An introduction to algorithmic randomness

Fourth Workshop on Game-Theoretic Probability and Related Topics 12 -14 Nov 2012 The University of Tokyo

Kenshi Miyabe Research Institute for Mathematical Sciences, Kyoto University

Overview

Defining randomness notions - three approaches
Each random sequence has a property
Existence of a random sequence with a propery
Partial randomness
Historical comment

Definitions of random sequences

ANT TALLING TY YALL

FAIR-COIN GAME **Players**: Skeptic, Reality **Protocol**: $\mathcal{K}_0 := 1.$ FOR n = 1, 2, ...: Skeptic announces $M_n \in \mathbb{R}$. Reality announces $x_n \in \{0, 1\}$.

$$\mathcal{K}_n := \mathcal{K}_{n-1} + M_n(x_n - \frac{1}{2}).$$

Collateral Duties: Skeptic must keep \mathcal{K}_n non-negative. Reality must keep \mathcal{K}_n from tending to infinity.

An interpretation

- 1. In the fair coin protocol, lim sup_n $\mathcal{K}_n < \infty$ almost surely.
- 2. Consider the realized sequence $\{x_n\}$.
- 3. $\{x_n\}$ is "random" with respect to Skeptic.
- 4. Fix a strategy of Skeptic.
- 5. Then $\{x_n\}$ is "random" with respect to the strategy.

How to describe a strategy

Let $\sigma \in 2^*$.

We write $d(\sigma)$ to mean $\mathcal{K}_{|\sigma|}$ when $\{x_n\} = \{\sigma(1), \sigma(2), \cdots\}$. Then

$$d(\sigma 0) + d(\sigma 1) = \mathcal{K}_{|\sigma|} + M_{|\sigma|}(0 - \frac{1}{2}) + \mathcal{K}_{|\sigma|} + M_{|\sigma|}(1 - \frac{1}{2})$$
$$= 2\mathcal{K}_{|\sigma|} = 2d(\sigma).$$

Thus all strategies should have this average property. Conversely, one can calculate M_n from d.

Martingales in randomness

Definition

A martingale is a function $d: 2^* \to \mathbb{R}^+$ such that

 $2d(\sigma) = d(\sigma 0) + d(\sigma 1).$

A martingale is a capital process but we think this is also describing a betting strategy.

A sequence $A \in 2^{\omega}$ is "random" for a martingale d if

 $\limsup_{n} d(A \upharpoonright n) < \infty.$

7

Random for a class

No sequence is "random" for every martingale d. So consider a countable class C of martingales.

Definition Let C be a countable class of martingales. Let us call a sequence A C-random if

 $\limsup_n d(A \upharpoonright n) < \infty$

for all $d \in \mathcal{C}$.

Computability is the essence

One natural class is the class of computable martingales.

A function $f: 2^* \to 2^*$ is computable if it is computable by a Turing machine.

The computability of functions $f : \mathbb{N} \to \mathbb{N}$ and $g : \mathbb{N} \to \mathbb{Q}$ are induced from the above.

A real α is computable if there is a computable sequence $\{p_n\}$ of rationals such that $|\alpha - p_n| \leq 2^{-n}$ for all n. The computability of a function $d : 2^* \to \mathbb{R}^+$ is defined similarly.

Computable randomness

Definition (Schnorr 1971) A sequence $A \in 2^*$ is called computably random if $\limsup_n d(A \upharpoonright n) < \infty$ for all computable martingales d.

ML-randomness

A real α is c.e. if there is an increasing computable sequence $\{p_n\}$ of rationals such that $\alpha = \lim_n p_n$. The notion of c.e. for a function $d : 2^* \to \mathbb{R}^+$ is defined similarly.

```
Theorem (Schnorr 1971)
A sequence A \in 2^{\omega} is Martin-Löf random iff
\limsup_{n} d(A \upharpoonright n) < \inftyfor all c.e. martingales d.
```

Hierarchy of randomness notions

Martin-Löf randomness $i\cap$ computable randomness $i\cap$ Schnorr randomness $i\cap$ Kurtz randomness

ML-tests

Consider Cantor space 2^{ω} with the uniform measure μ .

