\textbf{L}^{1}\text{-computability, layerwise computability and Solovay reducibility}

Kenshi Miyabe
Research Institute for Mathematical Sciences, Kyoto University
Kitashirakawa-Oiwakecho Sakyo-ku Kyoto 606-8502 Japan
kmiyabe@kurims.kyoto-u.ac.jp
http://kenshi.miyabe.name/wordpress/

Abstract. We propose a hierarchy of classes of functions that corresponds to the hierarchy of randomness notions. Each class of functions converges at the corresponding random points. We give various characterizations of the classes, that is, characterizations via integral tests, \textit{L}^{1}\text{-computability} and layerwise computability. Furthermore, the relation among these classes is formulated using a version of Solovay reducibility for lower semicomputable functions.

Keywords: algorithmic randomness, computable analysis, \textit{L}^{1}\text{-computability}, layerwise computability, Solovay reducibility

1. Introduction

We propose a hierarchy of classes of effective functions that corresponds to the hierarchy of algorithmic randomness notions. We give various characterizations of the classes using notions already defined in the literature. A similar attempt was made by Brattka, Miller and Nies [8], who characterized some randomness notions via differentiability.

A theorem of Lebesgue [18] states that every nondecreasing function $f : [0, 1] \rightarrow \mathbb{R}$ is differentiable almost everywhere. Thus, intuitively, at any “random” real, a function is differentiable.

The theory of algorithmic randomness defines which points in a measure space are “random”. Roughly speaking, a point is random if it is not contained in any effectively presented set with measure zero. Many randomness notions have been proposed, and their hierarchy has been developed. Some commonly studied notions of randomness are weak 2-randomness, Martin-Löf randomness, computable randomness, Schnorr randomness and Kurtz randomness. (See [10, 22] for details.)

Brattka, Miller and Nies [8] proposed, for each randomness notion, finding a class of effective functions so that a real $z \in [0, 1]$ satisfies the randomness notion if and only if each function in the class is differentiable at $z$.

For instance, Brattka et al. [8] showed that $z$ is computably random if and only if each computable nondecreasing function is differentiable at $z$, and that $z$ is Martin-Löf random if and only if each computable function of bounded variation is differentiable at $z$. (The second result was also proved by Demuth [9].) Brattka et al. [8] also gave a weak 2-randomness version and Freer, Kjos-Hanssen, Nies and Stephan [12] gave a Schnorr randomness version. These results have provided a hierarchy of classes of effective functions that corresponds to the hierarchy of randomness notions via differentiability.

The theorem of Lebesgue has a stronger form, namely the Lebesgue differentiation theorem [2, 18, 19]. We can thus consider a hierarchy of classes of effective functions that corresponds to the hierarchy of randomness notions via the Lebesgue differentiation theorem. Pathak, Rojas and Simpson [23] (and independently Jason Rute) showed that the class of an effective version of \textit{L}^{1}-computable functions characterizes Schnorr randomness via the Lebesgue differentiation theorem. A Kurtz-randomness version was given by Miyabe [21], who showed that the class of the differences of two integral tests for Kurtz randomness characterizes Kurtz randomness via the Lebesgue differentiation theorem. According to this result and as we see in this paper, the classes of the differences of two integral tests are important. We will give a Schnorr-randomness version of this result and present a systematic study of the hierarchy of the classes.

This paper is organized as follows. The randomness notions studied in this paper are weak 2-randomness, Martin-Löf randomness, Schnorr randomness and Kurtz randomness. We characterize these randomness notions
in various ways. Section 2 gives definitions and results used in subsequent sections. Section 3 characterizes weak 2-randomness and Schnorr randomness via integral tests. The characterizations of Martin-Löf randomness and Kurtz randomness via integral tests are known. Section 4 characterizes the class of the differences of two integral tests via $L^1$-computability. Section 5 characterizes an effective version of $L^1$-computability via a Schnorr version of layerwise computability. Section 6 introduces Solovay reducibility for lower semicomputable functions to explain the relation among the classes.

2. Background

2.1. Computable analysis

We recall some notions from computable analysis. See [5, 7, 27, 28] for details. We abbreviate “if and only if” as “iff”. Let $\Sigma$ be a finite alphabet such that $0, 1 \in \Sigma$. By $\Sigma^*$ we denote the set of finite words over $\Sigma$ and by $\Sigma^\omega$ the set of infinite sequences over $\Sigma$. A notation of a set $X$ is a surjective partial function $\nu : \Sigma^* \to X$, and a representation is a surjective partial function $\delta : \Sigma^\omega \to X$. A naming system is a notation or a representation. For $i \in \{1, 2\}$, let $Y_i \subseteq \Sigma^*$ and $\gamma_i : Y_i \to X_i$ be naming systems. A point $x \in X_1$ is $\gamma_i$-computable if it has a computable $\gamma_i$-name. A function $h : Y_1 \to Y_2$ realizes a partial function $f : X_1 \to X_2$ if $\gamma_2 \circ h(\gamma_1) = f \circ \gamma_1(\gamma_1)$ whenever $\gamma_1 \in \text{dom}(\gamma_1)$ and $\gamma_1(\gamma_1) \in \text{dom}(f)$. The function $f$ is called $(\gamma_1, \gamma_2)$-computable if it has a computable realization.

The canonical notations of the natural and the rational numbers are denoted by $\nu_n$ and $\nu_Q$, respectively. The representation $\rho_i : \Sigma^\omega \to \mathbb{R}$ is defined by

$$\rho_i(p) = x \iff p \text{ enumerates all } q \in \mathbb{Q} \text{ with } q < x.$$ 

We use $\overline{\rho}_i$ for the representation of points in $\mathbb{R} \cup \{ \infty \}$. The representation $\rho : \Sigma^\omega \to \mathbb{R}$ is defined by

$$\rho(p) = x \iff p \text{ encodes a sequence } \{ q_n \} \text{ of rationals such that } |x - q_n| \leq 2^{-n}.$$ 

**Definition 2.1 (computable metric space).** A computable metric space is a 3-tuple $X = (X, d, \alpha)$ such that

(i) $(X, d)$ is a metric space,

(ii) $\alpha : \Sigma^* \to A$ is a notation of a dense subset $A$ of $X$ with a computable domain,

(iii) $d$ restricted to $A \times A$ is $(\alpha, \alpha, \rho)$-computable.

We give some examples of computable metric spaces.

**Example 2.1.**

(i) (unit interval) Let $I = [0, 1]$, $\alpha$ is a canonical notation of $\mathbb{Q} \cap I$ and $d(p, q) = |p - q|$.

