Uniform relativization and almost uniform relativization

ELC Seminar on Algorithmic Randomness 13 May 2013

Kenshi Miyabe JSPS Research Fellow at The University of Tokyo

The theme of this talk

Theorem (van Lambalgen 1987) $A \oplus B$ is Martin-Löf random $\iff A$ is Martin-Löf random and B is Martin-Löf random relative to A.

 $\Rightarrow: easy direction \\ \Leftarrow: difficult direction$

uniform relativization

 van Lambalgen's theorem for uniform Kurtz randomness

almost uniform relativization

Uniform relativization

ALAN A DIANE

The tory was to man and in the in the constant

Failure of vL-theorem for Schnorr

* "The analog of Theorem 6.9.1 fails, however. That is, there are sets A and B such that A+B is Schnorr random but A and B are not relatively Schnorr random,"

in "7.1.2 Limitations" of Downey's book
Easy direction does not hold!!

Suppose B is not ML-random relative to A. Then there is a ML-test $\{U_n^A\}$ relative to A such that $B \in \bigcap_n U_n^A$. Let

$$V_n = \{ X \oplus Y : Y \in U_n^X \}$$

where \tilde{U}_n^X is U_n^X enumerated as long as $\mu(U_n^X) \leq 2^{-n}$. Then $\{V_n\}$ is a ML-test and $A \oplus B \in \bigcap_n V_n$.

Definition

A uniform Schnorr test is a computable function $f: 2^{\omega} \times \omega \rightarrow \tau$ such that $X \times n \mapsto \mu(f(X, n)) \leq 2^{-n}$ is computable. We call $\{f(A, n)\}$ a Schnorr test uniformly relative to A. B is Schnorr random uniformly relative to A if B passes all Schnorr tests uniformly relative to A. $\begin{array}{l} \textbf{Theorem (M. 2011 and M.-Rute 2013)} \\ A \oplus B \text{ is Schnorr random} \\ \Longleftrightarrow A \text{ is Schnorr random} \\ \text{ and } B \text{ is Schnorr random uniformly relative to } A. \end{array}$

Why uniform not tt?

It can take reals not only rationals.
tt is very sensitive

Proposition

The following are equivalent:

- (i) X is not Schnorr random.
- (ii) There are a computable martingale d and a computable function such that $d(X \upharpoonright f(n)) \ge n$ for infinitely many n.
- (iii) There are a computable martingale d and a computable order f such that $d(X \upharpoonright n) \ge f(n)$ for infinitely many n.

Proposition

The following are equivalent:

(i) B is not Schnorr random uniformly relative to A(ii) There are a computable function $d: 2^{\omega} \times 2^{<\omega} \to \mathbb{R}^+$ and a computable function $f: 2^{\omega} \times \omega \to \omega$ such that $d^X = d(X, -)$ is a martingale for each $X \in 2^{\omega}$ and $d^A(B \upharpoonright f^A(n)) \ge n$ for infinitely many n. (iii) There are a martingale $d \leq_{tt} A$ and a computable function $f: \omega \to \omega$ such that $d(B \upharpoonright f(n)) \ge n$ for infinitely many n.

Consider the following statement:

There are a martingale $d \leq_{tt} A$ and an order function f: $\omega \to \omega$ truth-table reducible to A such that $d(B \upharpoonright n) \geq f(n)$ for infinitely many n.

Essentially by Stephan and Franklin (2010), there exist A and B such that B is Schnorr random uniformly relative to A but the above statement holds.

Proof

Were a statistic for any statistic services and a service with the service and a servi

and the second of the second o

Definition (M.)

A Schnorr integral test is a nonnegative lower semicomputable function $t : X \to \overline{\mathbb{R}}^+$ with a computable integral $\int t \, d\mu$.

Theorem (M.)

A point z is Schnorr random iff $t(z) < \infty$ for each Schnorr integral test t.

Definition

A uniform Schnorr integral test is a nonnegative lower semicomputable function $t : 2^{\omega} \times 2^{\omega} \to \overline{\mathbb{R}}^+$ such that $X \mapsto \int t(X,Y) \ \mu(Y)$ is a computable function.

Proposition

A point B is Schnorr random uniformly relative to A off $t(A, B) < \infty$ for each uniform Schnorr integral test t.

Theorem

If $A \oplus B$ is Schnorr random, then B is Schnorr random uniformly relative to A.

