Uniform Kurtz randomness

A MARKER MARKE

van Lambalgen's theorem

holds for (uniform) ML-randomness
holds for uniform Schnorr randomness
holds for uniform computable randomness
holds for uniform Demuth randomness

Kurtz randomness

Theorem(Franklin-Stephan '11)

- If A is Kurtz random and B is A-Kurtz random, then $A \oplus B$ is Kurtz random.
- There exists a pair A, B such that A ⊕ B is Kurtz random and neither A nor B is Kurtz random relative to the other.

The "difficult direction" holds but the "easy direction" does not hold.

Definition

A uniform Kurtz test is a total computable function f: $2^{\omega} \to \tau$ such that $\mu(f(Z)) = 1$ for all $Z \in 2^{\omega}$. A set B is called Kurtz random uniformly relative to A if $B \in f(A)$ for each uniform Kurtz test f.

Definition

A uniform Kurtz null test is a computable function f: $2^{\omega} \times \omega \to (2^{<\omega})^{<\omega}$ such that, for each $Z \in 2^{\omega}$ and $n \in \omega$, $\mu(\llbracket f(Z,n) \rrbracket) \leq 2^{-n}$. For a fixed set X, we say that $\{\llbracket f(X,n) \rrbracket\}$ is a Kurtz null test uniformly relative to X.

Proposition

B is Kurtz random uniformly relative to A off B passes all Kurtz null tests uniformly relative to A.

Proposition

The following are equivalent for sets A and B:

- B is not Kurtz random uniformly relative to A.
 There are a computable function d : 2^ω × 2^{<ω} → ℝ⁺ and a computable order h such that d(Z, -) is a martingale for each Z ∈ 2^ω and d(A, B ↾ n) > h(n) for all n ∈ ω.
- 3. There are an oracle prefix-free machine M and a computable function h such that $Z \mapsto \mu(\operatorname{dom}(M^Z))$ is a computable function and $K_{M^A}(B \upharpoonright h(n)) < h(n) n$ for all $n \in \omega$.

easy direction

Theorem (M.-Kihara) If $A \oplus B$ is Kurtz random, then B is Kurtz random uniformly relative to A.

Proof

Suppose B is not Kurtz random uniformly relative to A. Then there is a total computable function $f: 2^{\omega} \to \tau$ such that $\mu(f(Z)) = 1$ for all $Z \in 2^{\omega}$ and $B \notin f(A)$. We define a c.e. set U by

 $U = \{ X \oplus Y : Y \in f(X) \}.$

Then $\mu(U) = 1$ and $A \oplus B \notin U$. Hence $A \oplus B$ is not Kurtz random.

Corollary

There is a pair $A, B \in 2^{\omega}$ such that B is Kurtz random uniformly relative to A and not Kurtz random relative to A.

difficult direction

Theorem (M.-Kihara)

There is a pair A, B such that A and B are mutually uniformly Kurtz random and $A \oplus B$ is not Kurtz random.

So, the "easy direction" does hold but the "difficult direction" does not hold!!

Lemma If A(n) = 0 or B(n) = 0 for all n, then $A \oplus B$ is not Kurtz random.

Proof

Let $\{f_i\}$ be an enumeration of all uniform Kurtz tests. At stage s, we define $\alpha_s \prec A$ and $\beta_s \prec B$ such that $|\alpha_s| = |\beta_s|$. At stage s = 2i, search $\beta \succeq \beta_s$ and m such that

 $\llbracket \beta \rrbracket \subseteq f_i(\alpha_s 0^m).$

Such β and *m* always exist. We assume $|\alpha_s 0^m| \ge |\beta|$. Define

$$\alpha_{s+1} = \alpha_s 0^m, \ \beta_{s+1} = \beta 0^{|\alpha_s| + m - |\beta|}$$

At stage s = 2i + 1, define α_{s+1} and β_{s+1} similarly by replacing α and β .

Weaker form

Contraction of the second of t

and the second second

Mekle's criterion

Theorem (due to Merkle)

The following are equivalent for a se $X \in 2^{\omega}$.

1. X is not ML-random.

2. $X = x_0 x_1 x_2 \cdots$ for a sequence $\{x_i\}$ of strings such that $K(x_i) \le |x_i| - 1$ for all i.

3. There is a prefix-free machine M such that $X = x_0 x_1 x_2 \cdots$ for a sequence $\{x_i\}$ of strings such that $K_M(x_i) \leq |x_i| - 1$ for all i.

