

h′(x+ y)

x+ y
>

h′(x)

x
⇐⇒ xh′(x+ y)− (x+ y)h′(x) > 0

⇐⇒ x(h′(x+ y)− h′(x)) > yh′(x)

⇐⇒ x

∫ x+y

x

h′′(t)dt > y

∫ x

0

h′′(t)dt.

The last inequality holds because

x

∫ x+y

x

h′′(t)dt > xyh′′(x) > y

∫ x

0

h′′(t)dt.

We prove that h′(x)/x is unbounded. Since h′′ is increasing and unbounded,
for any C > 0, there exists D > 0 such that

h′′(x) > C for x > D.

Then

h′(x)− h′(D) =

∫ x

D

h′′(t)dt ≥
∫ x

D

Cdt = C(x−D)

for x ≥ D. Note that C is arbitrary.

(iii) We prove that h(cx) ≥ c3h(x) for c ≤ 1. By the concavity of h′′, we have

h′′(cx) ≥ ch′′(x).

Thus

h′(cx) =

∫ cx

0

h′′(t)dt =

∫ x

0

ch′′(cs)ds ≥
∫ x

0

c2h′′(s)ds = c2h′(x).

Hence

h(cx) =

∫ cx

0

h′(t)dt =

∫ x

0

ch′(cs)ds ≥
∫ x

0

c3h′(s)ds = c3h(x).

Next we prove that h(cx) ≤ c2h(x) for c ≤ 1. Since h′′ is increasing, h′ is
convex, thus

h′(cx) ≤ ch′(x) + (1− c)h′(0).
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Then

h(cx) =

∫ cx

0

h′(t)dt =

∫ x

0

ch′(cs)ds ≤ c2h′(x).

The case of c ≥ 1 is obtained from the first case by replacing c and cx by
1/c and x, respectively.

(iv) By the proof of (ii), for any C > 0, there exists D > 0 such that

h′(x) ≥ C(x−D) + h′(D)

for x > D. Then

h(x)− h(D) =

∫ x

D

h′(t)dt ≥
∫ x

D

(h′(D) + C(t−D))dt

=h′(D)(x−D) +
C(x2 −D)

2
− CD(x−D).

Since C is arbitrary, x2 = o(h(x)).

(v) By the inequality of (iv), for x ≥ 1,(
1

x

)3

h(x) ≤ h

(
1

x
· x
)

= h(1).

Then h(x) ≤ h(1)x3 for x ≥ 1.

(vi) Writing y = c and b = x, by (iii) for any b > 0 we have

h(by)

h(b)
≥ min(y2, y3) =

{
y3 if 0 < y ≤ 1

y2 if y > 1.

Hence

1 + y +
y2

2
− h(by)

h(b)
≤ 1 + y +

y2

2
−min(y2, y3).

It is easy to check numerically that the maximum of the right-hand side is less
than 2.

2.2 A generalized Hölder’s inequality

Recall that a game is called coherent if Reality can make the capital not to
increase at any round. Intuitively the coherence means existence of a probability
measure such that Reality moves as if her move is based on the measure. If
h(x) = xk, then, by Hölder’s inequality, we expect that the coherence implies

v
1/2
n ≤ w

1/k
n for all n. We give a similar inequality for a general hedge h, which

we will use later.
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Proposition 2.2. In UFQSH with h satisfying Assumption 1.3, the game is
coherent if and only if h(

√
vn) ≤ wn for all n.

Proof. Consider

g(x;M,V,W ) = Mx+ V (x2 − vn) +W (h(x)− wn).

Since the case vn = 0 or wn = 0 is trivial, we assume vn, wn > 0. By Skeptic’s
collateral duty, if M ̸= 0, then W > 0 or V > 0. We only consider this case.
Then g(±∞;M,V,W ) = ∞ and g(x;M,V,W ) attains minimum with respect
to x for fixed M,V,W . The game is not coherent if and only if

sup
M,V,W

min
x

g(x;M,V,W ) > 0

at some round n. If V ≥ 0, then putting x = 0 we have

g(0,M, V,W ) = −V vn −Wwn < 0,

thus we ignore this case. Furthermore we can let M = 0 because V (x2 − vn) +
W (h(x)− wn) is an even function and for any x0 > 0

min
x=±x0

g(x;M,V,W ) = −|M |x0 + V (x2
0 − vn) +W (h(x0)− wn).

