Reference List

Kenshi Miyabe*

October 5, 2012

References

[1] S. Abramsky and A. Jung. Domain theory. Oxford University Press, 1994.
[2] K. Ambos-Spies and P. Fejer. Degrees of Unsolvability. Unpublished preprint., 2006.
[3] K. Ambos-Spies, K. Weihrauch, and X. Zheng. Weakly computable real numbers. Journal of Complexity, 16:679-690, 2000.
[4] Aristotle. The metaphysics.
[5] S. Arora and B. Barak. Computational complexity: a modern approach. Cambridge University Press, 2009.
[6] E. A. Asarin and A. V. Prokovskiy. Primeenenie kolmogorovskoi slozhnosti k anlizu dinamiki upravlemykh sistem. Automatika i Telemekhanika, 1:2533, 1986.
[7] V. Becher. Turing's Normal Numbers: Towards Randomness. In S. B. Cooper, A. Dawar, and B. Löwe, editors, CiE 2012, volume 7318 of LNCS, pages 35-45, Heidelberg, 2012. Springer.
[8] A. S. Besicovitch. A general form of the covering principle and relative differentiation of additive functions. Proceedings of the Cambridge Philosophical Society, 41(2):103-110, 1945.
[9] L. Bienvenu, A. Day, M. Hoyrup, I. Mezhirov, and A. Shen. A constructive version of Birkhoffs ergodic theorem for Martin-Löf random points. Information and Computation, 2011.
[10] L. Bienvenu, A. Day, I. Mezhirov, and A. Shen. Ergodic-type characterizations of algorithmic randomness. Programs, Proofs, Processes, pages 49-58, 2010.

[^0][11] L. Bienvenu, R. Downey, N. Greenberg, A. Nies, and D. Turetsky. Characterizing lowness for Demuth randomness. Submitted.
[12] L. Bienvenu and W. Merkle. Reconciling data compression and kolmogorov complexity. In L. Arge, C. Cachin, T. Jurdziński, and A. Tarlecki, editors, Automata, Languages and Programming, volume 4596 of Lecture Notes in Computer Science, pages 643-654, Berlin, 2007. Springer.
[13] L. Bienvenu and J. S. Miller. Randomness and lowness notions via open covers. Annals of Pure and Applied Logic, 163:506-518, 2012.
[14] P. Billingsley. Convergence of Probability Measures. John Wiley, New York, 1968.
[15] V.I. Bogachev. Measure theory. Springer, 2007.
[16] Émile Borel. Les probabilités Dénombrables et leurs applications arithmétiques. Rendiconti del Circolo Matematico di Palermo, 27:247270, 1909.
[17] Volker Bosserhoff. Notions of probabilistic computability on represented spaces. Journal of Universal Computer Science, 14(6):956-995, 2008.
[18] C. Bourke, J. M. Hitchcock, and N. V. Vinodchandran. Entropy rates and finite-state dimension. Theoretical Computer Science, 349:392-406, 2005.
[19] V. Brattka. Computable versions of baire's category theorem. Mathematical Foundations of Computer Science 2001, pages 224-235, 2001.
[20] V. Brattka, P. Hertling, and K. Weihrauch. A tutorial on computable analysis. New Computational Paradigms, pages 425-491, 2008.
[21] V. Brattka, J. S. Miller, and A. Nies. Randomness and differentiability. Submitted.
[22] Vasco Brattka. Computability over topological structures. In S. B. Cooper and S. S. Goncharov, editors, Computability and Models, pages 93-136. Kluwer Academic Publishers, New York, 2003.
[23] Vasco Brattka. Limit computable functions and subsets. Unpublished notes, 2007.
[24] B. M. Brown. A general three-series theorem. Proc. Amer. Math. Soc., 28:573-577, 1971.
[25] B. M. Brown. Erratum: "A general three-series theorem". Proc. Amer. Math. Soc., 32:634, 1972.
[26] C. Calude. Information and randomness: An algorithmic perspective. Springer Verlag, 2002.
[27] Cristian Calude, Peter Hertling, Bakhadyr Khoussainov, and Yongge Wang. Recursively enumerable reals and Chaitin Omega numbers. Theoretical Computer Science, 255(1):125-149, 2001.
[28] G. Chaitin. Information-theoretical characterizations of recursive infinite strings. Theoretical Computer Science, 2:45-48, 1976.