(ii) (extended real line) Let $\mathbb{R} = [\mathbb{R}, d, \alpha]$ be such that $\mathbb{R} = \mathbb{R} \cup \{ \pm \infty \}$, $\alpha$ is a canonical notation of $\mathbb{Q} \cup \{ \pm \infty \}$ and $d(x, y) = |f(x) - f(y)|$ where $f(x) = \frac{x}{1 + |x|}, f(\infty) = 1$ and $f(-\infty) = -1$.

Let $X = (X, d, \alpha)$ be a computable metric space. A fast Cauchy sequence on a metric space is a sequence $\{ x_n \}$ of points in the space such that $d(x_n, x_{n-1}) \leq 2^{-n}$. The representation $\delta : \Sigma^\omega \to X$ of points in $X$ is defined by

$$\delta(p) = x \iff p \text{ encodes a fast Cauchy sequence } \{ x_n \} \text{ in } A \text{ that converges to } x.$$ 

A basic open ball on $X$ is denoted by $B(u, r) = \{ x : d(u, x) < r \}$ and a basic closed ball is denoted by $\overline{B}(u, r) = \{ x : d(u, x) \leq r \}$ where $A \in \alpha$ and $r \in \mathbb{Q}$. By $\tau$, we denote the class of open sets. The representation $\theta : \Sigma^\omega \to \tau$ of open sets is defined by

$$\theta(p) = W \iff p \text{ encodes a sequence } \{ B_i \} \text{ of basic open balls such that } W = \bigcup_i B_i.$$
For simplicity, we use the following terminology. A point on $X$ is computable if it is $\delta$-computable. A open set is c.e. if it is $\theta$-computable. A closed set is co-c.e. if its complement is c.e. A total function $f : X_1 \to X_2$ is computable if it is $(\delta_1, \delta_2)$-computable. A total function $f : X \to \mathbb{R}$ is lower semi-computable if it is $(\delta, \eta)$-computable. A total function $f : X \to \mathbb{R}$ is extended computable if it is $(\delta, \eta)$-computable. Here $\eta$ is the representation $\delta$ of points in $\mathbb{R}$.

2.2. Computable measures
For computability of measures on a computable metric space, see [3, 16, 25]. We only consider a Borel probabilistic computable measure. A measure on a computable metric space is computable if the measure of a finite union of basic open balls is uniformly lower semicomputable. Then the integral of a nonnegative lower semicomputable function over a c.e. open set with respect to a computable measure is uniformly lower semicomputable.

Fix a computable enumeration $\{\alpha_i\}$ of $A$.

Proposition 2.2. Let $\mu$ be a computable measure on a computable metric space. Then there exists a computable sequence $\{r_i\}$ such that $\mu(\overline{B}(\alpha_i, r_i)) \leq 2^{-n}$ for all $i$ and $j$.

We call $B(\alpha_i, r_i)$ a basic set and $\overline{B}(\alpha_i, r_i)$ a co-basic set for each $i$ and $j$. Let $T$ be the set of all finite intersections of basic sets and co-basic sets. Note that $\mu(U)$ is computable uniformly in $U \in T$. Let $B(i, j) = B(\alpha_i, r_i)$ and $\overline{B}(i, j) = \overline{B}(\alpha_i, r_i)$. As in [16], for $\sigma \in 2^{<\omega}$, the cell $\Gamma(\sigma)$ is defined by induction on $|\sigma|$: $\Gamma(\epsilon) = X$, $\Gamma(\sigma 0) = \Gamma(\sigma) \cap B_k$, $\Gamma(\sigma 1) = \Gamma(\sigma) \cap \overline{B}_k$, where $\epsilon$ is the empty string and $k = |\sigma|$.

2.3. Algorithmic randomness
We refer the reader to two books [10, 22] for a survey on algorithmic randomness. A Martin-Löf test is a sequence $\{U_n\}$ of uniformly c.e. open sets with $\mu(U_n) \leq 2^{-n}$. A point $x \in X$ is Martin-Löf random if $x \notin \bigcap_n U_n$ for each Martin-Löf test. A Schnorr test is a Martin-Löf test such that $\mu(U_n)$ is uniformly computable. A point $x \in X$ is Schnorr random if $x \notin \bigcap_n U_n$ for each Schnorr test. A point $x \in X$ is Kurtz random or weakly random if it is contained in each c.e. open set with measure 1. A generalized Martin-Löf test is a sequence $\{U_n\}$ of uniformly c.e. open sets with $\lim_n \mu(U_n) = 0$. A point $x \in X$ is weakly 2-random if $x \notin \bigcap_n U_n$ for each generalized Martin-Löf test.

Two functions $f, g : X \to \mathbb{R}$ are Kurtz equivalent (denoted by $f =_{WR} g$) if $f(x) = g(x)$ on each Kurtz random point. By $1_U$, we denote the characteristic function of $U \subseteq X$; that is, $1_U(x) = 1$ if $x \in U$ and $1_U(x) = 0$ if $x \notin U$. Two subsets $U, V$ are Kurtz equivalent if $1_U$ and $1_V$ are Kurtz equivalent.

A basic set or a co-basic set is Kurtz equivalent to a union of cells. A set $U \in T$ is Kurtz equivalent to a union of cells. If $U = B_{i_1} \cap \cdots \cap B_{i_k} \cap B_{j_1} \cap \cdots \cap B_{j_l}$ for some $i_1, \ldots, i_k, j_1, \ldots, j_l$, then $U$ is Kurtz equivalent to $\bigcup \{\Gamma(\sigma) \mid \sigma(i_1) = 0, \ldots, \sigma(i_k) = 0, \sigma(j_1) = 1, \ldots, \sigma(j_l) = 1, |\sigma| = m\}$

for $m > \max\{i_1, \ldots, i_k, j_1, \ldots, j_l\}$. It is easy to see that a union of sets in $T$ is Kurtz equivalent to a union of cells uniformly.

2.4. A rational step function
The notion of a rational step function has been used in the literature; e.g., [17, 23]. The following definition is Kurtz equivalent to the notions of [17, 23].

Definition 2.3. A rational step function is a finite sum $S = \sum_{k=1}^n q_k 1_{E_k}$ where $q_k \in \mathbb{Q}$ and $E_k \in T$. 
Note that there exists a canonical numbering of the collection of rational step functions. The following is immediate from Lemma 4.6 in [21].

**Proposition 2.4.** For a nonnegative lower semicomputable function \( f : X \to \mathbb{R} \), there exists a computable increasing sequence \( \{ s_n \} \) of rational step functions such that \( \lim_n s_n \) is Kurtz equivalent to \( f \).

We call the sequence \( \{ s_n \} \) an approximation of \( f \) by finite rational step functions.