Now write

g(x; 0, V,W ) = W ×
(
h(x)− wn − U(x2 − vn)

)
= Wf(x;U),

where U = −V/W > 0. The game is not coherent if and only if

sup
U>0

min
x>0

f(x;U) > 0

for some n. For x > 0

f ′(x;U) = h′(x)− 2Ux = 2x(
h′(x)

2x
− U).

Hence for given U , the solution x = x(U) of f ′(x) = 0 is uniquely given by

U =
h′(x)

2x
(3)

and f takes the unique minimum at x = x(U). Now the right-hand side of
(3) is strictly increasing in x. Hence x(U) is strictly increasing in U . By the
assumption on h, x = x(U) is differentiable in U . Also note x(0) = 0, x(∞) = ∞.
Let

f̃(U) = f(x(U);U) = h(x(U))− wn − U(x(U)2 − vn).

We now maximize f̃(U). Differentiating f̃(U) we have

f̃ ′(U) = h′(x(U))x′(U)− U × (2x(U)x′(U))− (x(U)2 − vn)

= [h′(x(U))− 2Ux(U)]x′(U)− (x(U)2 − vn)

= −(x(U)2 − vn).
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This implies that f̃ takes the unique maximum at U = U∗ satisfying x(U∗)2 =
vn. By substituting x(U∗)2 = vn we have

max
U>0

min
x>0

f(x;U) = f̃(U∗) = h(x(U∗))−wn − U∗(x(U∗)2 − vn) = h(
√
vn)−wn.

Hence the game is not coherent if and only if h(
√
vn)−wn > 0 for some n.

2.3 Examples of the stronger hedge

We give concrete examples of the stronger hedge satisfying the conditions in
Corollary 1.5.

Example 2.3. Let h(x) = |x|α for 2 < α ≤ 3. Then h satisfies Assumption 1.3
and the condition (1).

Example 2.4. More elaborate example is the following hedge:

h(x) = (1 + x)2 ln2(1 + x)− x2.

Note that h(x) = x2 ln2 x(1 + o(x)) as x → ∞ and∑
n

1

h(
√
n/ ln lnn)

< ∞.

This follows from the fact that for large C the following integral converges:∫ ∞

C

1

(x/ ln lnx) ln2(x/ ln lnx)
dx < ∞.

Differentiating h(x) successively we have

h′(x) = 2(1 + x) ln2(1 + x) + 2(1 + x) ln(1 + x)− 2x,

h′′(x) = 2 ln2(1 + x) + 6 ln(1 + x),

h′′′(x) =
4 ln(1 + x)

1 + x
− 6

x
,

h′′′′(x) = −4 ln(1 + x)

(1 + x)2
− 2

1 + x
.

Hence h ∈ C2, h(0) = h′(0) = h′′(0) = 0 and h′′ is strictly increasing, un-
bounded and concave.

2.4 Upper bound (validity)

We show the upper bound of the LIL under our assumptions.

Proposition 2.5. In UFQSH with h satisfying Assumption 1.3, Skeptic can
force (

An → ∞ and
∑
n

wn

h(bn)
< ∞

)
⇒ lim sup

n→∞

Sn√
2An ln lnAn

≤ 1. (4)
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By Theorem 1.2, it suffices to show the following lemma.

Lemma 2.6. In UFQSH with h satisfying Assumption 1.3, Skeptic can force

An → ∞ and
∑
n

wn

h(bn)
< ∞ ⇒ |xn| = o(bn). (5)

Proof. We consider the strategy with

K0 = D, Mn = Vn = 0, Wn =
1

h(ϵbn)

as long as Skeptic can keep Kn non-negative where ϵ > 0 is small and D is suf-
ficiently large. More precisely, we adopt a strategy combining accounts starting
with D = 1, 2, 3, . . . as in Miyabe and Takemura [5]. We show that this strategy
forces (5).

