The preordering related to uniform Schnorr randomness

> RPTC2013 14 May 2013

Kenshi Miyabe JSPS Research Fellow at The University of Tokyo

One line summary

In this talk, we give a uniform-Schnorr-randomness version of the equivalence between

$A \leq_{LR} B \iff A \leq_{LK} B.$

Lowness and triviality

Then it for any the stand and the stand and the second and the sec

The following are equivalent for a set $A \in 2^{\omega}$:

- (i) A is K-trivial, K(A ↾ n) ≤ K(n) + O(1).
 (ii) A is low for Martin-Löf randomness, that is, each Martin-Löf random set is Martin-Löf random relative to A.
- (iii) A is low for K, that is, $K(\sigma) \leq K^A(\sigma) + O(1)$. (iv) A is a base for Martin-Löf randomness, that is, A is
 - Turing reducible to a Martin-Löf random set relative to A.
- (v) And many others.

Many by Nies.

$A \leq_{LR} B \iff \operatorname{MLR}(B) \subseteq \operatorname{MLR}(A),$ $A \leq_{LK} B \iff K^B(\sigma) \leq K^A(\sigma) + O(1).$

Kjos-Hanssen, Miller and Solomon (2012) proved that

 $A \leq_{LK} B \iff A \leq_{LR} B.$

Open cover

Proposition

 $A \leq_{LR} B \iff$ each $\Sigma_1^0(A)$ class G such that $\mu(G) < 1$ is contained in a $\Sigma_1^0(B)$ class S such that $\mu(S) < 1$.

Theorem (Bienvenu and Miller 2012) The following are equivalent for a set $A \in 2^{\omega}$:

(i) $A \in Low(MLR)$

(ii) For every A-left-c.e. summable function $f : \omega \to \mathbb{R}^+$, there exists a left-c.e. summable function g such that $f \leq g$.

f is summable if $\sum_{n} f(n) < \infty$.

The following are equivalent for a set $A \in 2^{\omega}$:

- (i) A is Schnorr trivial, that is, $K_N(A \upharpoonright n) \leq K_M(n) + O(1)$.
- (ii) A is low for uniform Schnorr randomness, that is, each Schnorr random set is Schnorr random uniformly relative to A. (Franklin and Stephan 2010)
 (iii) A is low for u.c.m.m., that is, K(σ) ≤ K_{MA}(σ)+O(1). (M. 2011)
- (iv) A is a base for uniform Schnorr tests. (M. presented in the CCR2012)

Uniform Schnorr randomness

the set of the set of

Definition

A uniform Schnorr test is a computable function $f: 2^{\omega} \times \omega \rightarrow \tau$ such that

- the function $\langle X, n \rangle \mapsto \mu(f(X, n))$ is computable,
- $\mu(f(X,n)) \le 2^{-n}$ for all $X \in 2^{\omega}$ and $n \in \omega$.

The sequence $\{f(A, n)\}$ of open sets is called a Schnorr test uniformly relative to A. A set B is called Schnorr random uniformly relative to A if $B \notin \bigcap_n U_n^A$ for each Schnorr test $\{U_n^A\}$ uniformly relative to A.

Definition

An oracle prefix-free machine M is called a uniformly computable measure machine if $X \mapsto \mu(\llbracket \operatorname{dom}(M^X) \rrbracket)$ is computable.

Theorem

A set B is Schnorr random uniformly relative to A iff $K_{M^A}(B \upharpoonright n) > n - O(1)$ for all u.c.m.m. M.

Theorem

The following are equivalent for $A, B \in 2^{\omega}$:

(i) Every Schnorr random set uniformly relative to B is Schnorr random uniformly relative to A.
(ii) Every Schnorr test uniformly relative to A is covered by a Schnorr test uniformly relative to B.
(iii) For each u.c.m.m. M, there exists a u.c.m.m. N such that

$$K_{N^B}(\sigma) \le K_{M^A}(\sigma) + O(1).$$

(iv) For each strictly bounded and uniformly Schnorr function $g : 2^{\omega} \to \tau$, there is a strictly bounded and uniformly Schnorr function $h : 2^{\omega} \to \tau$ such that $g(A) \subseteq h(B)$.

