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An introduction to
algorithmic randomness
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Topics in algorithmic randomness

Three paradigm - tests, martingales, complexity

Randomness notions - Schnorr, Kurtz, Demuth

Turing reducibility - Kučera-Gács Theorem

Relative randomness - van Lambalgen, lowness
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Which sequence is random?

00000 00000 00000 00000 00000 00000 00000

11001 00100 00111 11101 10101 01000 10001

00000 01000 00010 00001 10001 00001 10100
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Question 1:
How do we define a randomness notion?
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Three paradigm

Typical - not in effectively constructed null

Unpredictable - impossible to increase money in 
a fair betting game

Incompressible - impossible to be produced by 
short strings
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Turing machine

Turing machine has
- input tape (finite or infinite)
- output tape (finite or infinite but one-way)

The set of  symbols = {0,1}
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Kolmogorov complexity

machine = partial computable function from 2<� to 2<�

KM (�) = min{|� | : M(�) = �}

There is a universal one U , that is, for each machine M ,

there is a constant d � � such that

KU (�) � KM (�) + d

for each � � 2<�.
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prefix-free Kolmogorov complexity

S � 2<� is prefix-free if

�, � � S � � �� �.

A machine is called prefix-free if its domain is prefix-free.

Example

{0, 01} not prefix-free, {0, 10} is prefix-free.

Intuitively, a prefix-free machine recognizes when an input

is over.
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Basic property

We sometimes write n to mean 0n.

Proposition

K(�) � |�| + 2 log |�| + O(1).

Proposition (Chaitin 1975)

K(�) � |�| + K(|�|) + O(1).

.
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Martin-Löf  randomness

Theorem (Levin 1973, Schnorr 1973, Chaitin 1975)

Let U be a universal prefix-free machine. A � 2� is Martin-

Löf random (or 1-random) i�

KU (A � n) > n � O(1).
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Other randomness notions

Demuth randomness

Weak 2-randomness

Martin-Löf  randomness

Schnorr randomness

Kurtz randomness
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Question 2:
Is a random set computationally weak?
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Chaitin’s Omega

Definition (Chaitin)

�U =
�

U(�)�

2�|�|

Proposition

If U is a universal prefix-free machine, �U is Martin-Löf

random and �U �T ��.
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Kućera-Gács Theorem

Theorem (Kučera 1984, Gács 1986)

Every set is wtt-reducible to a 1-random set. Furthermore,

every Turing degree above the halting problem contains a

1-ranom set.

Definition

A degree is 1-random if it contains 1-random set.

15



PA degree

Definition

A Turing degree a is called PA if each partial computable

{0, 1}-valued function has a-computable total extension.

Theorem (Stephan)

If a degree is PA and 1-random, then a � 0�.
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Two types of  random sets

Stupidity Tests

First: so smart that they know how to be stupid

Second: really stupid

17



Difference randomness

Di�erence randomness is introduced by Franklin and Ng

(2011).

Theorem

A set is di�erence random

i� it is Martin-Löf random and incomplete.
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Question 3:
What do you mean by saying that

a set is more random than another?
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Measures of  randomness

Relative randomness

K-reducibility
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Relative randomness

B is (Turing) computable relative to A 

B is (ML-)random relative to A
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n-random

Definition (Kurtz 1981, Kautz 1991)

A set is called n-random if it is 1-random relative to �(n�1).

Theorem (Miller 2010)

A set X is 2-random i� it is infinitely often K-random, that

is,
K(X � n) � n + K(n) � O(1)

for infinitely many n.
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K-reducibility and K-triviality

X �K Y if K(X � n) � K(Y � n) + O(1).

Definition

A set X is called K-trivial if X �K �, that is,

K(X � n) � K(n) + O(1).

.
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Lowness

Theorem (Nies and Hirschfeldt, see Nies 2005)

The following are equivalent for a set A:

(i) A is low for ML-randomness, that is, every ML-

random set is ML-random relative to A.

(ii) A is K-trivial, that is,

K(A � n) < K(n) + O(1).
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van Lambalgen’s Theorem

Theorem (van Lambalgen 1987)

A � B is ML-random

i� A is ML-random and B is ML-random relative to A.
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X �K Y if K(X � n) � K(Y � n) + O(1).

Definition (Miller and Yu 2008)

X �vL Y if, for all Z, that X � Z is ML-random implies

Y � Z is ML-random.

