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Abstract. We propose studying uniform Kurtz randomness, which is
the uniform relativization of Kurtz randomness. One advantage of this
notion is that lowness for uniform Kurtz randomness has many character-
izations, such as those via complexity, martingales, Kurtz tt-traceability,
and Kurtz dimensional measure.
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1 Introduction

One of the major topics in algorithmic randomness is “lowness”. For a given
randomness notion R, A is said to be low for R if every R-random set is R-
random relative to A, that is, A does not have enough computational power
to derandomize a random set. For instance, lowness for ML-randomness has
many characterization such as K-trivial, lowness for K and being a base for
ML-randomness [14, 9].

Lowness for Schnorr randomness has previously been studied in the litera-
ture. Some studies, however, have suggested that uniform Schnorr randomness
(the uniform relativization of Schnorr randomness) is the proper relativization
because it satisfies van Lambalgen’s theorem [12, 13] and has natural lowness
properties [7, 12, 11]. Similar phenomena have been found for other notions of
randomness [1–3]. In particular, the second author and Rute [13] have claimed
that uniform relativization is the correct relativization for all randomness no-
tions.

In this paper we study a version of Kurtz randomness. There are already some
known results on lowness for Kurtz randomness [6, 16, 8]. Again, however, van
Lambalgen’s theorem does not hold for Kurtz randomness [7], and it seems that
uniform Kurtz randomness (the uniform relativization of Kurtz randomness)
is a more natural notion. (Van Lambalgen’s theorem for this concept will be
studied in another paper.) In this paper, we show that lowness for uniform Kurtz
randomness has many characterizations, which advocates for its naturalness.

The overview of this paper is as follows. In Section 3 we introduce uniform
Kurtz randomness defined by tests and characterize it via complexity and mar-
tingales. In Section 4 we introduce the notion of Kurtz h-dimensional measure
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zero where h is an order, and give characterizations via complexity and martin-
gales. In Section 5 we characterize lowness for uniform Kurtz randomness via
Kurtz h-dimensional measure zero and Kurtz tt-traceability. To prove this, we
make use of the svelte tree introduced in Greenberg-Miller [8].

2 Preliminary

We say that n > 0 is the index of a finite set {x1, · · · , xr} of natural numbers
if n = 2x1 + 2x2 + · · · + 2xr , while 0 is the index of ∅. In the following we
often identify a finite set with its index. We also often identify σ ∈ 2<ω with
the natural number n represented by 1σ in binary representation. An order is a
nondecreasing unbounded function from ω to ω. We denote the empty string by
ϵ.

We recall some results on Kurtz randomness. The reader may refer to [5,
15] for details. Let µ be the uniform measure on the Cantor space 2ω. A set
A ∈ 2ω is weakly 1-random, or Kurtz random, if it is contained in every c.e.
open set with measure 1 [10]. A Kurtz null test is a sequence {[[f(n)]]} such that
f : ω → (2<ω)<ω is a computable function and µ([[f(n)]]) ≤ 2−n. A set is Kurtz
random if and only if it passes all Kurtz null tests [17]. A computable measure
machine is a prefix-free machine M such that µ([[domM ]]) is computable [4].

3 Uniform Kurtz randomness

Uniform relativization [13] of Kurtz randomness gives the following. Let τ be
the class of open sets on 2ω. A partial function f :⊆ 2ω → τ is computable
if there is a partial computable function ψ :⊆ 2ω × ω → (2<ω)<ω such that
f(Z) =

∪
n∈ω[[ψ(Z, n)]] for each Z. If such a function ψ is total, then f is also

called total.

Definition 1. A uniform Kurtz test is a total computable function f : 2ω → τ
such that µ(f(Z)) = 1 for all Z ∈ 2ω. A set B ∈ 2ω is Kurtz random uniformly
relative to A ∈ 2ω if B ∈ f(A) for each uniform Kurtz test f .

Definition 2. A uniform Kurtz null test is a computable function f : 2ω ×ω →
(2<ω)<ω such that, for each Z ∈ 2ω and n ∈ ω, µ([[f(Z, n)]]) ≤ 2−n. For a fixed
set X, we also say that {[[f(X,n)]]}n∈ω is a Kurtz null test uniformly relative to
X.