The capital process is

Kn = D +
n∑

i=1

h(xi)

h(ϵbi)
−

n∑
i=1

wi

h(ϵbi)
.

By Proposition 2.1, we have
h(ϵbi) ≥ ϵ3bi

for all i. Then

Kn ≥K0 +
∑

i:|xi|≥ϵbi

h(xi)

h(ϵbi)
−

n∑
i=1

wi

h(ϵbi)

≥K0 +#{1 ≤ i ≤ n : |xi| ≥ ϵbi} −
1

ϵ3

n∑
i=1

wi

h(bi)
.

For a large D, the strategy keeps Kn non-negative. Hence Skeptic can force that

#{1 ≤ i ≤ n : |xi| ≥ ϵbi}

is finite for each ϵ.

2.5 Lower bound (sharpness)

Next we show the lower bound of the LIL under the same assumptions.

Proposition 2.7. In UFQSH with h satisfying Assumption 1.3, Skeptic can
force (

An → ∞ and
∑
n

wn

h(bn)
< ∞

)
⇒ lim sup

n→∞

Sn√
2An ln lnAn

≥ 1. (6)
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For our proof of the lower bound we closely follow the line of argument in
Section 5.3 of Shafer and Vovk [8]. Compared to Section 5.3 of Shafer and Vovk
[8] we will explicitly consider rounds before appropriate stopping times. Also
we will be more explicit in choosing ϵ’s and δ’s.

We assume that a sufficiently small ϵ > 0 is chosen first and fixed. For
definiteness we let ϵ < 1/8. We choose ϵ∗ = ϵ∗(ϵ) > 0 sufficiently small
compared to ϵ, choose δ = δ(ϵ, ϵ∗) > 0 sufficiently small, and finally choose
C = C(ϵ, ϵ∗, δ) > 0 sufficiently large.

More explicitly, i) ϵ∗ has to satisfy (21) below, ii) δ has to satisfy (10), (11),
(13), (14), (15), (18), (20), (21), (23) below, and iii) C has to satisfy (19), (20),
(25) below.

Let κ be such that

κ ≤
√

2 ln lnC

C
.

Define stopping time τ1, τ2, τ3 by

τ1 = min

{
n | vi > δ2

C

ln lnC
,wi > δh

(√
C

ln lnC

)

or
n∑

i=1

wi > δh

(√
C

ln lnC

)
ln lnC

}
,

τ2 = min{n | An ≥ C},

τ3 = min

{
n | |xn| > δ

√
C

ln lnC

}
.

2.5.1 Approximations

Lemma 2.8. In UFQSH with h satisfying Assumption 1.3, there exists a mar-
tingale Ln = L≤,κ

n such that L(□) = 1 and

Ln

exp(κSn − κ2C/2)
≤ (lnC)4δ (7)

for n such that n = τ2 < τ1, τ3. Furthermore Ln is positive and

Ln

exp(κSn − (1− δ)κ2An/2)
≤ (lnC)4δ (8)

for n < τ1, τ2, τ3.

Proof. Consider the martingale L satisfying L(□) = 1 and

Li = Li−1

1 + κxi +
κ2x2

i

2 − h(xi)
h(κ−1)

1 + κ2vi

2 − wi

h(κ−1)

for all i.
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We show that Ln is positive for n < τ1, τ3. First we prove that

1 +
κ2vi
2

− wi

h(κ−1)
> 0.

Note that
1√
2
·
√

C

ln lnC
≤ κ−1.

Then

h(κ−1) ≥ h

(
1√
2
·
√

C

ln lnC

)
≥ 1

2
√
2
h

(√
C

ln lnC

)
. (9)

For i < τ1, we have

wi ≤ δh

(√
C

ln lnC

)
.

Then

δh(κ−1) ≥ δ

2
√
2
h

(√
C

ln lnC

)
≥ wi

2
√
2

and

wi

h(κ−1)
≤ 2

√
2δ < 1. (10)

Hence

1 +
κ2vi
2

− wi

h(κ−1)
> 1− wi

h(κ−1)
> 0.