Theorem (Miller and Yu 2008)

If X �K Y , then X �vL Y .

K and vL reducibility

26



Theorem (Miller and Yu 2008)

If Y �T X and Y is 1-random, then X �vL Y .

X � Y is 1-random, then X � Y <vL X, Y . .
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Question 4:
How about other randomness notions?
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Schnorr randomness

A machine M is called computable measure machine

(c.m.m.) if

µ(dom(M)) =
�

M(�)�

2�|�|

is computable.

Theorem (Downey and Gri�ths 2004)

A is Schnorr random

i� KM (A � n) > n � O(1) for each c.m.m. M .
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K does not work well

Theorem (See Theorem 7.4.8 in Nies’s book)

For each order function h, there is a computably (so Schnorr)

random set Z such that ��nK(Z � n|n) � h(n).
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Schnorr reducibility

Definition (Downey and Gri�ths)

A �Sch B if, for each c.m.m. M , there is a c.m.m. N such

that
KN (A � n) � KM (B � n) + O(1).

A is called Schnorr trivial if A �Sch �.
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Schnorr and truth-table

Every high degree contains a Schnorr trivial set. 
(Franklin)

K-trivial reals form an ideal in the Turing 
degrees. 

Schnorr trivial reals form an ideal in the tt-
degrees.
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Definition A set A is anti-complex if, for every order func-

tion f , C(A � f(n)) � n for almost all n.

Theorem (Franklin Greenberg Stephan Wu)

The following are equivalent for a set A:

(i) A is weak truth-table reducible to a Schnorr trivial

set.

(ii) degwttA is c.e. traceable.

(iii) A is anti-complex.

(iv) There is a set B such that A �T (tu) B.
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Theorem

The following are equivalent for a set A:

(i) A is a Schnorr trivial set.

(ii) A is computably tt-traceable.

(iii) A is totally anti-complex.

(iv) There is a set B such that A �tt(tu) B.

(i) �� (ii) by Franklin-Stephan.

(i) �� (iii) by Hölzl-Merkle.

(i) �� (iv) by Franklin-Greenberg-Stephan-Wu.
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Definition (Hölzl and Merkle)

A set A is totally i.o. complex if there is a computable func-

tion g such that for all total machines M there are infinitely

many n where CM (A � h(n)) � n.

Definition

A set A is totally anti-complex if it is not totally i.o. complex,

that is, for any order h there exists a total machine M such

that CM (A � h(n)) � n for almost all n.
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Uniform relativization

B is truth-table computable relative to A 

B is Schnorr random uniformly relative to A
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Turing and truth-table reducibility

B is Turing computable relative to A

i� there is a partial computable function f :� 2� � 2� such

that f(A) = B.

B is truth-table computable relative to A

i� there is a total computable function f :� 2� � 2� such

that f(A) = B.
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computable analysis

Consider a sequence {qn} of rationals such that |qn+1�qn| �
2�n for all n.

We say {qn} represents a real x is limn qn = x.

A real x is called computable if a computable sequence rep-

resents the real x.

(We also say x has a computable representation.)

Then computability of a function f :� 2� � R is naturally

induced.
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Uniform relativization

� � R is computable relative to A � 2� if there is a (partial)

computable function f :� 2� � R such that f(A) = �.

� � R is computable uniformly relative to A � 2� if there is

a total computable function f : 2� � R such that f(A) = �.
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Uniform relativization

B is Schnorr random relative to A

if KMA(B � n) > n � O(1) for each oracle machine M such

that µ(dom(MA)) is computable from A.

B is Schnorr random uniform relative to A

if KMA(B � n) > n � O(1) for each oracle machine M such

that Z �� µ(dom(MZ)) is a total computable function.

Remark

Full relativization and partial relativization.
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vL-theorem for Schnorr

Theorem (Merkle et al. 2006, Yu 2007, Kjos-Hanssen)

Van Lambalgen’s theorem does not hold for Schnorr ran-

domness.

Theorem (M., M.-Rute (accepted last week!))

Van Lambalgen’s theorem does hold for uniform Schnorr

randomness.
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Lowness and triviality

Theorem (essentially due to Franklin and Stephan 2010)

The following are equivalent for a set A:

(i) A is low for Schnorr randomness, that is, every

Schnorr random set is Schnorr random uniformly

relative to A.