Proposition 1. The following are equivalent for A ∈ 2ω and N ⊆ 2ω.

(i) 2ω \N = f(A) for a uniform Kurtz test f .
(ii) N =

∩
n[[g(A,n)]] for a uniform Kurtz null test g.

(iii) A tt-computes a sequence {Cn} of finite sets of strings such that µ([[Cn]]) ≤
2−n and N =

∩
n[[Cn]].
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Proof. (i) ⇐⇒ (ii) is straightforward.
(ii) ⇒ (iii): This is because {g(A,n)}n∈ω is truth-table reducible to A.
(iii) ⇒ (ii): Let Φ be a truth-table functional such that Φ(A,n) = Cn. Then

we can effectively check whether or not µ([[Φ(Z, n)]]) ≤ 2−n because [[Φ(Z, n)]]
is clopen. If not, we define Ψ(Z, n) = ∅ and, otherwise, set Ψ(Z, n) = Φ(Z, n).
Then Ψ is a uniform Kurtz null test. Moreover, Ψ(A,n) = Φ(A,n) = Cn for each
n and

∩
n[[Ψ(A,n)]] =

∩
n[[Cn]]. ⊓⊔

Remark 1. If we drop uniformity from the definition of Kurtz tests, the truth-
table reducibility ≤tt in (iii) is changed into Turing reducibility ≤T . Formally,
for every A ∈ 2ω and N ⊆ 2ω, (i’) its complement 2ω \ N is A-c.e. open with
measure 1, if and only if (ii’) N is the intersection of a Kurtz null test relative
to A if and only if (iii’) A computes a sequence {Cn} of finite set of strings such
that µ([[Cn]]) ≤ 2−n, and N =

∩
n[[Cn]].

We give characterizations of uniform Kurtz randomness via machines and
martingales. Recall the following characterization of Kurtz randomness: A set
X is not Kurtz random if and only if there is a computable measure machine M
and a computable function f such that, for all n, KM (X ↾ f(n)) < f(n) − n if
and only if there are a computable martingale d and a computable order h such
that d(X ↾n) > h(n) for all n [17, 6].

Proposition 2. The following are equivalent for sets A and B.

(i) A is not Kurtz random uniformly relative to B.
(ii) There are an oracle prefix-free machine M and a computable function h

such that Z 7→ µ(domMZ) is a computable function and KMB (A ↾h(n)) <
h(n)− n for all n ∈ ω.

(iii) There are a Q-valuded martingale d ≤tt B and a computable order h such
that

d(A↾n) > h(n), for all n ∈ ω.

Proof. (i) ⇐⇒ (ii) is straightforward.
(i)⇒(iii): Suppose that there is a uniform Kurtz null test f such that A ∈∩

n[[f(B,n)]] and σ ∈ f(Z, n) ⇒ |σ| = g(n), where g is a strictly increasing
computable function with g(0) = 0. Let k be a computable order such that
k(0) = 0 and k(n) ≥ g(k(n− 1)) + 1 for all n ≥ 1.

We construct a Q-valued martingale dZ as follows. Let dZ(ϵ) = 2. At stage
n ≥ 1, we define d(σ) for σ ∈ 2<ω such that g(k(n − 1)) < |σ| ≤ g(k(n)). Note
that g(k(0)) = 0. For each τ ∈ f(Z, k(n− 1)), let a(τ) be the number of strings
ρ ∈ f(Z, k(n)) such that τ ≺ ρ. For each τ ̸∈ f(Z, k(n− 1)), let a(τ) = 0. Note
that a is computable from Z. We assume that, for each ρ ∈ f(Z, n), there is
τ ∈ f(Z, n − 1) such that τ ≺ ρ, whence

∑
τ∈f(Z,k(n−1)) a(τ) = #f(Z, k(n)) ≤

2g(k(n))−k(n). Let σ ∈ 2<ω be such that g(k(n − 1)) < |σ| ≤ g(k(n)). We define
a Q-valued martingale dZ(σ) by

dZ(σ) =


dZ(σ ↾g(k(n− 1))) if a(σ ↾g(k(n))) = 0

eZ(σ) if there is τ ∈ f(Z, k(n)) such that σ ⪯ τ
dZ(σ↾g(k(n−1)))

2 otherwise.