Next we prove that

1 + κxi +
κ2x2

i

2
− h(xi)

h(κ−1)
> 0

for i < τ1, τ3. For i < τ3, we have

|κxi| ≤
√

2C

ln lnC
· δ
√

C

ln lnC
=

√
2δ < 1. (11)

Then
h(xi) = h(κxi · κ−1) ≤ |κxi|2h(κ−1) ≤ 2δ2h(κ−1).

Next we show the inequality (8) for this Ln. We claim that

1 + κxi +
κ2x2

i

2
− h(xi)

h(κ−1)
≤ eκxi . (12)

for all i. If κxi ≥ 0, then this inequality clearly holds. If κxi ≤ −1, then

1 + κxi ≤ 0

11



and
h(xi) = h(κ−1κxi) ≥ |κxi|2h(κ−1),

thus the left-hand side of (12) is non-positive. If −1 < κxi < 0, then

h(xi) = h(κ−1κxi) ≥ |κxi|3h(κ−1),

thus

1 + κxi +
κ2x2

i

2
− h(xi)

h(κ−1)
≤ 1 + κxi +

κ2x2
i

2
− κ3x3

i

6
≤ eκxi .

Then

n∏
i=1

(1 + κxi + κ2x2
i /2− h(xi)/h(κ

−1)) ≤
n∏

i=1

eκxi = eκSn .

Note that
0 ≤ t ≤ δ ⇒ ln(1 + t) ≥ (1− δ)t (13)

and
0 ≤ t ≤ δ ⇒ ln(1− t) ≥ −(1 + δ)t (14)

for sufficiently small δ. Note that wi/h(κ
−1) ≤ δ for i ≤ n < τ1 and

κ2vi
2

≤ 2 ln lnC

C
· δ2 C

ln lnC

1

2
= δ2.

Then if
κ2vi
2

− wi/h(κ
−1) ≥ 0,

we have

ln(1 +
κ2vi
2

− wi/h(κ
−1)) ≥ (1− δ)

κ2vi
2

− (1− δ)wi/h(κ
−1).

On the other hand, if
κ2vi
2

− wi/h(κ
−1) < 0,

then

ln(1 +
κ2vi
2

− wi/h(κ
−1)) ≥ (1 + δ)

κ2vi
2

− (1 + δ)wi/h(κ
−1).

Combined with them, we have

ln(1 +
κ2vi
2

− wi/h(κ
−1)) ≥ (1− δ)

κ2vi
2

− (1 + δ)wi/h(κ
−1).

Thus

n∑
i=1

ln(1 +
κ2vi
2

− wi/h(κ
−1)) ≥ (1− δ)κ2

2

n∑
i=1

vi − (1 + δ)/h(κ−1)

n∑
i=1

wi

12



and

lnLn ≤ κSn − (1− δ)κ2

2

n∑
i=1

vi +
(1 + δ)

h(κ−1)

n∑
i=1

wi.

By the inequality (9), we have

h(κ−1) ≥ 1

2
√
2
h

(√
C

ln lnC

)
.

Hence

n∑
i=1

wi ≤ δh

(√
C

ln lnC

)
ln lnC ≤ 2

√
2δh(κ−1) ln lnC

for n < τ1. Thus

lnLn ≤ κSn − (1− δ)κ2

2

n∑
i=1

vi + 2
√
2δ(1 + δ) ln lnC

≤ κSn − (1− δ)κ2

2
An + 4δ ln lnC

for sufficiently small δ such that

2
√
2(1 + δ) < 3. (15)

Hence (8) is proved.
The inequality above also implies (7) because, for n = τ2,

lnLn − κSn +
κ2C

2
≤κ2C

2
− (1− δ)κ2C

2
+ 2

√
2δ(1 + δ) ln lnC

≤δ ln lnC + 2
√
2δ(1 + δ) ln lnC

<4δ ln lnC.