[29] G. J. Chaitin. On the length of programs for computing finite binary sequences. J. of the ACM, 13:547-569, 1966.
[30] G. J. Chaitin. A theory of program size formally identical to information theory. Journal of the Association for Computing Machinery, 22:329-340, 1975.
[31] D. G. Champernowne. The Construction of Decimals Normal in the Scale of Ten. Journal of the London Mathematical Society, 8:254-260, 1933.
[32] S. B. Cooper. Computability theory. CRC Press, 2004.
[33] A. H. Copeland and P. Erdös. Note on normal numbers. Bulletin of the American Mathematical Society, 52:857-860, 1946.
[34] D. Daiamondstone and B. Kjos-Hanssen. Martin-Löf randomness and Galton-Watson processes. Annals of Pure and Applied Logic, 163(1), 2012.
[35] George Davie. The Borel-Cantelli lemmas, probability laws and Kolmogorov complexity. Annals of Probability, 29(4):1426-1434, 2001.
[36] A. Philip Dawid. Statistical theory: the prequential approach (with discussion). Journal of the Royal Statistical Society A, 147:278-292, 1984.
[37] A. Philip Dawid and Vladmir Vovk. Prequential probability: principles and properties. Bernoulli, 5:125-162, 1999.
[38] Adam R. Day and Joseph S. Miller. Randomness for non-computable measures. To appear in the Transactions of the American Mathematical Society.
[39] O. Demuth. The differentiability of constructive functions of weakly bounded variation on pseudo numbers. Comment. Math. Univ. Carolin., 16(3):583-599, 1975.
[40] O. Demuth. Remarks on the structure of tt-degrees based on constructive measure theory. Commentationes Mathematicae Universitatis Carolinae, 29:233-247, 1988.
[41] D. Diamondstone, N. Greenberg, and D. Turetsky. A van lambalgen theorem for demuth randomness. Submitted.
[42] R. Downey, N. Greenberg, N. Mihailovic, and A. Nies. Lowness for computable machines. In C. T. Chong, Q. Feng, T. A. Slaman, W. H. Woodin, and Y. Yang, editors, Computational Prospects of Infinity: Part II, Lecture Notes Series, pages 79-86. World Scientific Publishing Company, 2008.
[43] R. Downey and E. Griffiths. Schnorr randomness. Journal of Symbolic Logic, 69(2):533-554, 2004.
[44] R. Downey, E. Griffiths, and G. LaForte. On Schnorr and computable randomness, martingales, and machines. Mathematical Logic Quarterly, 50(6):613-627, 2004.
[45] R. Downey and D. R. Hirschfeldt. Algorithmic Randomness and Complexity. Springer, Berlin, 2010.
[46] R. G. Downey, D. R. Hirschfeldt, and A. Nies. Randomness, computability and density. SIAM Journal on Computing, 31:1169-1183, 2002.
[47] Rod Downey, Denis R. Hirschfeldt, Joseph S. Miller, and A. Nies. Relativizing Chaitin's halting probability. Journal of Mathematical Logic, 5(2):167-192, 2005.
[48] Abbas Edalat. A computable approach to measure and integration theory. Information and Computation, 207(5):642-659, 2009.
[49] V. A. Egorov. A way of proving theorems on the law of the iterated logarithm. Theory Probab. Appl., 29:126-132, 1984.
[50] V. A. Egorov. On the strong law of large numbers and the law of the iterated logarithm for martingales and sums of independent random variables. Theor. Veroyatnost. i Primenen., 35(4):691-703, 1990.
[51] Evan Fisher. On the law of the iterated logarithm for martingales. Ann. Probab., 20(2):675-680, 1992.
[52] W. Fouché. Arithmetical representations of Brownian motion I. Journal of Symbolic Logic, 65(1):421-442, 2000.
[53] J. Franklin, N. Greenberg, J. Miller, and K. Ng. Martin-Löf random points satisfy Birkhoff's ergodic theorem for effectively closed sets. Proceedings of the $A M S, 140: 3623-3628,2012$.
[54] J. N. Y. Franklin and F. Stephan. Schnorr trivial sets and truth-table reducibility. Journal of Symbolic Logic, 75(2):501-521, 2010.
[55] J. N. Y. Franklin, F. Stephan, and L. Yu. Relativizations of Randomness and Genericity Notions. Technical report, School of Computing, National University of Singapore, 2009. Technical Report TRA2/09.