,
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where

eZ(σ) = dZ(σ ↾g(k(n− 1)))

(
1

2
+

2|σ|−g(k(n−1))

2 · a(σ ↾g(k(n)))

)
.

Clearly, d = dB ≤tt B.
First we show that d(A ↾g(k(n))) >

(
3
2

)n
for all n ∈ ω. If n = 0, d(ϵ) = 2 >

1 =
(
3
2

)0
. By assuming that d(A↾g(k(n− 1))) >

(
3
2

)n−1
, we have

d(A↾g(k(n))) = eB(A↾g(k(n))) ≥d(A↾g(k(n− 1)))

(
1

2
+

2g(k(n))−g(k(n−1))

2g(k(n))−k(n)+1

)
≥3

2
d(A↾g(k(n− 1))) >

(
3

2

)n

.

We define a computable order h by

h(m) = ⌊1
2
·
(
3

2

)n−1

⌋ where g(k(n− 1)) ≤ m < g(k(n)),

where ⌊x⌋ denotes the largest integer not greater than x. If m = 0, then d(A ↾
m) = d(ϵ) = 2 > 1 = h(0) = h(m). If m satisfies g(k(n − 1)) < m ≤ g(k(n)),
then

d(A↾m) ≥ d(A↾g(k(n− 1)))

2
>

1

2
·
(
3

2

)n−1

≥ h(m).

(iii)⇒(i): Assume that d ≤tt B. Then there is a truth-table functional Ψ
such that ΨZ is a Q-valued martingale for each Z ∈ 2ω and d = ΨB . Let f be a
computable order such that h(f(n)) ≥ 2n for all n ∈ ω. Consider the following
clopen set:

CZ
n = {σ ∈ 2f(n) : ΨZ(σ) ≥ 2n}.

Then µ(CZ
n ) ≤ 2−n for all n ∈ ω and Z ∈ 2ω. Since ΨB(A ↾ f(n)) = d(A ↾

f(n)) > h(f(n)) ≥ 2n for each n, we have A ∈
∩

n C
B
n . ⊓⊔

4 Kurtz Dimensional Measure

In this section, we introduce and give some characterizations of the notion of
Kurtz h-dimensional measure zero, which will be used in the next section.

Definition 3. For an order h : ω → ω, a set E ⊆ 2ω is Kurtz h-dimensional
measure zero if there is a computable sequence {Cn}n∈ω of finite sets of strings
such that

E ⊆ [[Cn]] and
∑
σ∈Cn

2−h(|σ|) ≤ 2−n for all n ∈ ω.

We also say that A ∈ 2ω is Kurtz h-dimensional measure zero if {A} is Kurtz
h-dimensional measure zero.

Theorem 1. Let h be any computable order. Then the following are equivalent
for a set A.
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(i) A is Kurtz h-dimensional measure zero.
(ii) There are a computable martingale d and a computable order g such that

(∀n ∈ ω)(∃k ∈ [g(n), g(n+ 1))) d(A↾k) ≥ 2n · 2k−h(k).

(iii) There are a computable measure machine M and a computable order g such
that

(∀n ∈ ω)(∃k ∈ [g(n), g(n+ 1))) KM (A↾k) ≤ h(k)− n.

Proof. (i)⇒(ii): Suppose that A is Kurtz h-dimensional measure zero via a se-
quence {Cn}n∈ω. Find Ct(n+1) such that all strings contained in Ct(n+1) are

longer than any strings of Ct(n). Moreover, we assume that
∑

σ∈Ct(n)
2−h(|σ|) ≤

2−2n−1. For each σ, let Bσ be a martingale defined by

Bσ(τ) =


2|τ |−h(|σ|) if τ ⪯ σ

2|σ|−h(|σ|) if σ ≻ τ

0 otherwise.

Then d =
∑

n

∑
σ∈Ct(n)

2nBσ is a computable martingale with the initial capital∑
n

∑
σ∈Ct(n)

2n−h(|σ|) ≤
∑
n

2−n−1 = 1.