Proof

Let $t: 2^{\omega} \times 2^{\omega} \to \overline{\mathbb{R}}^+$ be a uniformly Schnorr integral test such that $t(A, B) = \infty$. Let

$$h(X) = \int t(X, Y) \ \mu(Y).$$

Then h(X) is a computable function. We can assume that $h(X) \leq 1$ for all $X \in 2^{\omega}$. Let s(X,Y) = 1 - h(X). Then t + s is a Schnorr integral test on $2^{\omega} \times 2^{\omega}$. Thus $A \oplus B$ is not Schnorr random.

Lemma

Let t be a nonnegative lower semicomputable function with a computable integral $\int t \ d\mu$. There is a uniformly computable sequence $\{h_n\}$ of total computable functions h_n : $2^{\omega} \to [0, \infty)$ such that $h_n \leq t$ everywhere and if A is Schnorr random, there is some n such that $h_n(A) = t(A)$. **Definition** (M.) A function $f :\subseteq X \to \mathbb{R}$ is Schnorr layerwise computable if there exists a Schnorr test $\{U_n\}$ such that the restriction $f|_{X \setminus U_n}$ is uniformly computable.

Theorem (M.)

A function is Schnorr equivalent to a Schnorr layerwise computable function whose L^1 -norm is computable iff the function is Schnorr equivalent to a difference between two Schnorr integral tests.

Theorem

If A is Schnorr random and B is Schnorr random uniformly relative to A, then $A \oplus B$ is Schnorr random.

Proof

Suppose that (A, B) is not Schnorr random and A is Schnorr random. Then there is a Schnorr integral test t such that $t(A, B) = \infty$. Let

$$u(X) = \int t(X \oplus Y) \ \mu(Y).$$

Then u is lower semicomputable with a computable integral. By the lemma, there is a total computable function h such that $h \leq u$ everywhere and h(A) = u(A). Let \tilde{t} be t enumerated as long as $\int \tilde{t}(X,Y) \ \mu(Y) \le h(X)$. Since $h \le u$, the equality holds. Thus \tilde{t} is a uniform Schnorr integral test.

Furthermore, $\tilde{t}(A, Y) = t(A, Y)$ for all Y. Then $\tilde{t}(A, B) = t(A, B) = \infty$. Hence B is not Schnorr random uniformly relative to A.

Other randomness notions

STREET & MARKE

* vL-theorem holds for

MLR for usual relativization

SR for uniform relativization

Let \mathcal{R} be a relativizable randomness notion. Then van Lambalgen's theorem holds for \mathcal{R} if

 $A \oplus B \in \mathcal{R} \iff A \in R \land B \in \mathcal{R}^A.$

Thus such notion is essentially unique.

I previously claimed that "such relativization is the natural one", which is called Miyabe's thesis in Diamondstone-Greenberg-Turetsky's paper.

Definition

A uniformly computable martingale is $d : 2^{\omega} \times 2^{<\omega} \to \mathbb{R}^+$ such that d(X, -) is a martingale for each X. B is computably random uniformly relative to A if $\sup_n d(A, B \upharpoonright$ $n) < \infty$ for each uniformly computable martingale.

Theorem (M.-Rute) $A \oplus B$ is computably random $\iff A$ and B are computably random uniformly relative to each other.

Van Lambalgen's theorem holds for Kolmogorov-Loveland randomness in a similar form.

The natural relativization should hold at least

$A \oplus B \in \mathcal{R} \iff A \in \mathcal{R}^B \land B \in \mathcal{R}^A.$

Definition

A Demuth test is a sequence of c.e. open sets $\{V_n\}$ such that $\mu(V_n) \leq 2^{-n}$ for all n, and there is an ω -c.e. function f such that $V_n = \llbracket W_{f(n)} \rrbracket$.

A Demuth_{BLR} test is a Demuth test relative to A where f is ω -c.e. by A, that is, the approximation is A-computable but the bound on the number of changes is computable.

Theorem (Diamondstone-Greenberg-Turetsky) Van Lambalgen's theorem holds for $Demuth_{BLR}$ randomness.

Demuth_BLR is equivalent to uniform Demuth randomness.

* MLR is equivalent to uniform MLR.

* full relativization vs partial relativization

* uniform relativization vs partial relativization

* total relativization?

Summary

Uniform relativization may be the natural relativization for all randomness notions.