Lemma 2.9. In UFQSH with h satisfying Assumption 1.3, there exists a posi-
tive martingale Ln = L≥,κ such that L(□) = 1,

Ln

exp(κSn − κ2C/2)
≥ (lnC)−4δ (16)

for n such that n = τ2 < τ1, τ3. Furthermore for n < τ1, τ2, τ3

Ln

exp(κSn − (1 + δ)κ2An/2)
≥ 1. (17)

The proof is the same as Lemma 5.2 in Shafer and Vovk [8], except that we
also explicitly consider n < τ2.
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Proof. Let

f(t) = 1 + t+ (1 + δ)
t2

2

and consider the martingale L satisfying L(□) = 1 and

Li = Li−1
1 + κxi + (1 + δ)κ2x2

i /2

1 + κ2vi/2
= Li

f(κxi)

1 + (1 + δ)κ2vi/2

for all i. For i < τ3,

|κxi| ≤
√

2 ln lnC

C
· δ
√

C

ln lnC
=

√
2δ.

Since

|t| ≤
√
2δ ⇒ 1 + t+ (1 + δ)

t2

2
≥ et, (18)

for sufficiently small δ we have

n∏
i=1

f(κxi) ≥
n∏

i=1

eκxi = eκSn .

Since ln(1 + t) ≤ t,

n∑
i=1

ln(1 + (1 + δ)
κ2vi
2

) ≤ (1 + δ)
n∑

i=1

κ2vi
2

.

It follows that

lnLn ≥ κSn − (1 + δ)
κ2

2

n∑
i=1

vi = κSn − (1 + δ)
κ2

2
An.

Hence (16) is proved.
The last inequality implies (17) because, for n = τ2,

lnLn − κSn +
κ2C

2
≥κ2C

2
− (1 + δ)

κ2

2

(
C + δ2

C

ln lnC

)
=− δ

κ2

2
C − (1 + δ)

κ2

2
δ2

C

ln lnC

≥− δ ln lnC − (1 + δ)δ2

≥− 4δ ln lnC

for sufficiently large C such that

3 ln lnC > δ(1 + δ). (19)
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2.5.2 Construction of a martingale

Lemma 2.10. Choose C sufficiently large for a given ϵ. In UFQSH with h
satisfying Assumption 1.3, there exists a martingale N such that

(i) N (□) = 1,

(ii) For n such that n = τ2 < τ1, τ3 and

Sn ≤ (1− ϵ)
√
2C ln lnC,

we have

Nn ≥ 1 +
1

lnC

(iii) Nn is positive for n ≤ τ1, τ2, τ3.

Proof. Choose ϵ∗ and δ sufficiently small and C sufficiently large. Let

κ1 = (1− ϵ)

√
2 ln lnC

C
, κ2 = (1 + ϵ∗)κ1, κ3 = (1 + ϵ∗)κ2.

Define a martingale Mn by

Mn = 3L≤,κ2
n − L≥,κ1

n − L≥,κ3
n ,

where L≤,κ
n is the martingale bounded from above in Lemma 2.8 and L≥,κ

n is
the martingale bounded from below in Lemma 2.9. Furthermore define Nn by

Nn = 1 +
1−Mn

lnC
.

Since M(□) = 1, N (□) = 1.
First we prove that Mn ≤ 0 for n = τ2 < τ1, τ3 and Sn ≤ (1−ϵ)

√
2C ln lnC.

The value Mn bounded from above by

Mn ≤ L≤,κ2
n − L≥,κ1

n

≤ 3 exp((1 + ϵ∗)κ1Sn − (1 + ϵ∗)2κ2
1C/2)(lnC)4δ

− exp(κ1Sn − κ2
1C/2)(lnC)−4δ

= exp(κ1Sn − κ2
1C/2)(lnC)−4δ

× (3 exp(ϵ∗κ1Sn − ϵ∗(2 + ϵ∗)κ2
1C/2)(lnC)8δ − 1).