Define g to be a computable order such that the length of every string in Ct(n)

is contained in [g(n), g(n+1)). Then, for all n ∈ ω, there is a k ∈ [g(n), g(n+1))
such that A↾k ∈ Ct(n), that is,

d(A↾k) ≥ 2nBA↾k(A↾k) = 2n · 2k−h(k).

(ii)⇒(iii): By our assumption, for every n ∈ ω, there is k ∈ [g(n), g(n + 1))
such that d(A↾k) ≥ 2n2k−h(k). Consider the following clopen set:

Cn = {σ ∈ 2<ω : |σ| ∈ [g(2n), g(2n+ 1)), and d(σ) ≥ 22n2|σ|−h(|σ|)}.

Let Dn be an antichain generating Cn. Then∑
σ∈Dn

2n−h(|σ|) ≤
∑

σ∈Dn

2n−h(|σ|) 2
−2nd(σ)

2|σ|−h(|σ|) = 2−n
∑

σ∈Dn

2−|σ|d(σ) ≤ 2−n.

Thus, by the KC theorem [5], we can construct a computable measure ma-
chineM such that, for each n ∈ ω,KM (σ) ≤ h(|σ|)−n for each σ ∈ Dn. In partic-
ular, for all n ∈ ω, there is k ∈ [g(2n), g(2n+1)) such that KM (A↾k) ≤ h(k)−n.

(iii)⇒(i): Assume that KM (A ↾ k) ≤ h(k) − n for some k ∈ [g(n), g(n + 1)).
Consider the sequence {Cn}n∈ω of clopen sets defined by

Cn = {σ ∈ 2<ω : |σ| ∈ [g(n), g(n+ 1)), and KM (σ) ≤ h(|σ|)− n}.

Then A ∈
∩

n Cn, and∑
σ∈Cn

2−h(|σ|) ≤ 2−n
∑
σ∈Cn

2−KM (σ) ≤ 2−n.

Hence, A is Kurtz h-dimensional measure zero. ⊓⊔
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5 Lowness for Uniform Kurtz Randomness

In this section, we give characterizations of lowness for uniform Kurtz random-
ness. A set A ∈ 2ω is said to be low for uniform Kurtz randomness if X ∈ 2ω is
uniform Kurtz random relative to A whenever X is Kurtz random. A set A ∈ 2ω

is said to be low for uniform Kurtz tests if f(A) includes a Kurtz test for every
uniform Kurtz test f . For a given order p, a computable trace with bound p is
a computable sequence {Dn}n∈ω of finite sets of strings such that #Dn ≤ p(n)
for each n ∈ ω. A computable trace {Dn}n∈ω Kurtz-traces a function f : ω → ω
if there is a computable sequence {ln}n∈ω of natural numbers such that

(∀k ∈ ω)(∃n ∈ [lk, lk+1)) f(n) ∈ Dn.

A set A ∈ 2ω is said to be Kurtz tt-traceable if there is a computable order
p such that, for every f ≤tt A, there is a computable trace with bound p that
Kurtz-traces f .

Theorem 2. The following are equivalent for a set A.

(i) A is Kurtz h-dimensional measure zero for every computable order h.
(ii) A is low for uniform Kurtz tests.
(iii) A is low for uniform Kurtz randomness.
(iv) A tt-computes no infinite subset of a Kurtz random set.
(v) A is Kurtz tt-traceable.

Proof. (i)⇒(ii): Let {CA
n }n∈ω be a Kurtz null test uniformly relative to A, that

is, there is a truth table functional Ψ such that [[ΨA(n)]] = CA
n , and µ(CA

n ) ≤
2−n. Then there is a computable order u such that, for all Z ∈ 2ω and all
n ∈ ω, the value ΨZ↾u(n)(n) is determined. In particular, [[ΨA↾u(n)(n)]] = CA

n . Let
h be a computable order fulfilling 2−h(u(n)) ≥ 1/(n + 1) for all n ∈ ω. Assume
that A is Kurtz h-dimensional measure zero. By our assumption, we have a
computable sequence {Dn}n∈ω of finite sets of strings such that A ∈ [[Dn]] and∑

σ∈Dn
2−h(|σ|) < 1/(n+1) for all n ∈ ω. Thus, each σ ∈ Dn has length greater

than u(n), and moreover Dn contains at most k strings of length ≤ u(n + k),
since, otherwise,∑

σ∈Dn

2−h(|σ|) ≥ (k + 1)2−h(u(n+k)) ≥ k + 1

n+ k + 1
≥ 1

n+ 1
.