Definition (Martin-Löf 1966) A ML-test is a sequence $\{U_n\}$ of uniformly c.e. open sets with $\mu(U_n) \leq 2^{-n}$. A sequence $A \in 2^{\omega}$ is ML-random if $A \notin \bigcap_n U_n$ for all MLtests.

Complexity

Fix a prefix-free universal Turing machine U. For a string $\sigma \in 2^*$, we define $K(\sigma)$ by

$$K(\sigma) = \min\{|\tau| : U(\tau) = \sigma\}.$$

Theorem (Levin, Schnorr, Chaitin) A is ML-random iff there exists c such that

 $K(A \upharpoonright n) > n - c$

for all n.

Definition

Three (big) approaches

Typicalness - tests
Unpredictability - martingales
Incompressibility - complexity

Technical similarity

the set of the set of

Their purposes are different

Game-theoretic probability

Which event has probability 0 or 1?
To explain a phenomenon.

Algorithmic randomness

What does it mean by saying that an individual sequence is random?

Skeptic can force an event.

Skeptic can force an event E.

- ⇒ If Skeptic use a strategy, then $\{x_n\} \in E$ unless $\mathcal{K}_n \to \infty$. ⇒ If $\{x_n\}$ is "random" with respect to the strategy, then $\{x_n\} \in E$.
 - E has probability 1.
 - Skeptic can force an event E.
 - A random sequence has the property E.

Strong law of large numbers

Theorem (SLLN)

Let $\{X_n\}$ be the sequence of i.i.d. random variables such that $P(X_1 = 0) = P(X_1 = 1) = 1/2$. Then $S_n/n \to 1/2$ almost surely.

Theorem

In the fair-coin game, Skeptic can force $S_n/n \to 1/2$.

Theorem

Let A be a ML-random sequence. Then $S_n(A)/n \to 1/2$.

Which randomness is needed?

 Skeptic can force SLLN in a protocol, but not in another protocol.

 SLLN holds for ML-randomness, computable randomness and Schnorr randomness, but not for Kurtz randomness.

Reality can comply with an event.

Reality can comply with an event E. \Rightarrow Irrespective of the move of Skeptic, $\{x_n\} \in E \text{ and } \sup_n \mathcal{K}_n < \infty.$ \Rightarrow There exists a "random" sequence with the property E.

- Reality can comply with an event E.
- There exists a "random" sequence with the property *E*.

A sequence with a property

In most protocols, Reality can comply

 $\sup_{n} \mathcal{K}_n \leq \mathcal{K}_0.$

Notice that Reality has a deterministic strategy.

For each computable martingale d, there exists a computable sequence A such that

$$\sup_{n} d(A \upharpoonright n) \le d(\lambda) + 1.$$

How random is a sequence?

Let A be a ML-random sequence. Then $A \oplus \emptyset$ is 1/2-random.

Definition

Let $s \in [0, 1]$.

A is called weakly s-random if $\exists d \forall n K(A \upharpoonright n) \geq sn - d$.

How fast does the capital increase?

Definition

For a martingale d and an order h, the h-success set of d is

$$S_h[d] = \{A : \limsup_{n} \frac{d(A \upharpoonright n)}{h(n)} = \infty\}.$$

Theorem

Let $s \in [0, 1]$. If A is weakly s-random, then $A \notin S_{2^{(1-t)n}}[d]$ for all c.e. supermartingales d and all t < s. Other topics

Many measures of randomness
Less or more random
The relation with computability
Randomness in a general space

Historical comment

"P's the start of the start of

the toy was in month in the in the second the in the second the the

What is probability?

* von Mises - "First collective, then probability"

- Martin-Löf, Schnorr, Levin, Kolmogorov
 typicality, unpredictability, incompressibility
- Solomonoff
 - algorithmic probability, universal prior

game-theoretic probability, defensive forecasting

Two approaches

Axiomatic approach (or Hilbert's approach)
 probability => randomness

Our approachrandomness => probability