This is negative because

ϵ∗κ1Sn − ϵ∗(2 + ϵ∗)κ2
1C/2 ≤ϵ∗(1− ϵ)22 ln lnC − ϵ∗(2 + ϵ∗)(1− ϵ)2 ln lnC

≤− (ϵ∗)2(1− ϵ)2 ln lnC

<− ln 3− 8δ ln lnC
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for sufficiently small δ and sufficiently large C such that

8δ <
1

2
(ϵ∗)2(1− ϵ)2,

1

2
(ϵ∗)2(1− ϵ)2 ln lnC > ln 3. (20)

Next we prove that Nn is positive for n ≤ min(τ1, τ2) < τ3. We distinguish
two cases depending on the value of Sn. Consider the case that

Sn < κ3An +
5δ ln lnC

κ2ϵ∗
.

Then by Lemma 2.8

lnL≤,κ2
n ≤ κ2Sn − (1− δ)

κ2
2

2
An + 4δ ln lnC

≤ κ2(κ3An +
5δ ln lnC

κ2ϵ∗
)− (1− δ)

κ2
2

2
An + 4δ ln lnC

=
κ2
2

2
An(2(1 + ϵ∗)− (1− δ)) +

1 + ϵ∗

ϵ∗
4δ ln lnC

=
ln lnC

C
An(1 + ϵ∗)2(1 + 2ϵ∗ + δ)(1− ϵ)2 +

5 + 4ϵ∗

ϵ∗
δ ln lnC

≤
(
(1 + ϵ∗)2(1 + 2ϵ∗ + δ)(1− ϵ)2 +

5 + 4ϵ∗

ϵ∗
δ
)
ln lnC < ln lnC.

We can assume that

(1 + ϵ∗)2(1 + 2ϵ∗ + δ)(1− ϵ)2 +
5 + 4ϵ∗

ϵ∗
δ < 1. (21)

Hence writing cϵ = (1 + ϵ∗)2(1 + 2ϵ∗ + δ)(1− ϵ)2 + δ(5 + 4ϵ∗)/ϵ∗ < 1 we have

L≤,κ2
n

lnC
≤ (lnC)cϵ−1 → 0 (C → ∞) (22)

and in this case Nn is positive for large C.
Now consider the other case Sn ≥ κ3An + 5δ ln lnC/(κ2ϵ

∗). Then

ln
L≤,κ2
n

L≥,κ3
n

≤ κ2Sn − (1− δ)
κ2
2

2
An + 4δ ln lnC − (κ3Sn − (1 + δ)

κ2
3

2
An)

= (κ2 − κ3)Sn +
An

2

(
(1 + δ)κ2

3 − (1− δ)κ2
2

)
+ 4δ ln lnC

= −ϵ∗κ2Sn +
κ2
2

2
An

(
(1 + δ)(1 + ϵ∗)2 − (1− δ)) + 4δ ln lnC

≤ −ϵ∗
(
(1 + ϵ∗)κ2

2An +
5δ ln lnC

ϵ∗
)

+
κ2
2

2
An

(
(1 + δ)(1 + ϵ∗)2 − (1− δ)) + 4δ ln lnC

=
κ2
2

2
An

(
− 2ϵ∗(1 + ϵ∗) + (1 + ϵ∗)2 − 1 + δ((1 + ϵ∗)2 + 1))− δ ln lnC

=
κ2
2

2
An

(
− (ϵ∗)2 + δ((1 + ϵ∗)2 + 1))− δ ln lnC < 0
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for δ such that
−(ϵ∗)2 + δ((1 + ϵ∗)2 + 1)) < 0. (23)

In this case
L≤,κ2
n

L≥,κ3
n

≤ (lnC)−δ → 0 (C → ∞) (24)

and Nn is positive for large C.
Hence at round n ≤ min(τ1, τ2) < τ3, Nn is positive for large C in both

cases.
We finally consider the case n = τ3 ≤ τ1, τ2. The difficulty with the stopping

time τ3 is that it depends on Reality’s move xn, thus it is after Skeptic uses the
strategy that Skeptic know whether n = τ3. We need to make sure that Nn is
positive even if Reality has chosen a very large |xn| at the round n. By (vi) of
Proposition 2.1

1 + κxi +
κ2x2

i

2
− h(xi)

h(κ−1)
= 1 + y +

y2

2
− h(by)

h(b)
(y = κxi, b = κ−1).