A computable function $g : 2^{\omega} \to \tau$ is called a uniformly Schnorr function if $X \mapsto \mu(g(X))$ is computable. A computable function $g : 2^{\omega} \to \tau$ is called strictly bounded if $\sup_{X \in 2^{\omega}} \mu(g(X)) < 1.$ (v) For every computable function $f: 2^{\omega} \times \omega \to \mathbb{R}^+$ such that the function $X \mapsto \sum_n f(X, n)$ is computable, there is a computable function $g: 2^{\omega} \times \omega \to \mathbb{R}^+$ such that the function $X \mapsto \sum_n g(X, n)$ is computable and $f(A, n) \leq g(B, n)$ for all n.

 $(iii) \Rightarrow (ii) \Rightarrow (i) \Rightarrow (iv) \Rightarrow (v) \Rightarrow (iii)$

(iii)⇒(ii)⇒(i) and (v)⇒(iii) are not difficult.
(i)⇒(iv) can be shown by the usual way.
(iv)⇒(v) is the hardest direction.

$$2^{\omega} = 2^{\omega \times \omega} = (2^{\omega})^{\omega} = [0, 1]^{\omega}.$$

Let

$$\mathcal{B}_{n,\alpha} = \{ X \in [0,1]^{\omega} : X_n \in [0,\alpha) \}.$$

Let $f: 2^{\omega} \times \omega \to \mathbb{R}^+$ be a computable function such that $X \mapsto \sum_n f(X, n) \leq 1$ is computable. Consider $h: 2^{\omega} \to \tau$ defined by

$$h(X) = \bigcup_{n} \mathcal{B}_{n,f(X,n)}.$$

 $\mu(h(X)) = 1 - \prod_{n} (1 - \mu(\mathcal{B}_{n,f(X,n)})) = 1 - \prod_{n} (1 - f(X,n)).$

$$\log(1 - \mu(h(X))) = \sum_{n} \log(1 - f(X, n)).$$

Then h is a strictly bounded and uniformly Schnorr function. By (iv), there is a strictly bounded and uniformly Schnorr function $k: 2^{\omega} \to \tau$ such that $h(A) \subseteq k(B)$.

One may want to define $g(X,n) = \sup\{\alpha \in [0,1] : \mathcal{B}_{n,\alpha} \subseteq k(X)\}.$ Unfortunately, this does not work. Instead, we define $g(X,n) = \max\{\alpha \in [0,1] : \mu(\mathcal{B}_{n,\alpha} \setminus k(X,n)) \le 2^{-n-c}\}$ where k(X, n) is the approximation of k(X) within 2^{-n-c} . Then g is computable and $g(B,n) \ge f(A,n)$ because $\mathcal{B}_{n,f(A,n)} \subseteq h(A) \subseteq k(B),$ $\mu(\mathcal{B}_{n,f(A,n)} \setminus k(B,n)) \le \mu(k(B) \setminus k(B,n)) \le 2^{-n-c}.$

$$\mu(\bigcup_{n>N} \mathcal{B}_{n,g(X,n)} \setminus k(X,m)) = (1 - \mu(k(X,m)))\mu(\bigcup_{n>N} \mathcal{B}_{n,g(X,n)}).$$

$$1 - \prod_{n > N} (1 - g(X, n)) = \mu(\bigcup_{n < N} \mathcal{B}_{n, g(X, n)}) \le \frac{2^{-N - c} + 2^{-m - c}}{\delta}$$

where

 $\sup_{X \in 2^{\omega}} \mu(k(X)) < 1 - \delta.$

19

(vi) For every uniform Schnorr integral test $f: 2^{\omega} \times 2^{\omega} \to \mathbb{R}^+$, there is another uniform Schnorr integral test g such that $f(A, X) \leq g(B, X)$ for all X.

f is a uniform Schnorr integral test if f is lower semi computable function and $X \mapsto \int_{2^{\omega}} f(X, Z) d\mu(Z)$ is computable. We can show $(v) \Rightarrow (vi) \Rightarrow (i)$ by identifying

$$\omega = (2^{<\omega})^{\omega}.$$