[56] J. N. Y. Franklin, F. Stephan, and L. Yu. Relativizations of randomness and genericity notions. Bulletin of the London Mathematical Society, 43(4):721-733, 2011.
[57] J.N.Y. Franklin and F. Stephan. Van Lambalgen's Theorem and high degrees. submitted.
[58] Johanna N. Y. Franklin and Keng Meng Ng. Difference randomness. In Proc. Amer. Math. Soc, volume 139, pages 345-360, 2011.
[59] C. Freer, B. Kjos-Hanssen, A. Nies, and F. Stephan. Algorithmic aspects of Lipschitz functions. In preparation.
[60] P. Gács. Exact expressions for some randomness tests. Z. Math. Log. Grdl. M., 26:385-394, 1980.
[61] P. Gács. Every set is reducible to a random one. Information and Control, 70:186-192, 1986.
[62] P. Gács. Uniform test of algorithmic randomness over a general space. Theoretical Computer Science, 341:91-137, 2005.
[63] Péter Gács, Mathieu Hoyrup, and Cristobal Rojas. Randomness on Computable Probability Spaces - A Dynamical Point of View. Theory of Computing System, 48(3):465-485, 2011.
[64] Stefano Galatolo, Mathieu Hoyrup, and Cristobal Rojas. A constructive Borel-Cantelli lemma. Constructing orbits with required statistical properties. Theoretical Computer Science, 410(21-23):2207-2222, 2009.
[65] Stefano Galatolo, Mathieu Hoyrup, and Cristobal Rojas. Effective symbolic dynamics, random points, statistical behavior, complexity and entropy. Information and Computation, 208(1):23-41, 2010.
[66] D. Gilat. On the Nonexistence of a Three Series Condition for Series of Nonindependent Random Variables. The Annals of Mathematical Statistics, 42(1):409, 1971.
[67] D. Gilat. On the nonexistence of a three series condition for series of nonindependent random variables. The Annals of Mathematical Statistics, 42(1):409, 1971.
[68] D. Gillies. Philosophical theories of probability. Routledge, 2000.
[69] Tanja Grubba, Matthias Schröder, and Klaus Weihrauch. Computable metrization. Mathematical Logic Quarterly, 53(4-5):381-395, 2007.
[70] Alan Gut. Probability: a Graduate Course. Springer, New York, 2005.
[71] Ian Hacking. The Emergence of Probability. Cambridge University Press, London, 1975.
[72] A. Hájrek. Interpretations of probability. Stanford Encyclopedia of Philosophy, 2009.
[73] P. Hartman and A. Wintner. On the law of the iterated logarithm. American J. Math., 63:169-176, 1941.
[74] Peter Hertling and Klaus Weihrauch. Randomness Spaces. In Automata, Languages and Programming, Proceedings of the 25th International Colloquium, ICALP'98, pages 796-807. Springer-Verlag, 1998.
[75] Peter Hertling and Klaus Weihrauch. Random elements in effective topological spaces with measure. Information and Computation, 181(1):32-56, 2003.
[76] TP Hill. Conditional generalizations of strong laws which conclude the partial sums converge almost surely. The Annals of Probability, 10(3):828830, 1982.
[77] D. Hirschfeldt, A. Nies, and F. Stephan. Using random sets as oracles. Journal of the London Mathematical Society, 75:610-622, 2007.
[78] G. Hjorth and A. Nies. Randomness via effective descriptive set theory. Journal of the London Mathematical Society, 75(2):495-508, 2007.
[79] R. Hölzl and W. Merkle. Traceable sets. Theoretical Computer Science, pages 301-315, 2010.
[80] Yasunori Horikoshi and Akimichi Takemura. Implications of contrarian and one-sided strategies for the fair-coin game. Stochastic Process. Appl., 118(11):2125-2142, 2008.
[81] M. Hoyrup, C. Rojas, and K. Weihrauch. The Radon-Nikodym operator is not computable. In CCA 2011.
[82] M. Hoyrup, C. Rojas, and K. Weihrauch. Computability of the RadonNikodym derivative. Models of Computation in Context, pages 132-141, 2011.
[83] M. Hoyrup, C. Rojas, and K. Weihrauch. Computability of the radonnikodym derivative. In Benedikt Löwe, Dag Normann, Ivan Soskov, and Alexandra Soskova, editors, Models of Computation in Context, volume 6735 of Lecture Notes in Computer Science, pages 132-141. Springer, 2011.