**Definition 2.5.** A rational cell function is a finite sum
\[
s = \sum_{k=1}^{n} q_k 1_{\Gamma(\sigma_k)}
\]
where \( q_k \in \mathbb{Q} \) and \( \sigma_k \in 2^m \) for all \( k \) such that \( 1 \leq k \leq n \) and for some fixed \( m \in \mathbb{N} \).

**Proposition 2.6.** A rational cell function is a rational step function. A rational step function is Kurtz equivalent to a rational cell function.

**Proof.** The former half is immediate. Let \( s = \sum_{k=1}^{n} q_k 1_{E_k} \) be a finite rational step function where \( q_k \in \mathbb{Q} \) and \( E_k \in \mathcal{I} \). Replace \( E_k \) with a Kurtz equivalent union of cells with a fixed sufficiently large \( m \) to have a finite rational cell function.

\[ \qed \]

3. Integral tests

In this section, we give characterizations of several randomness notions via integral tests.

The following characterization of Martin-Löf randomness is a well-known result. Let \( \mathbb{R}^+ \) be the set of nonnegative elements of \( \mathbb{R} \). An integral test is a nonnegative lower semicomputable function \( t : X \to \mathbb{R}^+ \) such that \( \mu(t) = \int t \, d\mu < \infty \).

**Theorem 3.1** ([16, 20]). A point \( z \) is Martin-Löf random iff \( t(z) < \infty \) for each integral test \( t \).

The author has presented a version for Kurtz randomness.

**Theorem 3.2** (Miyabe [21]). A point \( z \in X \) is Kurtz random iff \( t(z) < \infty \) for each nonnegative extended computable function \( t : X \to \mathbb{R}^+ \) such that \( \mu(t) \) is computable.

### 3.1. A weak 2-randomness version of integral tests

First we give a version for weak 2-randomness.

**Proposition 3.3.** A point \( z \) is weakly 2-random iff \( t(z) < \infty \) for each nonnegative lower semicomputable function \( t : X \to \mathbb{R}^+ \) such that \( t(x) < \infty \) almost everywhere.

**Proof.** Suppose that \( z \) is not weakly 2-random. Then there exists a decreasing sequence \( \{ U_n \} \) of uniformly c.e. open sets such that \( \mu(U_n) \to 0 \) and \( z \in \bigcap_n U_n \). Let \( t(x) = \sup \{ n \mid x \in U_n \} \). Then \( t \) is lower semicomputable, \( t(x) < \infty \) almost everywhere and \( t(z) = \infty \).

Suppose \( t(z) = \infty \) for an nonnegative lower semicomputable function \( t \) such that \( t(x) < \infty \) almost everywhere. Let \( U_n = \{ x \mid t(x) > n \} \). Then \( \{ U_n \} \) is a generalized ML-test and \( z \in \bigcap_n U_n \).

\[ \qed \]

### 3.2. Integral tests for Schnorr randomness

Next we give a version for Schnorr randomness.
Definition 3.4. An integral test for Schnorr randomness is a nonnegative lower semicomputable function \( t : X \to \mathbb{R}^+ \) such that \( \mu(t) = \int t \, d\mu \) is computable.

Theorem 3.5. A point \( z \) is Schnorr random iff \( t(z) < \infty \) for each integral test \( t \) for Schnorr randomness.

Lemma 3.6. Let \( \{x_n\} \) be a sequence of uniformly computable positive reals. If there exists a sequence \( \{y_n\} \) of uniformly computable positive reals such that \( x_n \leq y_n \) for all \( n \) and \( \sum_n y_n \) is computable, then \( \sum_n x_n \) is also computable.

This lemma was used in [21], where a proof of it can be found.

Proof of the “if” direction of Theorem 3.5. Suppose \( z \) is not Schnorr random. Then there exists a Schnorr test \( \{U_n\} \) such that \( z \in \bigcap_n U_n \). Let \( t(x) = \#\{n \in \mathbb{N} : x \in U_n\} \) where \( \# \) denotes the size of the set. Note that \( t(z) = \infty \).

Since \( U_n \) is uniformly c.e., \( t \) is lower semicomputable. Note that \( \mu(t) = \sum_{n=0}^{\infty} \mu(U_n) \). Since \( \mu(U_n) \leq 2^{-n} \) and \( \sum_n 2^{-n} \) is computable, \( \mu(t) \) is computable by Lemma 3.6. Hence, \( t \) is an integral test for Schnorr randomness.

The “only if” direction is more difficult to prove than the “if” direction. Intuitively, since the area \( \mu(t) \) is computable, each area cut horizontally at two rationals \( p, q \) \( (p < q) \) is also computable. Then \( \mu(\{x : t(x) > q\}) \) and \( \mu(\{x : t(x) < q\}) \) can be approximated well unless \( \mu(\{x : t(x) = q\}) > 0 \). We then need a computable sequence \( \{q_n\} \) such that \( \mu(\{x : t(x) = q_n\}) = 0 \). A similar sequence is also used in [16] to construct a base of uniformly almost decidable balls, where the computable Baire category theorem plays an important role.

Definition 3.7. A constructive \( G_\delta \) set is a set of the form \( \bigcap_n U_n \) where \( \{U_n\} \) is a sequence of uniformly \( \theta \)-computable open sets.

Theorem 3.8 (Computable Baire theorem [4, 29]). On a computable metric space, every dense constructive \( G_\delta \) set contains a dense sequence of uniformly computable points.

We prove the “only if” direction of Theorem 3.5 via three lemmas.

Lemma 3.9. Let \( h_r(x) = \min\{r, t(x)\} \) where \( t \) is an integral test for Schnorr randomness and \( r \) is a computable real. Then \( \int h_r \, d\mu \) is computable uniformly from \( r \).

Proof. We assume \( r > 0 \). Let \( g_r(x) = \max\{r, t(x)\} \). Since \( h_r \) and \( g_r \) are lower semicomputable, so are \( \int h_r \, d\mu \) and \( \int g_r \, d\mu \). Since \( h_r(x) + g_r(x) = t(x) + r \), we obtain \( \mu(h_r) + \mu(g_r) = \mu(t) + r \). Since the right-hand side is computable, the left-hand side is also computable. Thus, \( \mu(h_r) \) and \( \mu(g_r) \) are computable.

The measure \( \mu(\{x : t(x) \geq r\}) \) can then be approximated from above.

Lemma 3.10. Let \( t \) be an integral test for Schnorr randomness and \( s \) be a computable real. Then \( \mu(\{x : t(x) \geq s\}) \) is upper semicomputable uniformly from \( s \).