Hence, Dn can be viewed as a finite sequence {σn
k }k<|Dn| of strings such that

the length of each σn
k is greater than or equal to u(n+k). Thus, there is k < |Dn|

such that A ↾u(n+ k) = σn
k ↾u(n+ k). Inductively define a computable order r

by r(0) = 0 and r(n+ 1) = r(n) + |Dr(n)|. Now ρ(k) is defined by σ
r(n)
k−r(n) ↾u(k)

for each k ∈ [r(n), r(n+ 1)). Then

(∀n ∈ ω)(∃k ∈ [r(n), r(n+ 1))) A↾u(k) = ρ(k).
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For all n ∈ ω and k ∈ [r(n), r(n+ 1)), define Ek ⊆ 2ω by

Ek =

{
[[Ψρ(k)(k)]], if µ([[Φρ(k)(k)]]) ≤ 2−k,

∅, otherwise.

Note that |ρ(k)| = u(k) implies that Ψρ(k)(k) is defined for all k ∈ ω by our
assumption for u. Therefore, {Ek}k∈ω is a computable sequence of clopen sets,
and we have

CA
n ⊆

r(n+1)−1∪
k=r(n)

Ek, and µ

r(n+1)−1∪
k=r(n)

Ek

 ≤ 2−r(n)+1 ≤ 2−n+1.

Consequently, for Bn =
∪

r(n−1)<t≤r(n)Et, the sequence {Bn}n∈ω is a Kurtz

null test such that
∩

n C
A
n ⊆

∩
nBn. In other words, A is low for uniform Kurtz

null tests.

(ii)⇒(iii): Obvious.

(iii)⇒(iv): Let I ⊆ ω≤ω be the set of (finite or infinite) strings σ ∈ ω≤ω

which are strictly increasing, that is, σ(n) < σ(n+1) for each n ∈ ω. Let rng(σ)
denote the range of σ ∈ I, so that rng(σ) = {σ(n) : n < |σ|}. From now on, we
think of each B ⊆ ω as a strictly increasing string B⋆ ∈ I, where B⋆(n) is the
n-th least element contained in B. For any σ ∈ I, we denote by Pσ all supersets
of the subset of ω obtained from σ, that is,

Pσ = {X ∈ 2ω : rng(σ) ⊆ X}.

Lemma 1. A set A tt-computes an infinite subset of a Kurtz random set if and
only if there exists an infinite set B ≤tt A such that the class PB⋆

contains a
Kurtz random set. Moreover, if a set A tt-computes an infinite set B ⊆ ω, then
PB⋆

is a Kurtz null test uniformly relative to A.

Proof. The first equivalence clearly holds. Assume that there is a truth-table
functional Ψ such that ΨA = B. Inductively define a truth-table functional
ΦZ(n) by ΦZ(0) = ΨZ(0), and ΦZ(n+1) = max{ΨZ(n+1), ΦZ(n)+ 1} for each
n ∈ ω. Then, ΦZ defines an infinite set B(Z), for every Z ∈ 2ω. Moreover, if
B(Z) is infinite, then PB(Z)⋆ is null. Therefore, Z 7→ PB(Z)⋆ is a uniform Kurtz
null test. Hence, PB⋆

= PB(A)⋆ is a Kurtz null test uniformly relative to A. ⊓⊔

Now, assume that A is low for uniform Kurtz randomness. By Lemma 1, the
class PB⋆

is a Kurtz null test uniformly relative to A for every B ≤tt A. By
lowness, PB⋆

contains no Kurtz random set. Again by Lemma 1, A tt-computes
no infinite subset of a Kurtz random set.