[84] Mathieu Hoyrup and Cristobal Rojas. An Application of Martin-Löf Randomness to Effective Probability Theory. In CiE, pages 260-269, 2009.
[85] Mathieu Hoyrup and Cristobal Rojas. Applications of Effective Probability Theory to Martin-Löf Randomness. In ICALP (1), pages 549-561, 2009.
[86] Mathieu Hoyrup and Cristobal Rojas. Computability of probability measures and Martin-Löf randomness over metric spaces. Information and Computation, 207(7):830-847, 2009.
[87] M. Hutter. Universal artificial intelligence: Sequential decisions based on algorithmic probability. Springer, 2005.
[88] M. Hutter. On the foundations of universal sequence prediction. Theory and Applications of Models of Computation, pages 408-420, 2006.
[89] M. Hutter and A. Muchnik. On semimeasures predicting Martin-Löf random sequences. Theoretical Computer Science, 382:247-261, 2007.
[90] E. T. Jaynes. Probability theory: the logic of science. Cambridge University Press, 2003.
[91] S. Kautz. Degrees of Random Sets. PhD thesis, Cornell University, 1991.
[92] A.S. Kechris. Classical descriptive set theory. Springer, 1995.
[93] A. Y. Khinchin. Über einen Satz der Wahrscheinlichkeitrechnung. Fund. Mat., 6:9-20, 1924.
[94] B. Kjos-Hanssen. Infinite subsets of random sets of integers. Mathematical Research Letters, 16(1):103-110, 2009.
[95] B. Kjos-Hanssen. The probability distribution as a computational resource for randomness testing. Journal of Logic and Analysis, 2(10):1-13, 2010.
[96] B. Kjos-Hanssen, A. Nies, and F. Stephan. Lowness for the Class of Schnorr Random Reals. SIAM Journal on Computing, 35(3):647-657, 2005.
[97] A. Kolmogorov. Grundbegriffe der Wahrscheinlichkeitsrechnung. Springer, 1933.
[98] A. N. Kolmogorov. Über das Gesetz des Iterierten Logarithmus. Math. Ann., 101:126-135, 1929.
[99] A. N. Kolmogorov. Sur la loi forte des grands nombres. CRAS Paris, 191:910-912, 1930.
[100] A. N. Kolmogorov. On tables of random numbers. Sankhyā: The Indian Journal of Statistics, Series A, 25(4):369-376, 1963.
[101] A. N. Kolmogorov. Three approaches to the quantitative definition of information. Problems of Information Transmission, 1:1-7, 1965.
[102] C. Kreitz and K. Weihrauch. Theory of representations. Theoretical Computer Science, 38:35-53, 1985.
[103] M. Kumon, A. Takemura, and K. Takeuchi. Game-theoretic versions of strong law of large numbers for unbounded variables. Stochastics An International Journal of Probability and Stochastic Processes, 79(5):449-468, 2007.
[104] M. Kumon, A. Takemura, and K. Takeuchi. Sequential optimizing strategy in multi-dimensional bounded forecasting games. Stochastic Processes and their Applications, 121:155-183, 2011.
[105] S. A. Kurtz. Randomness and Genericity in the Degrees of Unsolvability. PhD thesis, University of Illinois at Urbana-Champaign, 1981.
[106] A. Kučera. Measure, Π_{1}^{0} classes, and complete extensions of PA. In Recursion Theory Week, volume 1141 of Lecture Notes in Mathematics, pages 245-259, Berlin, 1984, 1985. Springer.
[107] A. Kučera. On relative randomness. Ann. Pure Appl. Logic, 63:61-67, 1993.
[108] A. Kučera and T. Slaman. Randomness and recursive enumerability. SIAM Journal on Computing, 31(1):199-211, 2002.
[109] A. Kučera and S. Terwijn. Lowness for the class of random sets. J. Symbolic Logic, 64:1396-1402, 1999.
[110] H. Lebesgue. Leçons sur l'Intégration et la recherche des fonctions primitives. Gauthier-Villars, Paris, 1904.
[111] Henri Lebesgue. Sur l'intégration des fonctions discontinues. Annales scientifiques de l'École Normale Supérieure, 27:361-450, 1910.
[112] L. A. Levin. Some Theorems on the Algorithmic Approach to Probability Theory and Information Theory. PhD thesis, Moscow, 1971.
[113] L. A. Levin. On the notion of a random sequence. Soviet Mathematics Doklady, 14:1413-1416, 1973.