Proof. For \( 0 < r < s \), let \( I_r = \int (h_r - h_r) \, d\mu \). Then \( I_r \) is computable uniformly in \( r \) and \( s \). Note that

\[
 h_s(x) - h_r(x) = \begin{cases} s - r & \text{if } t(x) \geq s \\ t(x) - r & \text{if } r \leq t(x) < s \\ 0 & \text{otherwise.} \end{cases}
\]

Hence,

\[
 \mu(\{x : t(x) \geq s\}) \leq I_r \frac{s - r}{s - r} \leq \mu(\{x : t(x) \geq r\}).
\]
Note that
\[
\lim_{\epsilon \to 0} \mu(\{x : t(x) \geq s - \epsilon\}) = \mu(\{x : t(x) \geq s\}).
\]
Then
\[
\mu(\{x : t(x) \geq s\}) = \lim_{\epsilon \to 0} \frac{P(s, \epsilon)}{\epsilon} = \lim_{n \to \infty} n l^{s-1/n}.
\]
Since \( n l^{s-1/n} \) is uniformly computable, it suffices to show that \( n l^{s-1/n} \) decreasing in \( n \). For \( n \leq m \), we have
\[
l^{s-1/n} = l^{s-1/m} + l^{s-1/m}
\]
and
\[
\frac{l^{s-1/m}_{s-1/n}}{(s-1/m) - (s-1/n)} \leq \mu(\{x : t(x) \geq s - 1/m\}) \leq \frac{l^{s-1/m}_{s-1/n}}{(s-1/m) - (s-1/n)}.
\]
By combining them, we obtain
\[
\frac{m-n}{nm} l^{s-1/m}_{s-1/n} \leq \frac{1}{m} (l^{s-1/n}_{s-1/m} - l^{s-1/m}_{s-1/n}).
\]
\[
m l^{s-1/m}_{s-1/n} \leq n l^{s-1/n}.
\]
Hence, \( \{x : t(x) \geq s\} \) has a computable approximation from above. \( \square \)

Lemma 3.11. There exists a sequence \( \{r_n\} \) of uniformly computable reals such that \( \mu(\{x : t(x) = r_n\}) = 0 \) for all \( n \).

Proof. Define \( U_k = \{r \in \mathbb{R}^+ : \mu(\{x : t(x) \geq r\}) < \mu(\{x : t(x) > r\}) + 1/k\}. \) By Lemma 3.10, \( \mu(\{x : t(x) > r\}) \) is upper semicomputable and \( \mu(\{x : t(x) > r\}) \) is lower semicomputable, thus \( U_k \) is a c.e. open set uniformly in \( k \). Since \( \mu \) is finite, the set of \( r \) for which \( \mu(\{x : t(x) = r\}) \geq 1/k \) is finite. Hence, \( U_k \) is dense. Note that \( \mathbb{R}^+ \) equipped with the standard metric is a computable metric space. Then, by the computable Baire Theorem, the dense constructive \( G_d \)-set \( \bigcap_k U_k \) contains a sequence \( r_n \) of uniformly computable reals that is dense in \( \mathbb{R}^+ \). By construction, \( \mu(\{x : t(x) = r_n\}) = 0 \) for all \( n \). \( \square \)

Proof of the "only if" direction of Theorem 3.5. Let \( t \) be an integral test for Schnorr randomness. Let \( \{r_n\} \) be a sequence of uniformly computable reals such that \( \mu(\{x : t(x) = r_n\}) = 0 \) for all \( n \). Then \( \mu(\{x : t(x) > r_n\}) = \mu(\{x : t(x) \geq r_n\}) \) is computable uniformly in \( n \).

Select an increasing computable subsequence \( \{s_n\} \leq \{r_n\} \) such that \( s_n \geq 2^n \mu(t) \). Let \( V_n = \{x : t(x) > s_n\} \). Then \( \{V_n\} \) is uniformly c.e. open and the measure \( \mu(V_n) \) is computable. Since \( s_n \mu(V_n) \leq \mu(t) \), we have \( \mu(V_n) \leq 2^{-n} \). Hence, \( \{V_n\} \) is a Schnorr test. If \( t(y) = \infty \), then \( y \) is not Schnorr random. \( \square \)

4. \( L^1 \)-computability

4.1. Effective \( L^1 \)-computability

The notion of \( L^1 \)-computability was defined by Pour-El and Richard [24] and has been widely used in the literature. Pathak, Rojas and Simpson [23] considered an effective version of \( L^1 \)-computability on a finite dimensional cube with the Lebesgue measure. We give the definition in a slightly different formulation.

The \( L^1 \)-norm of a function \( f \) is denoted by \( ||f||_1 = \int_X |f|d\mu \). The \( L^1 \)-computability is being a computable point under the \( L^1 \)-norm.
**Definition 4.1.** A function \( f : X \to \mathbb{R} \) is an **effective \( L^1 \)-computable function** if there exists a computable sequence \( \{s_n\} \) of finite rational step functions such that \( f(x) = \lim_n s_n(x) \) and \( ||s_n - s_{n-1}||_1 \leq 2^{-n} \) for all \( n \geq 1 \).

Pathak et al. [23] showed that an effective \( L^1 \)-computable function characterizes Schnorr randomness via the Lebesgue differentiation theorem. In contrast, Miyabe [21] showed that the class of differences between two integral tests for Kurtz randomness characterizes Kurtz randomness via the Lebesgue differentiation theorem. It is natural to ask how \( L^1 \)-computability is related to being a difference between two integral tests for Schnorr randomness. We answer this question by showing that they are essentially the same.

Let \( f : X \to \mathbb{R}^k \) be functions. We use the same symbol \( f \) to mean the partial function \( f : \subseteq X \to \mathbb{R} \). For instance, for \( f, g : X \to \mathbb{R}^k \), \( f - g \) is the partial function to \( \mathbb{R} \) and \( \text{dom}(f - g) = \{ x : f(x) < \infty, g(x) \leq \infty \} \).

**Definition 4.2.** Two functions \( f, g : \subseteq X \to \mathbb{R} \) are **Schnorr equivalent** (denoted by \( f =_{SR} g \)) if \( f(x) \) and \( g(x) \) are defined and equal for each Schnorr random point \( x \in X \).

**Theorem 4.3.** Every difference between two integral tests for Schnorr randomness is Schnorr equivalent to an effective \( L^1 \)-computable function. Conversely, every effective \( L^1 \)-computable function is Schnorr equivalent to a difference between two integral tests for Schnorr randomness.