(iv)⇒(v): We again use the notation P f for f ∈ I. As in the proof of Lemma
1, for each increasing total function f ∈ I ∩ ωω we can see that f ≤tt A if and
only if rng(f) ≤tt A. We first recall the following property of P f .
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Lemma 2 (See Greenberg-Miller [8, Theorem 5.2]). Let f : ω → ω be a
strictly increasing function. Then, no Kurtz null test includes P f if and only if
P f contains a Kurtz random set. ⊓⊔

The key notion we will use is that of the svelte tree introduced by Greenberg-
Miller [8]. A finite antichain A ⊆ ω<ω is k-svelte via a sequence {Sn}n∈ω of finite
sets if

Sm ⊆ ωk+m, #Sm ≤ 2m, and [[A]] ⊆
∪
m∈ω

[[Sm]].

For A ⊆ ω<ω and σ ∈ ω<ω, the conditional weight ν(A|σ) is defined by

ν(A|σ) = 1−
∏

τ∈A∩[σ]

(1− 2−|τ |−|σ|).

Note that ν(A) =
∪

σ∈A µ(P
σ). A sequence {Sn}n∈ω of finite sets is ordered

by weight with respect to A if
∪

n Sn is an antichain and each Sn chooses the first
2n strings τ ∈ ωk+n by descending order with regard to ν(A \

∪
m<n[[Sm]]|τ).

Lemma 3 (Essentially due to Greenberg-Miller [8, Theorem 3.3]). For
a finite antichain A ⊆ ω<ω and a natural number k ∈ ω, if µ(

∪
f∈[[A]] P

f ) ≤
2−(k+1) holds, then A is k-svelte via an ordered sequence by weight with respect
to A. In particular, such a sequence is effectively calculated from A and k. ⊓⊔

Given a closed set Q ⊆ 2ω, let NQ ⊆ ωω be the set {f ∈ ωω ∩ I : P f ⊆ Q}.

Lemma 4 (See Greenberg-Miller [8, Lemma 4.3]). If Q ⊆ 2ω is clopen,
then we can effectively find a finite antichain AQ ⊆ ω<ω such that NQ = [[AQ]].

⊓⊔

We restrict our attention to a bounded subset of NQ for given a closed set Q.
For each order u, we denote by Nu

Q the set of all f ∈ NQ such that |f(n)| = u(n)
for each n ∈ ω, where we think of each f ∈ NQ as a function from ω into 2<ω.

Lemma 5. Assume that Q is a Kurtz null test. Then, for each order u, there
are a computable trace {Dn}n∈ω with bound n 7→ 2n and Dn ⊆ ωn for each
n ∈ ω and a computable sequence {lk}k∈ω of natural numbers such that

Nu
Q ⊆

lk+1−1∪
n=lk

[[Dn]], for every k ∈ ω.

Proof. Assume that a Kurtz null test {Cn}n∈ω with µ(Cn) ≤ 2−n and Q =∩
n Cn is given. By Lemma 4, we can effectively find a sequence {An} of finite

antichains generating {NCn}. By the definition of NCn , we have
∪

g∈[[An]]
P g ⊆

Cn. Hence, µ(
∪

g∈[[An]]
P g) ≤ 2−n. Therefore, by noting the weight with respect

to An, we can effectively find a sequence {Sn
m}m∈ω confirming that An+1 is

n-svelte, uniformly in n, by Lemma 3. In other words,

Sn
m ⊆ ωn+m, #Sn

m ≤ 2m, and NCn+1 = [[An+1]] ⊆
∪
m∈ω

[[Sn
m]].
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For each computable order u, because Nu
Cn+1

is compact, it is covered by∪
m<c(n) S

n
m for some c(n) ∈ ω. Note that we can effectively find such a c(n),

since Nu
Cn+1

and
∪

m Sn
m are computable. Inductively define l0 = 0, and ln+1 =

ln + c(ln) for each n ∈ ω. For each k ∈ ω and each n ∈ [lk, lk+1), we define
Dn = Slk

n−lk
⊆ ωn, where #Dn ≤ 2n−lk ≤ 2n. We now have

Nu
Q ⊆ Nu

Ck
⊆

∪
m<c(lk)