[114] L. A. Levin. Uniform tests of randomness. Soviet Math. Dokl., 17(2):337340, 1976.
[115] L. A. Levin. Randomness consevation inequalities: Information and independence in mathematical theories. Information and Control, 61(1):15-37, 1984.
[116] Leonid A. Levin. Laws of information conservation (nongrowth) and aspects of the foundation of probability theory. Problems of Information Transmission, 10:206-210, 1974.
[117] P. Lévy. Théorie de l'Addition des Variables Aléatoires. Gauthier-Villars, 1937.
[118] Ming Li and Paul Vitányi. An introduction to Kolmogorov complexity and its applications. Graduate Texts in Computer Science. Springer-Verlag, New York, third edition edition, 2009.
[119] J. H. Lutz. Gales and the constructive dimension of individual sequences. In U. Montanari, J. D. P. Rolim, and E. Welzl, editors, Automata, Languages and Programming. 27th International Colloquium, ICALP 2000. Geneva, Switzerland, July 9-15, 2000., volume 1853 of Lecture Notes in Computer Sciences, pages 902-913, Berlin, 2000. Springer.
[120] J. H. Lutz. Dimension in complexity classes. SIAM Journal on Computing, 32:1236-1259, 2003.
[121] J. H. Lutz. The dimensions of individual strings and sequences. Information and Computation, 187:49-79, 2003.
[122] J. Marcinkiewicz and A. Zygmund. Remarque sur la loi, du logarithme itéré. Fund. Math., 29:215-222, 1937.
[123] J. Marcinkiewicz and A. Zygmund. Sur les fonctions indépendantes. Fund. Math., 29:60-90, 1937.
[124] P. Martin-Löf. The Definition of Random Sequences. Information and Control, 9(6):602-619, 1966.
[125] W. Merkle and N. Mihailović. On the construction of effective random sets. Mathematical Foundations of Computer Science, pages 568-580, 2002.
[126] W. Merkle, N. Mihailović, and T. Slaman. Some results on effective randomness. Theory of Computing Systems, 39:702-721, 2006.
[127] W. Merkle, N. Mihailovic, and T.A. Slaman. Some results on effective randomness. Theory of Computing Systems, 39(5):707-721, 2006.
[128] W. Merkle, J. Miller, A. Nies, J. Reimann, and F. Stephan. KolmogorovLoveland randomness and stochasticity. Annals of Pure and Applied Logic, 138(1-3):183-210, 2006.
[129] J. S. Miller. Degrees of unsolvability of continuous functions. The Journal of Symbolic Logic, 69(2):555-584, 2004.
[130] J. S. Miller and L. Yu. On initial segment complexity and degrees of randomness. Transactions of the American Mathematical Society, 360:31933210, 2008.
[131] R. Von Mises. Mathematical theory of probability and statistics. Academic Press Inc, 1964.
[132] Michael W. Mislove. Local Dcpos, Local Cpos and Local Completions. Electr. Notes Theor. Comput. Sci., 20, 1999.
[133] Y. N. Moschovakis. Descriptive set theory. Elsevier, second edition, 2009.
[134] R. Nakajima, M. Kumon, A. Takemura, and K. Takeuchi. Approximations and asymptotics of upper hedging prices in multinomial models, 2010. arXiv:1007.4372v1. To appear in Japan Journal of Industrial and Applied Mathematics.
[135] A. Nies. Lowness properties and randomness. Advances in Mathematics, 197:274-305, 2005.
[136] A. Nies. Eliminating concepts. In Computational prospects of infinity II, volume 15 of IMS Lecture Notes Series, pages 225-248, 2008.
[137] A. Nies. Computability and Randomness. Oxford University Press, USA, 2009.
[138] A. Nies, F. Stephan, and S.A. Terwijn. Randomness, relativization and Turing degrees. Journal of Symbolic Logic, 70:515-535, 2005.
[139] P. Odifreddi. Classical Recursion Theory, volume 1. North-Holland, 1990.
[140] P. Odifreddi. Classical Recursion Theory, volume 2. North-Holland, 1999.
[141] N. Pathak, C. Rojas, and S. G. Simpson. Schnorr randomness and the Lebesgue Differentiation Theorem. To appear in Proceedings of the American Mathematical Society.
[142] V. V. Petrov. Limit Theorems of Probability Theory: Sequences of Independent Random Variables. Oxford University Press, USA, 1995.