**Proof.** First, we prove the former half. Let \( f \) be the difference between two integral tests \( t, u \) for Schnorr randomness. Then there exist approximations \( \{t_n\} \) and \( \{u_n\} \) by rational step functions such that \( ||t - t_n|| \leq 2^{-n-2} \) and \( ||u - u_n|| \leq 2^{-n-2} \). This is possible because the integrals of \( t \) and \( u \) are computable. Let \( s_n = t_n - u_n \) for all \( n \). Then
\[
\lim_n s_n = \lim_n (t_n - u_n) =_{SR} t - u = f
\]
and
\[
||s_n - s_{n-1}||_1 = ||t_n - t_{n-1} - u_n + u_{n-1}||_1 \\
\leq ||t - t_n||_1 + ||t - t_{n-1}||_1 + ||u - u_n||_1 + ||u - u_{n-1}||_1 < 2^{-n}.
\]
Hence, \( f \) is Schnorr equivalent to an effective \( L^1 \)-computable function.

Next, we prove the latter half. Let \( g \) be an effective \( L^1 \)-computable function. Then there exists a computable sequence \( \{s_n\} \) of rational step functions such that \( g(x) = \lim_n s_n(x) \) and \( ||s_{n+1} - s_n||_1 \leq 2^{-n} \) for all \( n \). Since \( s_{n+1} - s_n \) is a rational step function, it is Kurtz equivalent to a finite cell function \( c_n = \sum q_k I_{\Gamma(\sigma_k)} \) by Proposition 2.6. Let
\[
c_n^+ = \sum_{q_k \geq 0} q_k I_{\Gamma(\sigma_k)} \quad \text{and} \quad c_n^- = - \sum_{q_k < 0} q_k I_{\Gamma(\sigma_k)}.
\]
Then \( ||c_n||_1 = ||s_{n+1} - s_n||_1 \leq 2^{-n} \) and
\[
||c_n||_1 = \sum_k |q_k| \mu(\Gamma(\sigma_k)) = ||c_n^+||_1 + ||c_n^-||_1.
\]
It follows that \( ||c_n^+||_1 \leq 2^{-n} \) and \( ||c_n^-||_1 \leq 2^{-n} \). Hence, \( \sum_n c_n^+ \) and \( \sum_n c_n^- \) are integral tests for Schnorr randomness. Here \( g \) is Schnorr equivalent to \( \sum_n c_n^+ - \sum_n c_n^- \). \( \square \)

Pathak et al. [23] showed some properties of effective \( L^1 \)-computable functions on a finite dimensional cube with the Lebesgue measure. We obtain the following generalizations to a computable metric space with a computable measure.

**Corollary 4.4.** Let \( f \) be an effective \( L^1 \)-computable function. Then \( f(x) \) is defined for all Schnorr random points \( x \).
Proposition 4.5. Let \( f, g \) be effective \( L^1 \)-computable functions. Then \( f, g \) are Schnorr equivalent iff \( \|f - g\|_1 = 0 \).

Proof. If \( f \) and \( g \) are Schnorr equivalent, then \( \mu(\{x \mid f(x) \neq g(x)\}) = 0 \). Thus, \( \|f - g\|_1 = 0 \).

Suppose that \( \|f - g\|_1 = 0 \). There are integral tests \( t, u \) for Schnorr randomness such that \( f - g =_{\text{SR}} t - u \). Let \( \{t_n\} \) and \( \{u_n\} \) be their approximations by rational step functions according to Proposition 2.4. Since \( \mu(t) \) and \( \mu(u) \) are computable, we can assume that \( ||t - t_n||_1 \leq 2^{-n-1} \) and \( ||u - u_n||_1 \leq 2^{-n-1} \). Then

\[
||t_n - u_n||_1 \leq ||t_n - t||_1 + ||t - u||_1 + ||u - u_n||_1 \leq 2^{-n}.
\]

Since \( t_k \) and \( u_k \) are uniformly rational step functions, there exists a computable sequence \( \{h_n\} \) of rational step functions such that \( h_n \) is Kurtz equivalent to \( |t_k - u_k| \). Then \( h = \lim_n \sum_{k \leq n} h_k \) is lower semicomputable. Since \( ||t_k - u_k||_1 \leq 2^{-k} \), \( h \) is an integral test for Schnorr randomness by Lemma 3.6. Then \( h(x) < \infty \) for each Schnorr random point \( x \). It follows that \( |t_n(x) - u_n(x)| \to 0 \) as \( n \to \infty \). Hence, \( (f - g)(x) = t(x) - u(x) = \lim_n (t_n(x) - u_n(x)) = 0 \). □

4.2. Weak \( L^1 \)-computability

Here we give a Martin-Löf randomness version of Theorem 4.3. Since the class of integral tests is larger than the class of integral tests for Schnorr randomness, one needs a weaker notion than \( L^1 \)-computability. Recall that an \( L^1 \)-computable function is a computable point in the \( L^1 \)-space equipped with the metric \( || \cdot ||_1 \). Ambos-Spies, Weihrauch and Zheng [1] defined a weakly computable real as a real \( r = \lim_n q_n \) for a computable sequence \( \{q_n\} \) of rationals such that \( \sum_n |q_n - q'_{n+1}| \to 0 \), and proved that a real is weakly computable if and only if it is the difference of two left-c.e. reals. We define a weakly computable point in the \( L^1 \)-space as follows.

Definition 4.6. A function \( f : \subseteq X \to \mathbb{R} \) is weakly \( L^1 \)-computable if there exists a computable sequence \( \{s_n\} \) of finite rational step functions such that \( f(x) = \lim_n s_n(x) \) and \( \sum_n ||s_{n+1} - s_n||_1 < \infty \).

Definition 4.7 (ML-equivalence). Two functions \( f, g : \subseteq X \to \mathbb{R} \) are ML-equivalent (denoted by \( f \equiv_{\text{MLR}} g \)) if \( f(x), g(x) \) are defined and equal for each Martin-Löf random point \( x \in X \).

Proposition 4.8. Every difference between two integral tests is ML-equivalent to a weakly \( L^1 \)-computable function. Conversely, every weakly \( L^1 \)-computable function \( f \) is ML-equivalent to a difference between two integral tests.

Proof. First we prove the former half. Let \( f = t - u \) where \( t, u \) are integral tests and \( \{t_n\}, \{u_n\} \) be computable increasing approximations of \( t, u \) respectively. Let \( s_n = t_n - u_n \). Then \( \{s_n\} \) is a computable sequence of finite rational step functions. Furthermore,

\[
\sum_n ||s_{n+1} - s_n||_1 = \sum_n ||t_{n+1} - u_{n+1} - t_n + u_n||_1 \\
\leq \sum_n ||t_{n+1} - t_n||_1 + \sum_n ||u_{n+1} - u_n||_1 \\
= ||t||_1 + ||u||_1 < \infty.
\]

Finally, note that

\[
f(x) = t(x) - u(x) = \lim_n t_n(x) - \lim_n u_n(x) = \lim_n (t_n(x) - u_n(x)) = \lim_n s_n(x)
\]

for each ML-random point \( x \).