(ii) A is Schnorr trivial, that is, for each c.m.m. M , there

is a c.m.m. N such that

KN (A � n) < KM (n) + O(1).
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A slogan

Study uniform 
relativization more!
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vL-theorem

Done - 
  Demuth by Diamondstone et al.,
  Schnorr and Kurtz by M.
  Bounded Primitive Recursive Randomness by 
Cenzer and Remmel

Not done - 
  weak 2, difference, bounded
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Lowness

Done - 
  Demuth by Bienvenu et al.,
  Schnorr by Franklin et al.,
  Kurtz by Kihara and M.

Not done - 
  comp., weak 2, bounded, Pi^1_1-MLR and 
others
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Kučera-Gács theorem for tt-reducibility does not hold!

Theorem (Calude and Nies 1997)

No ML-random set Z satisfies �� �tt Z.

Actually, no Kurtz random set Z satisfies �� �tt Z.

Question

Which tt-degree contains a (Schnorr, Kurtz etc.) random

set?

Is it really a natural question?
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Theorem

A is K-trivial i� {Z : A �T Z} contains an A-ML-random

set.

Theorem (Franklin-Stephan)

There is a Schnott trivial set that {Z : A �tt Z} does not

contain a Schnorr random set uniformly relative to A.

Theorem (M.)

A is Schnorr trivial i�, for each uniform Schnorr test {Un},

there is Z such that Z ��
�

n UA
n and A �tt Z.
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Questions

Other randomness versions of  vL-reducibility

Infinitely often maximally complex for c.m.m.

Randomness extraction

Solovay reducibility revisited

Omega operator

Resource-bounded randomness
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Things to do with
algorithmic randomness
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The basic idea is to replace “almost everywhere” 
with “all sufficiently random points”.

Two big topics are “differentiability” and 
“ergodic theorem”.

Interesting because
- one sometimes needs a new notion
- randomness notions can be understood by 
classical notions
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Completely different interpretations
via algorithmic randomness!
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Ergodic theory
Set A = [0, 1/2) and B = [1/2, 1].

Consider

f(x) =

�
2x if x � A

2x � 1 if x � B

Question

Given an initial point x0, how often fn(x0) � A?

More precisely, evaluate the following value:

lim
N��

#{n � N : fn(x0) � A}
N

.
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Birkho�’s ergodic theorem (SLLN is enough in this case)

says that

lim
N��

#{n � N : fn(x0) � A}
N

= 1/2

almost everywhere.

Interpretation via probability

Because of the sensitivity of initial condition, the points

move randomly, so the frequency goes to the measure of

the set.
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More natural interpretation

The unpredictability (randomness) of the initial value cor-

responds the unpredictability of the orbit, so the frequency

goes to the measure of the set. Furthermore, the set of such

points has measure 1. This also explains the sensitivity of

initial condition.

Such interpretation via deterministic randomness was made

possible due to Poincaré, but in what sense a determined

initial value is unpredictable or random?
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Hoyrup et al. showed that

lim
N��

#{n � N : fn(x0) � A}
N

= 1/2

for all Schnorr random points.

Actually, they showed that Schnorr randomness can be char-

acterized via e�ective version of Birkho�’s ergodic theorem.
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“Randomness and Determination, from Physics 
and Computing towards Biology”

“Incomputability in Physics and Biology”

by Giuseppe Longo in CNRS.
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Use randomness as a resource

Randomized algorithm such as Monte Carlo

The relation with L^1-computability?

Which randomness is needed?

Which property of  randomness is used?
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“Monte Carlo Method, Random Number, and 
Pseudorandom Number”

by Hiroshi Sugita in Osaka Univ.
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Justification of  scientific method

How to deal with uncertainties?

Justification of  induction seems to need the 
notion of  randomness rather than Ockham’s 
razor.

The relation between mathematics and science?
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"Algorithmic Probability -- Its Discovery -- Its 
Properties and Application to Strong AI" and 
"Algorithmic Probability: Theory and 
Applications" by Solomonoff

"Universal Artificial Intelligence"
by Marcus Hutter
in Australia's national university

“Ockham Efficiency Theorem”
in “Ockham’s Razor, Truth, and Information”
by Kevin T. Kelly in Carnegie Mellon Univ.

61



Other random phenomena?

Brownian motion by Fouch and Kjos-Hanssen

Statistical mechanics by Tadaki and others

Quantum mechanics by Calude and Svozil

Statistics?

62



Computability everywhere

computable analysis

computable measure theory

computable information theory?

computable statistics?

computable quantum mechanics?
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Thanks!
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