[143] V. V. Petrov. On the Law of the Iterated Logarithm for a Sequence of Independent Random Variables with Finite Variances. Journal of Mathematical Sciences, 118(6):5610-5612, 2003.
[144] Marian B. Pour-El and Jonathan I. Richards. Computability in analysis and physics. Springer, 1989.
[145] S. Rathmanner and M. Hutter. A Philosophical Treatise of Universal Induction. Entoropy, 13:1076-1136, 2011.
[146] Jason Rute. Randomness, martingales and differentiability. In preparation, 2011.
[147] G. Sacks. Degrees of Unsolvavility. PhD thesis, Princeton University, 1963.
[148] G. Sacks. On the degrees less than $\mathbf{0}^{\prime}$. Annals of Mathematics, 77:211-231, 1963.
[149] G. E. Sacks. Higher recursion theory. Springer, 1990.
[150] R. L. Schilling. Measures, integrals and martingales. Cambridge University Press, 2005.
[151] C. P. Schnorr. Zufälligkeit und Wahrscheinlichkeit, volume 218 of Lecture Notes in Mathematics. Springer-Verlag, Berlin-New York, 1971.
[152] C. P. Schnorr. Process complexity and effective random tests. Journal of Computer and System Sciences, 7:376-388, 1973.
[153] C. P. Schnorr and H. Stimm. Endliche Automaten und Zufallsfolgen. Acta Informatica, 1:345-359, 1972.
[154] C.P. Schnorr. A unified approach to the definition of a random sequence. Mathematical Systems Theory, 5:246-258, 1971.
[155] M. Schröder. Effective metrization of regular spaces. In Ker-I Ko, Anil Nerode, Marian B. Pour-el, Klaus Weihrauch, and Jiří Wiedermann, editors, Computability and Complexity in Analysis, volume 235 of Informatik Berichte, pages 63-80, FernUniversität, August 1998. CCA Workshop, Brno, Czech Republic, August, 1998.
[156] M. Schröder. Admissible Representations for Probability Measures. Mathematical Logic Quarterly, 53(4-5):431-445, 2007.
[157] G. Shafer and V. Vovk. Probability and Finance: It's Only a Game! Wiley, 2001.
[158] Glenn Shafer. Non-Additive Probabilities in the Work of Bernoulli and Lambert. Archive for History of Exact Sciences, 19(4):309-370, 1978.
[159] A. N. Shiryaev. Probability. Springer, second edition, 1995.
[160] R. I. Soare. Recursively enumerable sets and degrees. Perspectives in Mathematical Logic. Springer, Berlin, 1987.
[161] R. I. Soare. The history and concept of computability. Studies in Logic and the Foundations of Mathematics, 140:3-36, 1999.
[162] R. J. Solomonoff. A formal theory of inductive inference I, II. Information and Control, 7:1-22,224-254, 1964.
[163] R. J. Solomonoff. Complexity-based induction systems: Comparisons and convergence theorems. IEEE Transaction on Information Theory, IT-24:422-432, 1978.
[164] R.J. Solomonoff. Algorithmic probability: Theory and applications. Information Theory and Statistical Learning, pages 1-23, 2009.
[165] R. Solovay. Draft of paper (or series of papers) on Chaitin's work. unpublished notes, May 1975. 215 pages.
[166] F. Stephan. Martin-Löf random sets and PA-complete sets. In Logic Colloquium '02, volume 27 of Lecture Notes in Logic, pages 342-348. Association for Symbolic Logic, 2006.
[167] William F. Stout. A martingale analogue of Kolmogorov's law of the iterated logarithm. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 15:279290, 1970.
[168] V. Strassen. A converse to the law of the iterated logarithm. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 4:265-268, 1966.
[169] S. Takazawa. Convergence of series of moderate and small deviation probabilities in game-theoretic probability. Submitted.
[170] S. Takazawa. Exponential inequalities and the law of the iterated logarithm in the unbounded forecasting game, 2010. To appear in Annals of the Institute of Statistical Mathematics.
[171] S. Takazawa. An exponential inequality and the convergence rate of the strong law of large numbers in the unbounded forecasting game. Stochastics, 83:117-125, 2011.
[172] S. A. Terwijn and D. Zambella. Computational randomness and lowness. Journal of Symbolic Logic, 66(3):1199-1205, 2001.
[173] Jaroslav Tiser. Differentiation Theorem for Gaussian Measures on Hilbert Space. Transactions of the American Mathematical society, 308(2):655666, 1988.