Next we prove the latter half. Let \( \{s_n\} \) be a computable sequence of finite rational step functions such that \( g = \sum_n s_n \) and \( \sum_n ||s_n||_1 < \infty \). Let \( \{t_n\} \) be a computable sequence of finite rational cell functions such that \( s_n \) and
Let $f$ be a weakly $L^1$-computable function. Then $f(x)$ is defined for all ML-random points $x$.

**Proof.** The “only if” direction is immediate.

Suppose that $||f-g||_1 = 0$. There exist two integral tests $t, u$ such that $f - g =_{\text{MLR}} t - u$. Let $\{t_n\}$ and $\{u_n\}$ be their computable approximations by rational step functions. Note that

$$||t_n - u_n||_1 \leq ||t_n - t||_1 + ||t - u||_1 + ||u - u_n||_1 \to 0$$

as $n \to \infty$ and $||t_n - u_n||_1$ is uniformly computable. Then there exists a computable sequence $\{n_i\}$ such that

$$||t_{n_i} - u_{n_i}||_1 \leq 2^{-i}.$$ 

Let $h_i$ be a rational step function Kurtz equivalent to $|t_{n_i} - u_{n_i}|$ uniformly in $i$. Let $h = \sum_i h_i$. Then $h$ is lower semicomputable. Note that $\mu(h) = \sum_i ||t_{n_i} - u_{n_i}||_1 < \infty$. Hence, $h$ is an integral test. (In fact, $h$ is an integral test for Schnorr randomness.)

Let $x \in X$ be Martin-Löf random. Then $f(x), g(x), t(x)$ and $u(x)$ are defined. Since $h(x) < \infty$, we have $|t_{n_i} - u_{n_i}|(x) \to 0$ as $i \to \infty$. Thus,

$$f(x) - g(x) = t(x) - u(x) = \lim_i t_{n_i}(x) - \lim_i u_{n_i}(x) = \lim_i (t_{n_i}(x) - u_{n_i}(x)) = 0.$$ 

This completes the proof. 

**4.3. Computably approximable functions**

Next we give a version of Proposition 4.8 and 4.10 for weak 2-randomness. A real is called *computable approximable* (or c.a.) if it is the limit of a computable sequence of rationals. We define a c.a. point in the $L^1$-space as follows.

**Definition 4.11.** A function $f : X \to \mathbb{R}$ is *computably $L^1$-approximable* (or c.a.) if there exists a computable sequence $\{s_n\}$ of rational step functions such that

$$f(x) = \lim_n s_n(x)$$

and $f(x)$ is defined almost everywhere.

Note that a c.a. function may not be in $L^1$. Consider the function $f : [0, 1] \to \mathbb{R}$ such that $f(x) = 1/x$. It is not difficult to see that a function is computably $L^1$-approximable iff it is limit computable [6] and defined almost everywhere.
Proposition 4.12. Let \( f \subset X \to \mathbb{R} \) be a function whose domain is the set of weakly 2-random points. Then \( f \) is c.a. iff \( f \) is the difference between two integral tests for weak 2-randomness.

The proofs are straightforward modifications of the proof of Theorem 4.8.

Definition 4.13. Two functions \( f, g \subset X \to \mathbb{R} \) are weakly 2-equivalent if \( f(x), g(x) \) are defined and equal for each weakly 2-random point \( x \).

Theorem 4.14. Let \( f, g \) be the differences between two integral tests for weak 2-randomness. Then \( f, g \) are weakly 2-equivalent iff \( ||f - g||_1 = 0 \).

The proof is a straightforward modification of that of Theorem 4.10.

### 4.4. An application

The effectivization of \( L^1 \)-computability makes some results more precise. We give an example.

Definition 4.15 (Hoyrup et al. [17]). A finite measure \( \mu \) is computably normable relative to some other finite measure \( \lambda \) if the norm of the operator \( L_\mu \) is computable from \( \mu \) and \( \lambda \).

We do not give the definition of the operator \( L_\mu \), since we do not use it explicitly in this paper.

Theorem 4.16 (Hoyrup et al. [17]). Let \( \mu, \lambda \) be such that \( \mu \ll \lambda \) and \( \mu \) is computably normable relative to \( \lambda \). Then the Radon–Nikodym derivative \( \frac{d\mu}{d\lambda} \) can be computed as an element of \( L^1(\lambda) \) from \( \mu \) and \( \lambda \).

In the proof, Hoyrup et al. [17] constructed a finite rational step function \( v_n \) such that \( ||h - v_n||_\lambda < 2^{-n} \) where \( h \) is a Radon–Nikodym derivative. By letting \( g = \lim_n v_n \), \( g \) is a Radon–Nikodym derivative and an effective \( L^1 \)-computable function. The following is immediate.

Theorem 4.17. Let \( \mu, \lambda \) be computable measures such that \( \mu \ll \lambda \) and \( \mu \) is computably normable relative to \( \lambda \). Then there exists an effective \( L^1(\lambda) \)-computable Radon–Nikodym derivative \( f \) of \( \mu \) with respect to \( \lambda \). Furthermore, if \( g \) is another effective \( L^1(\lambda) \)-computable Radon–Nikodym derivative of \( \mu \) with respect to \( \lambda \), then \( f \) and \( g \) are Schnorr equivalent.

This result is an effective version of the classical theorem that states that two Radon–Nikodym derivatives (for the same measures) are equal almost everywhere.

### 5. Schnorr layerwise computability

Layerwise computability [14, 15] has desirable properties for the study of effective probability theory. Hoyrup and Rojas [14] showed that, if a function is layerwise lower semicomputable and has a computable integral, then it is layerwise computable. In the following, we show that, if a function is lower semicomputable and has a computable integral, then it is Schnorr layerwise computable. Furthermore, the converse also holds in the sense of Theorem 5.2.

Definition 5.1. A function \( f : \subset X \to \mathbb{R} \) is Schnorr layerwise computable if there exists a Schnorr test \( \{U_n\} \) such that the restriction \( f|_{X \setminus U_n} \) is uniformly computable.

Theorem 5.2. A function is Schnorr equivalent to a Schnorr layerwise computable function whose \( L^1 \)-norm is computable iff the function is Schnorr equivalent to a difference between two integral tests for Schnorr randomness.

Proof. (if direction) It suffices to show that an integral test \( f \) for Schnorr randomness is Schnorr layerwise computable. Let \( \{s_n\} \) be a computable sequence of nonnegative finite rational step functions such that \( ||s_n||_1 \leq 2^{-2n} \) and \( f = \lim WR \sum_n s_n \).
Let $U_n = \{ x : s_n(x) > 2^{-n} \}$. Then $U_n$ is uniformly c.e. Since $2^{-n} \mu(U_n) \leq ||s_n||_1 \leq 2^{-2n}$, we have $\mu(U_n) \leq 2^{-n}$. Note that the real $\mu(U_n)$ is uniformly computable.