Hence for all xi and κ > 0

1 + κxi +
κ2x2

i

2
− h(xi)

h(κ−1)
≤ 2

and the relative growth of L≤,κ2
n is bounded by 3 from above. Hence at n =

τ3 ≤ τ1, τ2
L≤,κ2
n ≤ 3L≤,κ2

n−1 .

Also for all xi and κ > 0

1 + κxi + (1 + δ)
κ2x2

i

2
> 1 + κxi +

κ2x2
i

2
≥ 1

2

Hence the relative growth of L≥,κ3
n is bounded by 1/3 from below. Hence at

n = τ3 ≤ τ1, τ2
L≤,κ2
n

L≥,κ3
n

≤ 9×
L≤,κ2

n−1

L≥,κ3

n−1

.

Then Nn is positive at n = τ3 ≤ τ1, τ2. by choosing C large enough in (22) and
(24) such that

(lnC)cϵ−1 < 1/3 and (lnC)−δ < 1/9. (25)

2.5.3 Strategy forcing the lower bound

Here we discuss Skeptic’s strategy forcing the lower bound in Proposition 2.7.
For each sufficiently small ϵ > 0, we want to construct a positive capital process
Kn such lim supn Kn = ∞ for any path satisfying the antecedent in (6) and

Sn ≤ (1− 2ϵ)
√
2An ln lnAn (26)
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for all sufficiently large An. We also assume that Skeptic is already employing
a strategy forcing the upper bound in LIL for −Sn with a small initial capital.
Hence Sn ≥ −(1 + ϵ)

√
2An ln lnAn for all sufficiently large An. For a path

satisfying the antecedent in (6) and the inequality in (26), at the round n′ with
An′ = (D + 1)An we have

Sn′ ≤ (1− 2ϵ)
√
2(D + 1)An ln ln(D + 1)An.

Then

Sn′ − Sn ≤ (1− 2ϵ)
√
2DAn ln lnDAn + (1 + ϵ)

√
2An ln lnAn

Let D = 1/ϵ4. Recall that we assumed ϵ < 1/8 for definiteness. For this
D = 1/ϵ4 it is easily seen that for all sufficiently large An we have

(1− 2ϵ)
√
2(D + 1)An ln ln(D + 1)An + (1 + ϵ)

√
2An ln lnAn

≤ (1− ϵ)
√
2DAn ln lnDAn

and
Sn′ − Sn ≤ (1− ϵ)

√
2DAn ln lnDAn.

Now, if necessary, we increase D to D = max(C, 1/ϵ4), where C is taken suffi-
ciently large to satisfy requirements ((19), (20), (25)) in the previous sections.

Now we consider the following strategy based on the strategy of Lemma 2.10
with C replaced by Dk where k ∈ N.

Start with initial capital K = 1.
Set k = 1.
Do the followings repeatedly:

C := Dk.
Apply the strategy in Lemma 2.10 until

(i) vn > δ2 C
ln lnC , wn > δh(

√
C

ln lnC ),

or
∑n

i=1 wi > δh
(√

C
ln lnC

)
ln lnC,

(ii) An ≥ C,
or
(iii) |xn| > δ

√
C/ ln lnC,

Set k = max{k + 1,min{m : Dm > An}}.

The “until” command is understood exclusively for (i), but inclusively (ii)
and (iii). If (i) happens, Skeptic does not apply the strategy of Lemma 2.10
and let 0 = Mn = VN = Wn. He increases k (and C) so that (i) does not hold
(such k always exists) and Skeptic can apply the strategy for the increased C. If
(ii) happens, Skeptic continues to apply the strategy and go to the next k after
that. Note that, Skeptic can observe whether (i) or (ii) happened or not before
his move, because (i) and (ii) only depend on Forecaster’s move, but he knows
whether (iii) happens or not only after Skeptic applied a strategy, so “until”
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command should be inclusive for (iii). This point was already discussed at the
end of our proof of Lemma 2.10.

Suppose that the path satisfies the antecedent in (6) and the inequality in
(26). Since An → ∞, k will go indefinitely by (ii).

First we claim that

vn = o(b2n), wn = o(bn) and

n∑
i=1

wi = o(h(bn)).

