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The theme of  this talk

Theorem (van Lambalgen 1987)

A � B is Martin-Löf random

�� A is Martin-Löf random

and B is Martin-Löf random relative to A.

�: easy direction

�: di�cult direction
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Overview

uniform relativization

van Lambalgen’s theorem for uniform Kurtz 
randomness

almost uniform relativization
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Uniform relativization
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Failure of  vL-theorem for Schnorr

“The analog of  Theorem 6.9.1 fails, however. 
That is, there are sets A and B such that A+B is 
Schnorr random but A and B are not relatively 
Schnorr random,”

in “7.1.2 Limitations” of  Downey’s book

Easy direction does not hold!!
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Suppose B is not ML-random relative to A. Then there

is a ML-test {UA
n } relative to A such that B �

�
n UA

n . Let

Vn = {X � Y : Y � ŨX
n }

where ŨX
n is UX

n enumerated as long as µ(UX
n ) � 2�n. Then

{Vn} is a ML-test and A � B �
�

n Vn.
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Definition

A uniform Schnorr test is a computable function f : 2��� �
� such that X � n �� µ(f(X, n)) � 2�n is computable.

We call {f(A, n)} a Schnorr test uniformly relative to A.

B is Schnorr random uniformly relative to A if B passes all

Schnorr tests uniformly relative to A.
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Theorem (M. 2011 and M.-Rute 2013)

A � B is Schnorr random

�� A is Schnorr random

and B is Schnorr random uniformly relative to A.
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Why uniform not tt?

It can take reals not only rationals.

tt is very sensitive
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Proposition

The following are equivalent:

(i) X is not Schnorr random.

(ii) There are a computable martingale d and a com-

putable function such that d(X � f(n)) � n for

infinitely many n.

(iii) There are a computable martingale d and a com-

putable order f such that d(X � n) � f(n) for

infinitely many n.
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Proposition

The following are equivalent:

(i) B is not Schnorr random uniformly relative to A

(ii) There are a computable function d : 2� � 2<� � R+

and a computable function f : 2� � � � � such that

dX = d(X, �) is a martingale for each X � 2� and

dA(B � fA(n)) � n for infinitely many n.

(iii) There are a martingale d �tt A and a computable

function f : � � � such that d(B � f(n)) � n for

infinitely many n.
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Consider the following statement:

There are a martingale d �tt A and an order function f :

� � � truth-table reducible to A such that d(B � n) � f(n)

for infinitely many n.

Essentially by Stephan and Franklin (2010), there exist A

and B such that B is Schnorr random uniformly relative to

A but the above statement holds.
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Proof
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Definition (M.)

A Schnorr integral test is a nonnegative lower semicom-

putable function t : X � R+
with a computable integral

�
t dµ.

Theorem (M.)

A point z is Schnorr random i� t(z) < � for each Schnorr

integral test t.
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Definition

A uniform Schnorr integral test is a nonnegative lower semi-

computable function t : 2

! ⇥ 2

! ! R+
such that X 7!

R
t(X,Y ) µ(Y ) is a computable function.

Proposition

A point B is Schnorr random uniformly relative to A o↵

t(A,B) < 1 for each uniform Schnorr integral test t.
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Theorem

If A � B is Schnorr random, then B is Schnorr random uni-

formly relative to A.

Proof

Let t : 2� � 2� � R+
be a uniformly Schnorr integral test

such that t(A, B) = �. Let

h(X) =

�
t(X, Y ) µ(Y ).

Then h(X) is a computable function. We can assume that

h(X) � 1 for all X � 2�. Let s(X,Y ) = 1 � h(X). Then

t + s is a Schnorr integral test on 2� � 2�. Thus A � B is

not Schnorr random.
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Lemma

Let t be a nonnegative lower semicomputable function with

a computable integral
�

t dµ. There is a uniformly com-

putable sequence {hn} of total computable functions hn :

2� � [0, �) such that hn � t everywhere and if A is Schnorr

random, there is some n such that hn(A) = t(A).
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Definition (M.)

A function f :� X � R is Schnorr layerwise computable

if there exists a Schnorr test {Un} such that the restriction

f |X\Un
is uniformly computable.

Theorem (M.)

A function is Schnorr equivalent to a Schnorr layerwise

computable function whose L1-norm is computable i� the

function is Schnorr equivalent to a di�erence between two

Schnorr integral tests.
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Theorem

If A is Schnorr random and B is Schnorr random uniformly

relative to A, then A�B is Schnorr random.

Proof

Suppose that (A,B) is not Schnorr random and A is Schnorr

random. Then there is a Schnorr integral test t such that

t(A,B) = 1. Let

u(X) =

Z
t(X � Y ) µ(Y ).

Then u is lower semicomputable with a computable integral.

By the lemma, there is a total computable function h such

that h  u everywhere and h(A) = u(A).
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Let t̃ be t enumerated as long as
R
t̃(X,Y ) µ(Y )  h(X).

Since h  u, the equality holds. Thus t̃ is a uniform Schnorr

integral test.

Furthermore, t̃(A, Y ) = t(A, Y ) for all Y . Then t̃(A,B) =

t(A,B) = 1. Hence B is not Schnorr random uniformly

relative to A.
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Other randomness 
notions
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vL-theorem holds for

- MLR for usual relativization

- SR for uniform relativization
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Let R be a relativizable randomness notion.

Then van Lambalgen’s theorem holds for R if

A � B � R �� A � R � B � RA.

Thus such notion is essentially unique.

I previously claimed that ”such relativization is the natu-

ral one”, which is called Miyabe’s thesis in Diamondstone-

Greenberg-Turetsky’s paper.
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Definition

A uniformly computable martingale is d : 2� � 2<� � R+

such that d(X, �) is a martingale for each X. B is com-

putably random uniformly relative to A if supn d(A, B �
n) < � for each uniformly computable martingale.

Theorem (M.-Rute)

A � B is computably random

�� A and B are computably random

uniformly relative to each other.

Van Lambalgen’s theorem holds for Kolmogorov-Loveland

randomness in a similar form.
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The natural relativization should hold at least

A � B � R �� A � RB � B � RA.

.
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Definition

A Demuth test is a sequence of c.e. open sets {Vn} such that

µ(Vn) � 2�n for all n, and there is an �-c.e. function f such

that Vn = [[Wf(n)]].

A DemuthBLR test is a Demuth test relative to A where f

is �-c.e. by A, that is, the approximation is A-computable

but the bound on the number of changes is computable.

Theorem (Diamondstone-Greenberg-Turetsky)

Van Lambalgen’s theorem holds for DemuthBLR random-

ness.
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Demuth_BLR is equivalent to uniform Demuth 
randomness.

MLR is equivalent to uniform MLR.
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full relativization vs partial relativization

uniform relativization vs partial relativization

total relativization?
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Summary

Uniform relativization may be the natural 
relativization for all randomness notions.
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