Let $V_k = \{ U_n : n > k \}$. Then $\mu(V_k) \leq \sum_{n>k} \mu(U_n) \leq \sum_{n>k} 2^{-n} = 2^{-k}$. The real $\mu(V_k)$ is uniformly computable by Lemma 3.6. Hence, $\{ V_k \}$ is a Schnorr test.

Suppose $x \in X \setminus V_k$ and $x$ is Schnorr random. Then $s_n(x) \leq 2^{-n}$ for each $n > k$. Hence,

$$ f(x) - \sum_{m=1}^{n} s_m(x) = \sum_{m=n+1}^{\infty} s_m(x) \leq \sum_{m=n+1}^{\infty} 2^{-m} = 2^{-n} $$

for each $n > k$. Hence, $f(x)$ is computable from $x$ and $k$.

Finally notice that, for integral tests $f, g$ for Schnorr randomness, $||f - g||_1$ is computable by Theorem 4.3 (only if direction) Let $f$ be a Schnorr layerwise computable function whose $L^1$-norm is computable. Then there exists a Schnorr test $\{ U_n \}$ such that $f_n = f|_{X \setminus U_n}$ is uniformly computable. Let $f''_n$ be total and uniformly lower semicomputable functions such that $f''_n|_{X \setminus U_n} = f_n$. Let $f''_n = \min(f''_n, n)$.

Let $t_n(x) = \sum\{ k : x \in U_k, k \leq n \}$. Then $\sup_n t_n d \mu = \sum_n n \cdot \mu(U_n)$ is computable. Let $t = \sup_n t_n$.

Let

$$ g_n(x) = \begin{cases} t_n(x) & \text{if } x \in U_n \\ t_{n-1}(x) + f''_n(x) & \text{otherwise.} \end{cases} $$

Note that $g_n$ is lower semicomputable. Let $g(x) = \sup_n g_n(x)$. Then $g$ is lower semicomputable and

$$ g(x) = \begin{cases} \infty & \text{if } x \in \bigcap_n U_n \\ t(x) + f(x) & \text{if } x \not\in \bigcap_n U_n. \end{cases} $$

Note that $\mu(g) = \mu(t) + \mu(f)$ is computable. If $x$ is Schnorr random, then $f(x) = g(x) - t(x)$. \hfill $\square$

6. Solovay reducibility for lower semicomputable functions

6.1. Motivation

We begin with the following observation. Let $f$ be a layerwise computable function. Then $f(x)$ is computable from $x$ for each ML-random point $x$. In contrast, let $g$ be a function such that $g(x) = \Omega$ for each $x \in X$ where $\Omega$ is Chaitin’s omega. Then $g$ is an integral test. However, $g(x)$ is not computable from $x$ for each computable point $x$.

This means that, in this context, layerwise computability is not a Martin-Löf randomness version of Schnorr layerwise computability. To calculate the value $g(x)$, we need more precise information; the information of $x \not\in U_k$ is insufficient because the information is finite. We need to know how close to $g(x)$ an approximation is. With this motivation, we introduce Solovay reducibility for lower semicomputable functions.

For simplicity, we generalize the following characterization of Solovay reducibility for left-c.e. reals.

Theorem 6.1 (Downey, Hirschfeldt and Nies [11]). Let $\alpha, \beta$ be left-c.e. reals. Then $\alpha$ is Solovay reducible to $\beta$ ($\alpha \leq_{S} \beta$) iff there are a computable real $d$ and a left-c.e. real $\gamma$ such that $d \beta = \alpha + \gamma$.

6.2. Some characterizations

Definition 6.2. Let $f, g$ be nonnegative lower semicomputable functions. We say that $f$ is Solovay reducible to $g$ (denoted by $f \leq_{S} g$) if there exists a computable real $d$ and a nonnegative lower semicomputable function $h$ such that

$$ d \cdot g \equiv_{WR} f + h. $$
The following is immediate.

**Proposition 6.3.** Let \( f, g \) be nonnegative lower semicomputable functions such that \( f \leq_S g \).

(i) If \( g \) is a.e. computable, then so is \( f \).
(ii) If \( g \) has a computable integral, then so does \( f \).
(iii) If \( g \) is integrable, then so is \( f \).
(iv) If \( g(x) < \infty \) almost everywhere, then \( f \) also has the property.

We give characterizations of classes of such functions.

**Proposition 6.4.** Let \( f \) be a nonnegative lower semicomputable function that is bounded by a natural number \( M \). Then \( f \) is a.e. computable iff \( f \leq_S M \).

Note that \( M \) is taken to be a constant function.

**Proof.** Suppose \( f \) is an a.e. computable function. Then there exists a nonnegative lower semicomputable function \( h \) Kurtz equivalent to \( M - f \). It follows that \( M = f + (M - f) = \text{WR} f + h \), which implies \( f \leq_S M \).

Let \( f \leq_S M \). Since \( M \) is a.e. computable in particular, so is \( f \) by the theorem above. □

**Proposition 6.5.** There exists an integral test \( t \) such that a lower semicomputable function \( f \) is integrable iff \( f \leq_S t \).

**Proof.** Let \( f_n \) be a computable enumeration of nonnegative lower semicomputable functions such that \( \mu(f_n) \leq 1 \). Let \( t = \sum_n 2^{-n} \cdot f_n \). Then \( \mu(t) = \sum_n 2^{-n} \mu(f_n) < \infty \). Hence, \( t \) is integrable.

If \( f \leq_S t \), then \( f \) is integrable. If \( f \) is integrable, then there exist natural numbers \( e, m \) such that \( f_e = f/m \). Let \( h = \sum_{n \neq e} 2^{-n} f_n \). Then

\[
t = h + 2^{-e} f_e = h + 2^{-e} f/m \quad \text{and} \quad m \cdot 2^e \cdot t = m \cdot 2^e \cdot f + f.
\]

Hence, \( f \leq_S t \). □

For a characterization of a nonnegative lower semicomputable function with a computable integral, we use the notion of a Solovay test. A Solovay test on the Cantor space was introduced by Solovay [26] and it characterizes Martin-Löf randomness. Schnorr randomness is characterized by a finite total Solovay test, which was introduced by Rüpprecht; see [10]. The generalizations to a computable metric space were given by Gács, Hoyrup and Rojas [13], who called them a Borel–Cantelli test (BC-test) and a strong BC-test. However, here we call the latter a Solovay test for Schnorr randomness.