[174] R. J. Tomkins. On the law of the iterated logarithm. Ann. Probability, 6(1):162-168, 1978.
[175] A. M. Turing. On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, 420:230-265, 1936.
[176] A. M. Turing. A note on normal numbers. In J. L. Britton, editor, Collected Works of A. M. Turing: Pure Mathematics, pages 263-265. North Holland, Amsterdam, 1992. with notes of the editor in 265-265.
[177] M. van Lambalgen. Random sequences. PhD thesis, University of Amsterdam, 1987.
[178] M. van Lambalgen. Randomness and foundations of probability: von Mises' axiomatisation of random sequences. Lecture Notes-Monograph Series, 30:347-367, 1996.
[179] J. Ville. Étude critique de la notion de collectif. Gauthier-Villars, 1939.
[180] R. von Mises. Grundlagen der Wahrscheinlichkeistrechnung. Mathematische Zeitschrift, 5:52-99, 1919.
[181] R. Von Mises. Probability, statistics, and truth. Dover Pubns, 1981.
[182] V. Vovk, A. Gammerman, and G. Shafer. Algorithmic learning in a random world. Springer Verlag, 2005.
[183] V. Vovk and V. Vyugin. On the empirical validity of the Bayesian method. Journal of the Royal Statistical Society. Series B (Methodological), 55(1):253-266, 1993.
[184] V. G. Vovk. The law of the iterated logarithm for random Kolmogorov, or chaotic, sequences. Theory of Probability and Its Applications, 32:413-425, 1987.
[185] V. G. Vovk. Kolmogorov-Stout law of the iterated logarithm. Mathematical Notes, 44(1), 1988.
[186] Vladimir Vovk and Alexander Shen. Prequential randomness and probability. Theoret. Comput. Sci., 411(29-30):2632-2646, 2010.
[187] Vladmir Vovk and Alexander Shen. Prequential randomness and probability. Theoretical Computer Science, 411:2632-2646, 2010.
[188] K. Weihrauch. Computably Regular Topological Spaces. Submitted.
[189] K. Weihrauch. A foundation for computable analysis. In D. S. Bridges et al., editor, Combinatorics, Complexity, and Logic, Discrete Mathematics and Theoretical Computer Science, pages 66-89, Singapore, 1997. Springer-Verlag. Proceedings of DMTCS'96, Auckland.
[190] K. Weihrauch. Computable Analysis: an introduction. Springer, Berlin, 2000.
[191] K. Weihrauch. The computable multi-functions on multi-represented sets are closed under programming. Journal of Universal Computer Science, 14(6):801-844, 2008.
[192] K. Weihrauch and T. Grubba. Elementary Computable Topology. Journal of Universal Computer Science, 15(6):1381-1422, 2009.
[193] Klaus Weihrauch. Computability on the Probability Measureson the Borel Sets of the Unit Interval. Theoretical Computer Science, 219(1-2):421-437, 1999.
[194] Klaus Weihrauch. Computable Separation in Topology, from T_{0} to T_{3}. In $C C A, 2009$.
[195] Klaus Weihrauch. Computable Separation in Topology, from T_{0} to T_{2}. Journal of Universal Computer Science, 16(18):2733-2753, 2010.
[196] Stephen Willard. General Topology. Addison-Wesley, 1970.
[197] D. Williams. Probability with Martingales. Cambridge University Press, 1991.
[198] Yongcheng Wu and Klaus Weihrauch. A computable version of the Daniell-Stone theorem on integration and linear functionals. Theoretical Computer Science, 359(1-3):28-42, 2006.
[199] M. Yasugi, T. Mori, and Y. Tsujii. Effective properties of sets and functions in metric spaces with computability structure. Theoretical Computer Science, 219(1-2):467-486, 1999.
[200] L. Yu. When van Lambalgen's Theorem fails. Proceedings of the American Mathematical Society, 135(3):861-864, March 2007.
[201] D. Zambella. On sequences with simple initial segments. Technical report, Univ. Amsterdam, 1990. ILLC technical report ML 1990-05.
[202] A. K. Zvonkin and L. A. Levin. The complexity of finite objects and the development of the concepts of information and randomness by means of the theory of algorithms. Russian Mathematical Surveys, 25(6):83-124, 1970.

[^0]: *Research Institute for Mathematical Sciences, Kyoto University, kmiyabe@kurims.kyotou.ac.jp