Schnorr version

Theorem

The following are equivalent for a se $X \in 2^{\omega}$.

- 1. X is not Schnorr random.
- 2. There is a c.m.m. M such that $X = x_0 x_1 x_2 \cdots$ for a sequence $\{x_i\}$ of strings such that $K_M(x_i) \leq |x_i| 1$ for all i.

 $X \upharpoonright [m, n] = X(m)X(m+1)\cdots X(n-1) \in 2^{n-m}.$

Theorem (M.-Kihara) The following are equivalent for a set $X \in 2^{\omega}$.

- 1. X is not Kurtz random.
- 2. There exists a computable order l and a c.m.m. M such that

 $K_M(X \upharpoonright [l(n), l(n+1)) \le l(n+1) - l(n) - 1$

for all n.

"c.m.m." can be replaced by "prefix-free decidable machine". Suppose that A is not Kurtz random. Then there is a computable function $f: \omega \to (2^{<\omega})^{<\omega}$ and a computable order u such that

1. $f(n) \subseteq 2^{u(n)}$, 2. $|f(n)| = 2^{u(n)-n}$, 3. $X \upharpoonright u(n) \in f(n)$.

We assume u(0) = 0 and u is strictly increasing.

Let

$$k(0) = 0, \ k(n+1) = u(k(n)) + n + 2, \ l(n) = u(k(n)).$$

Construct a KC set

$$\langle l(n+1) - (n) - 1, \sigma \upharpoonright [l(n), l(n+1)) \rangle_{n \in \omega, \sigma \in f(k(n+1))}$$

For $\sigma \in f(k(n+1))$, we have $|\sigma| = u(k(n+1)) = l(n+1)$. The weight is

$$\sum_{n} \sum_{\sigma \in f(k(n+1))} 2^{-(l(n+1)-l(n)-1)} = 1.$$

The constructed machine M has a computable measure.

Note that $\sigma_n = X \upharpoonright u(n) \in f(n)$. Then there is $\tau \in 2^{l(n+1)-l(n)-1}$ such that

 $M(\tau_n) = X \upharpoonright [l(n), l(n+1)).$

Thus, $K_M(X \upharpoonright [l(n), l(n+1))) \le l(n+1) - l(n) - 1$ for each

n.

Suppose that there is a computable order u and a c.m.m. M such that

$$K_M(A \upharpoonright [l(n), l(n+1))) \le l(n+1) - l(n) - 1$$

for all *n*. We construct a Kurtz null test as follows. Let $S_0 = \{\lambda\}$ and

 $S_{n+1} = \{ M(\sigma) : \sigma \in 2^{<l(n+1)-l(n)}, M(\sigma) = l(n+1)-l(n) \}.$

Since M is prefix-free, we have $\mu(\llbracket S_{n+1} \rrbracket) \leq 2^{-1}$.

We define $f: \omega \to (2^{<\omega})^{<\omega}$ by

$$f(n) = \{x_1 \cdots x_n : x_i \in S_i \text{ for } i = 1, \cdots, n\}.$$

Then

$$\mu(\llbracket f(n) \rrbracket) = \prod_{i=1}^{n} \mu(\llbracket S_i \rrbracket) \le 2^{-n}.$$

Thus $\{\llbracket f(n) \rrbracket\}_n$ is a Kurtz null test. Since $A \in \llbracket f(n) \rrbracket$ for all n, A is not Kurtz random.

This intuitively says that a set is not Kurtz random iff there is a computable separation each of which has regularity.

Thus, even if one can find a such computable separation of A+B, one may not find such separation in neither of A nor B.

computable union

Definition (M.)

Let $h, g: \omega \to \omega$ be strictly increasing computable functions such that

$$\omega = \{h(n) : n \in \omega\} \cup \{g(n) : n \in \omega\}.$$

We write $A \oplus_h B$ to mean the set X such that

 $X(h(n)) = A(n), \ X(g(n)) = B(n).$

Theorem (M.-Kihara)

The following are equivalent for a set $X \in 2^{\omega}$.

- 1. X is Kurtz random.
- For each computable union ⊕_h, letting X = A ⊕_h B, the sets A, B are mutually uniform Kurtz random.
 For each computable union ⊕_h, letting X = A ⊕_h B, at least one of A and B is Kurtz random.