**Definition 6.6.** A Solovay test for Schnorr randomness is a sequence \( \{U_n\} \) of uniformly c.e. open sets such that \( \sum_n \mu(U_n) \) is computable.

**Proposition 6.7 (Gács, Hoyrup and Rojas [13]).** A point is Schnorr random iff \( x \in U_n \) for at most finitely many \( n \) for each Solovay test \( \{U_n\} \) for Schnorr randomness.

**Theorem 6.8.** A nonnegative lower semicomputable function \( f \) has a computable integral iff there exist a computable sequence \( \{a_n\} \) of natural numbers and a Solovay test \( \{U_n\} \) for Schnorr randomness such that

\[
f \leq_S \sum_n a_n \cdot 1_{U_n}
\]

and \( \sum_n a_n \mu(U_n) \) is computable.

We have seen in Theorem 5.2 that, if a nonnegative lower semicomputable function \( f \) has a computable integral, then \( f \) is Schnorr layerwise computable. Note that Theorem 6.8 also implies this fact.
Proof. The “if” direction is immediate.

Suppose that $\mu(f)$ is computable. Let $\{s_n\}$ be a computable sequence of finite rational cell functions such that $f = \text{WR} \sum_n s_n$ and $||s_n||_1 \leq 2^{-2n}$ for each $n \geq 1$. The finite rational cell functions can be written in the form

$$s_n = \sum_{k=1}^{l_n} q_{n,k} 1_{\Gamma(\sigma_{n,k})}$$

where $q_{n,k} \in \mathbb{Q}$ and $\sigma_{n,k} \in 2^{\omega}$. We separate each $s_n$ into parts by the size of $q_{n,k}$. Let $s_{n,0}$ be the sum of the terms where $q_{n,k} \leq 2^{-n}$, $s_{n,1}$ be the sum of the terms where $2^{-n} < q_{n,k} \leq 2$, and $s_{n,i}$ be the sum of the terms where $2^{i-1} < q_{n,k} \leq 2^i$ for $i \geq 2$.

Let $g = s_0 + \sum_{n \geq 1} s_{n,0}$. Then $g$ is bounded, is an a.e. computable function and has a computable integral. Then there exist a natural number $M$ and a nonnegative lower semicomputable function $h$ such that $M = \text{WR} g + h$. Note that $\mu(h)$ is computable.

We define $\{a_{n,k}\}$, $\{p_{n,k}\}$ and $\{U_{n,k}\}$ as follows.

\[
\begin{align*}
a_{0,0} &= M, \quad p_{0,0} = 0, \quad U_{0,0} = X, \\
a_{0,k} &= 0, \quad p_{0,k} = 0, \quad U_{0,k} = \emptyset \quad \text{for } k \geq 1, \\
a_{n,k} &= 0, \quad p_{n,k} = 0, \quad U_{n,k} = \emptyset \quad \text{if } q_{n,k} \leq 2^{-n}, \\
a_{n,k} &= 2^i \quad \text{where } i \text{ is the least natural number such that } 2^{-n} < q_{n,k} \leq 2^i, \\
p_{n,k} &= 2^i - q_{n,k}, \quad U_{n,k} = \Gamma(\sigma_{n,k}) \quad \text{for } n \geq 1.
\end{align*}
\]

Then $\{a_n\}$ is a computable sequence of natural numbers.

We show that $\{U_{n,k}\}$ is a Solovay test for Schnorr randomness. Note that $\{U_{n,k}\}$ is a cell and has a uniformly computable measure. Since $||s_n||_1 \leq 2^{-2n}$ for each $n \geq 1$, we have

$$\sum_k \mu(U_{n,k}) = \mu(\bigcup_k U_{n,k}) = \mu(\bigcup_{k,q_{n,k} > 2^{-n}} U_{n,k}) \leq 2^{-n}$$

for $n \geq 1$. It follows that $\sum_{n,k} \mu(U_{n,k})$ is finite and computable.

We show that $f \leq_{S} \sum_{n,k} a_{n,k} \cdot 1_{U_{n,k}}$. This is because

$$\sum_{n,k} a_{n,k} \cdot 1_{U_{n,k}} = g + h + \sum_{n,k,n \geq 1 \& q_{n,k} > 2^{-n}} (q_{n,k} + p_{n,k}) \cdot 1_{\Gamma(\sigma_{n,k})}$$

$$= f + h + \sum_{n,k,n \geq 1 \& q_{n,k} > 2^{-n}} p_{n,k} \cdot 1_{\Gamma(\sigma_{n,k})}.$$

Finally, we show that $\sum_{n,k} a_{n,k} \mu(U_{n,k})$ is computable. This is because

$$\sum_{k} p_{n,k} \mu(U_{n,k}) \leq \sum_{k,q_{n,k} \leq 2} 2\mu(U_{n,k}) + \sum_{k,q_{n,k} > 2} 2q_{n,k} \mu(U_{n,k})$$

$$\leq 2 \cdot 2^{-n} + 2 \cdot 2^{-2n} < 2^{-n+2}$$

for each $n \geq 1$, and thus, $\sum_{n,k} p_{n,k} \mu(U_{n,k})$ is computable. \qed

6.3. Computability for each point

Consider again the computability for each point.
Proposition 6.9. Let \( f, g \) be nonnegative lower semicomputable functions. If \( f \leq_S g \) and \( g(x) < \infty \), then \( f(x) \) is computable from \( x \) and \( g(x) \).

Proof. Since \( f \leq_S g \), there exist a computable real \( d \) and a nonnegative lower semicomputable function \( h \) such that \( d \cdot g = \text{WR} f + h \). By the fact that \( g(x) < \infty \), we have \( d \cdot g(x) = f(x) + h(x) \). Since \( f(x) \) and \( h(x) \) are left-c.e. from \( x \), \( f(x) \) can be computed from \( x \) and \( g(x) \).

\[ \square \]

Corollary 6.10. Let \( f \) be a nonnegative lower semicomputable function. If \( f \) has a computable integral and \( x \) is Schnorr random, then \( f(x) \) is computable from \( x \). If \( f \) is integrable and \( x \) is ML-random, then \( f(x) \) is computable from \( x \) and \( t(x) \) where \( t \) is as in Theorem 6.5.

Discussion

We have discussed four classes of functions which are closely related to weak 2-randomness, Martin-Löf randomness, Schnorr randomness and Kurtz randomness. These functions include the difference between the associated integral tests, and nice points in the \( L^1 \)-space. The Solovay reducibility for c.e. reals was generalized to the function space and studied here.

Acknowledgement

This work was partly supported by GCOE, Kyoto University and JSPS KAKENHI (23740072).

References