[[Slk
m ]] =

lk+1−1∪
n=lk

[[Dn]]

for every k ∈ ω, as desired. ⊓⊔

Now, we assume that A tt-computes no infinite subset of a Kurtz random
set. For each g ≤tt A, we claim the existence of a computable trace with bound
n 7→ 2n+1 that Kurtz-traces g. Let Ψ be a truth-table functional such that
Ψ(A) = g, and find a computable order u such that Ψ(Z ↾u(n), n) is defined for
all n ∈ ω. Then, in particular, Ψ(A ↾u(n), n) = g(n). Define f(n) = A ↾u(n) for
each n ∈ ω. By Lemmas 1 and 2, for every order u and every strictly increasing
function f ≤tt A with |f(n)| = u(n) for each n ∈ ω, there is a Kurtz null test
Q ⊆ 2ω such that P f ⊆ Q holds. Note that P f ⊆ Q if and only if f ∈ Nu

Q. Since
Q is a Kurtz null test, we have two sequences {Dn}n∈ω and {lk}k∈ω in Lemma
5. Thus, every h ∈ Nu

Q is Kurtz tt-traceable via {Dn}n∈ω and {lk}k∈ω. For each
string σ ∈ (2<ω)<ω, let σ∗ denote the last value of σ, that is, σ∗ = σ(|σ| − 1).
Note that σ ∈ Dn+1 ⊆ (2<ω)n+1 implies that Ψ(σ∗, n) is defined, since σ∗ is of
length u(n). For En = {Ψ(σ, n) : σ ∈ Dn+1}, the trace {En}n∈ω Kurtz-traces
n 7→ Ψ(h(n), n) for all h ∈ Nu

Q. In particular, g : n 7→ Ψ(f(n), n) is Kurtz
tt-traceable.

(v)⇒(i): Assume that A is Kurtz tt-traceable via a computable order n 7→
2p(n). Given a computable order h, we can find a computable order u : ω → ω
such that h(u(n)) ≥ p(n) + n + 1 for each n ∈ ω. By our assumption, we have
a computable trace {Dn}n∈ω with #Dn ≤ 2p(n) and a computable sequence
{lk}k∈ω of natural numbers, where, for every k ∈ ω, there is n ∈ [lk, lk+1) such
that A↾u(n) ∈ Dn. Without loss of generality, we may assume that Dn ⊆ 2u(n).
Then, for each σ ∈ Dn+1, define Ck =

∪
n∈[lk,lk+1)

Dn, for each k ∈ ω. Note that

A ∈ [[Ck]] for all k ∈ ω. To estimate the weight of Ck, we note the following
inequality:

∑
σ∈Ck

2−h(|σ|) =

lk+1−1∑
n=lk

#Dn · 2−h(u(n))

≤
lk+1−1∑
n=lk

2p(n)−h(u(n)) ≤
lk+1−1∑
n=lk

2−n−1 ≤ 2−lk ≤ 2−k.

Hence, A is Kurtz h-dimensional measure zero. ⊓⊔



10 Takayuki Kihara and Kenshi Miyabe

Remark 2. By Theorem 2, we can give a triviality-type characterization of low-
ness for uniform Kurtz randomness via the following reducibility, although we
hesitate to call this Kurtz reducibility, as it has a rather different form from
Schnorr reducibility and K-reducibility. Let A ≤Kur B denote that, for each
computable order h, the fact that B is Kurtz h-dimensional measure zero im-
plies that A is Kurtz h-dimensional measure zero. If A ≤Kur B and A is Kurtz
random, then B is Kurtz random. A set A ∈ 2ω is low for uniform Kurtz ran-
domness if and only if A ≤Kur ∅.
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6 Appendix

Proof (of (i) ⇐⇒ (ii) of Proposition 1). (i) ⇒ (ii): Let f be a uniform Kurtz
test. Then there exists ψ : 2ω × ω → (2<ω)<ω such that f(Z) =

∪
n[[ψ(Z, n)]].