The second formula follows from
∑

n wn/h(bn) < ∞ and the third formula
follows from

∑
n wn/h(bn) < ∞ and Kronecker’s lemma. We show that

vn = o(b2n).

Suppose otherwise. Then, for some c such that 0 < c < 1,

√
vn
bn

> c

for infinitely many n. Since h(cx)/h(x) ≥ c3,

h(
√
vn)

h(bn)
≥ h(cbn)

h(bn)
≥ c3

for infinitely many n, which contradicts the fact that

h(
√
vn) ≤ wn = o(h(bn))

by Proposition 2.2.
We claim that (i) and (iii) happen only finitely many times. Consider the

case that k is sufficiently large. Then n is large, thus, by the fact showed above,
we have

vn ≤ δ2

2
b2n, wn ≤ δ

2
bn,

n∑
i=1

wi ≤
δ

2
h(bn) and |xn| ≤

δ

2

√
An

ln lnAn
. (27)

If An ≥ C, then An−1 < C. Then, in any case,

An = An−1 + vn < C +
δ2

2

An

ln lnAn
< δAn,

which implies
C > (1− δ)An.

Since An is sufficiently large too,

bn
2

=
1

2

√
An

ln lnAn
<

√
(1− δ)An

ln ln(1− δ)An
,
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thus, by (27), we have

vn ≤ δ2C

ln lnC
, wn ≤ δ

√
C

ln lnC
,

n∑
i=1

wi ≤ δh(

√
C

ln lnC
) and |xn| ≤ δ

√
C

ln lnC
.

Hence (i) and (iii) do not happen when k is sufficiently large.
Note that k is set to be k + 1 at all but finitely many times. As we showed

above, we have
Dk = C > (1− δ)An,

thus
Dk+1 > (1− δ)DAn > An.

Hence from some k on (ii) always happens and

n∑
i=1

xi ≤ (1− ϵ)
√
2C ln lnC

will be satisfied. Then lim supn Kn = ∞ because∏
k

(
1 +

1

lnDk

)
=
∏
k

(
1 +

1

k lnD

)
= ∞.

This completes the proof of Proposition 2.7.

2.6 Proof of the corollary

Finally we give a proof of Corollary 1.5. First we give the definition of compli-
ance.

Definition 2.11 (Miyabe and Takemura [5]). By a strategy R, Reality complies
with the event E if

(i) irrespective of the moves of Forecaster and Skeptic, both observing their
collateral duties, E happens, and

(ii) supn Kn < ∞.

Theorem 2.12 (Miyabe and Takemura [5]). In the unbounded forecasting, if
Skeptic can force an event E, then Reality complies with E.

This theorem also holds for UFQSH by essentially the same proof.

Proof of Corollary 1.5. The implication of (i)⇒(ii) immediately follows from
the main result. The implication of (ii)⇒(iii) follows from the result above.

Let us show (iii)⇒(i). Consider the case that Skeptic uses the strategy with
which he can force

lim sup
n→∞

Sn −mn√
2n ln lnn

=
√
v, (28)

and that Reality uses the strategy with which she can comply with (2). Then
both (2) and (28) hold for the realized path {xn}. This implies (i).
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Discussion

We gave a sufficient condition for the law of the iterated logarithm in game-
theoretic probability with quadratic and stronger hedges. The main difference
from the result in Shafer and Vovk [8] is that we could show the lower bound
(sharpness) in a non-predictable protocol. The assumption of the stronger hedge
is strong enough to imply the result which has a similar form as Hartman-
Wintner’s LIL and Strassen’s converse.

However the condition (1) says that there should be a gap between quadratic
hedge and the stronger hedge. The authors do not know whether the condition
can be weakened so that the hedge is as close to quadratic one as one wants. The
authors also would like to know other formulations of i.i.d. in game-theoretic
probability.
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[3] A. N. Kolmogorov. Über das Gesetz des Iterierten Logarithmus. Math.
Ann., 101:126–135, 1929.

[4] J. Marcinkiewicz and A. Zygmund. Remarque sur la loi du logarithme itéré.
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