Since µ(f(Z)) = 1 for each Z ∈ 2ω, we can effectively calculate t(Z, n) such that
µ(
∪

m≤t(Z,n)[[ψ(Z,m)]]) ≥ 1 − 2−n and t(Z, n) < t(Z, n + 1). Let g : 2ω × ω →
(2<ω)<ω be a computable function such that

[[g(Z, n)]] = 2ω \
∪

m≤t(Z,n)

[[ψ(Z,m)]].

Then g is a uniform Kurtz null test and

N = 2ω \ f(A) = 2ω \
∪
n

[[ψ(Z, n)]] =
∩
n

[[g(Z, n)]].

(ii) ⇒ (i): Let g be a uniform Kurtz null test. Let ϕ : 2ω × ω → (2<ω)<ω be
a computable function such that [[ϕ(Z, n)]] = 2ω \ [[g(Z, n)]], and let f : 2ω → τ
be such that f(Z) =

∪
n[[ϕ(Z, n)]]. Then f is a total computable function and

µ(f(Z)) = 1 for each Z ∈ 2ω, because

2ω \ f(Z) = 2ω \
∪
n

[[ϕ(Z, n)]] =
∩
n

[[g(Z, n)]]

is null. ⊓⊔

Proof ( of (i) ⇐⇒ (ii) of Proposition 2). (i)⇒(ii): Suppose that there is a
uniform Kurtz null test f such that A ∈

∩
n[[f(B,n)]]. We can assume that, for

each n, all the strings in f(Z, n) for Z ∈ 2ω have the same length g(n), where g
is a computable order. Let m : 2ω → R be a function such that

m(Z) =
∑
n

∑
σ∈f(Z,2n+2)

2−|σ|−(n+1) =
∑
n

2n+1µ([[f(Z, 2n+ 2)]]).

Since µ([[f(Z, n)]]) ≤ 2−(2n+2), m(Z) ≤ 1 and m is computable. By the KC
Theorem, there is an oracle prefix-free machineM such that µ(domMZ) = m(Z)
for each Z ∈ 2ω and KMZ (σ) ≤ |σ| − (n + 1) for each σ ∈ f(Z, 2n + 2). Let
h(n) = g(2n+ 2). Since A↾g(2n+ 2) ∈ f(B, 2n+ 2), we have

KMB (A↾h(n)) ≤ h(n)− (n+ 1)

for each n.
(ii)⇒(i): Suppose that the pair A,B satisfies (ii) via an oracle prefix-free

machine M and a computable function h Let

f(Z, n) = {σ ∈ 2h(n) : KMZ (σ) < f(n)− n.}.

Then µ([[f(Z, n)]]) ≤ 2−n. Since Z 7→ µ(domMZ) is computable, there is a total
computable function ϕ : 2ω → 2ω such that ϕ(Z)(n) = dom(MZ)(n) for each
Z ∈ 2ω and n ∈ ω. Then f(Z, n) is finite and f is a computable function. Thus, f
is a uniform Kurtz null test. By the definition ofM and f , A ∈

∩
n[[f(B,n)]]. ⊓⊔
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We now restate Remark 2 formally.

Definition 4. Let A,B ∈ 2ω. We say that A is Kurtz reducible to B (denoted
by A ≤Kur B) if, for each computable order h, the fact that B is Kurtz h-
dimensional measure zero implies that A is Kurtz h-dimensional measure zero.

Proposition 3. If A ≤Kur B and A is Kurtz random, then B is Kurtz random.

Proof. Suppose B is not Kurtz random. Then B is Kurtz id-dimensional measure
zero where id is the identity function. By the assumption A ≤Kur B, A is Kurtz
h-dimensional measure zero. Thus, A is not Kurtz random.

Proposition 4. A set A ∈ 2ω is low for uniform Kurtz randomness if and only
if A ≤Kur ∅.

Proof. Suppose that A is low for uniform Kurtz randomness. Then A is Kurtz
h-dimensional measure zero for all computable orders h. Thus, A ≤Kur ∅.

Suppose that A ≤Kur ∅. Let h be a computable order. Since ∅ is Kurtz h-
dimensional measure zero, A is Kurtz h-dimensional measure zero. Since h is
arbitrary, A is low for uniform Kurtz randomness.


