
Uniform Kurtz 
randomness
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van Lambalgen’s theorem

holds for (uniform) ML-randomness

holds for uniform Schnorr randomness

holds for uniform computable randomness

holds for uniform Demuth randomness
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Kurtz randomness

Theorem(Franklin-Stephan ’11)

• If A is Kurtz random and B is A-Kurtz random, then

A� B is Kurtz random.

• There exists a pair A,B such that A � B is Kurtz

random and neither A nor B is Kurtz random relative

to the other.

The ”di�cult direction” holds but the ”easy direction” does

not hold.
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Definition

A uniform Kurtz test is a total computable function f :

2

! ! ⌧ such that µ(f(Z)) = 1 for all Z 2 2

!
.

A set B is called Kurtz random uniformly relative to A if

B 2 f(A) for each uniform Kurtz test f .
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Definition

A uniform Kurtz null test is a computable function f :

2

! ⇥ ! ! (2

<!
)

<!
such that, for each Z 2 2

!
and n 2

!, µ([[f(Z, n)]])  2

�n
. For a fixed set X , we say that

{[[f(X,n)]]} is a Kurtz null test uniformly relative to X .

Proposition

B is Kurtz random uniformly relative to A o↵ B passes all

Kurtz null tests uniformly relative to A.
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Proposition

The following are equivalent for sets A and B:

1. B is not Kurtz random uniformly relative to A.

2. There are a computable function d : 2

! ⇥ 2

<! !
R+

and a computable order h such that d(Z,�) is

a martingale for each Z 2 2

!
and d(A,B � n) > h(n)

for all n 2 !.

3. There are an oracle prefix-free machine M and a com-

putable function h such that Z 7! µ(dom(MZ
)) is a

computable function and KMA
(B � h(n)) < h(n)� n

for all n 2 !.
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easy direction

Theorem (M.-Kihara)

If A�B is Kurtz random,

then B is Kurtz random uniformly relative to A.
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Proof

Supppose B is not Kurtz random uniformly relative to A.

Then there is a total computable function f : 2! ! ⌧ such

that µ(f(Z)) = 1 for all Z 2 2! and B 62 f(A). We define a

c.e. set U by

U = {X � Y : Y 2 f(X)}.

Then µ(U) = 1 and A� B 62 U . Hence A� B is not Kurtz

random.
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Corollary

There is a pair A,B 2 2

!
such that B is Kurtz random

uniformly relative to A and not Kurtz random relative to A.
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difficult direction

Theorem (M.-Kihara)

There is a pair A,B such that A and B are mutually uni-

formly Kurtz random and A�B is not Kurtz random.

So, the ”easy direction” does hold but the ”di�cult direc-

tion” does not hold!!
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Lemma

If A(n) = 0 or B(n) = 0 for all n, then A �B is not Kurtz

random.
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Proof

Let {fi} be an enumeration of all uniform Kurtz tests. At

stage s, we define ↵s � A and �s � B such that |↵s| = |�s|.
At stage s = 2i, search � ⌫ �s and m such that

[[�]] ✓ fi(↵s0
m
).

Such � and m always exist. We assume |↵s0
m| � |�|. Define

↵s+1 = ↵s0
m, �s+1 = �0|↵s|+m�|�|.

At stage s = 2i + 1, define ↵s+1 and �s+1 similarly by

replacing ↵ and �.
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Weaker form
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Mekle’s criterion

Theorem (due to Merkle)

The following are equivalent for a se X 2 2

!
.

1. X is not ML-random.

2. X = x0x1x2 · · · for a sequence {xi} of strings such

that K(xi)  |xi|� 1 for all i.

3. There is a prefix-free machine M such that

X = x0x1x2 · · · for a sequence {xi} of strings

such that KM (xi)  |xi|� 1 for all i.
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Schnorr version

Theorem

The following are equivalent for a se X 2 2

!
.

1. X is not Schnorr random.

2. There is a c.m.m. M such that X = x0x1x2 · · · for a

sequence {xi} of strings such that KM (xi)  |xi|� 1

for all i.
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X � [m,n) = X(m)X(m+ 1) · · ·X(n� 1) 2 2

n�m.

Theorem (M.-Kihara)

The following are equivalent for a set X 2 2

!
.

1. X is not Kurtz random.

2. There exists a computable order l and a c.m.m. M

such that

KM (X � [l(n), l(n+ 1))  l(n+ 1)� l(n)� 1

for all n.

”c.m.m.” can be replaced by ”prefix-free decidable ma-

chine”.
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Suppose that A is not Kurtz random. Then there is a com-

putable function f : ! ! (2

<!
)

<!
and a computable order

u such that

1. f(n) ✓ 2

u(n)
,

2. |f(n)| = 2

u(n)�n
,

3. X � u(n) 2 f(n).

We assume u(0) = 0 and u is strictly increasing.
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Let

k(0) = 0, k(n+ 1) = u(k(n)) + n+ 2, l(n) = u(k(n)).

Construct a KC set

hl(n+ 1)� (n)� 1,� � [l(n), l(n+ 1))in2!,�2f(k(n+1)).

For � 2 f(k(n+ 1)), we have |�| = u(k(n + 1)) = l(n+ 1).

The weight is

X

n

X

�2f(k(n+1))

2

�(l(n+1)�l(n)�1)
= 1.

The constructed machine M has a computable measure.
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Note that �n = X � u(n) 2 f(n). Then there is ⌧ 2
2

l(n+1)�l(n)�1
such that

M(⌧n) = X � [l(n), l(n+ 1)).

Thus, KM (X � [l(n), l(n+1)))  l(n+1)� l(n)� 1 for each

n.
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Suppose that there is a computable order u and a c.m.m. M

such that

KM (A � [l(n), l(n+ 1)))  l(n+ 1)� l(n)� 1

for all n. We construct a Kurtz null test as follows. Let

S0 = {�} and

Sn+1 = {M(�) : � 2 2

<l(n+1)�l(n), M(�) = l(n+1)�l(n)}.

Since M is prefix-free, we have µ([[Sn+1]])  2

�1
.
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We define f : ! ! (2

<!
)

<!
by

f(n) = {x1 · · ·xn : xi 2 Si for i = 1, · · · , n}.

Then

µ([[f(n)]]) =

nY

i=1

µ([[Si]])  2

�n
.

Thus {[[f(n)]]}n is a Kurtz null test．Since A 2 [[f(n)]] for

all n, A is not Kurtz random.
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This intuitively says that a set is not Kurtz 
random iff  there is a computable separation 
each of  which has regularity.

Thus, even if  one can find a such computable 
separation of  A+B, one may not find such 
separation in neither of  A nor B.
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computable union

Definition (M.)

Let h, g : ! ! ! be strictly increasing computable functions

such that

! = {h(n) : n 2 !} [ {g(n) : n 2 !}.

We write A�h B to mean the set X such that

X(h(n)) = A(n), X(g(n)) = B(n).
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Theorem (M.-Kihara)

The following are equivalent for a set X 2 2

!
.

1. X is Kurtz random.

2. For each computable union �h, letting X = A�h B,

the sets A,B are mutually uniform Kurtz random.

3. For each computable union �h, letting X = A�h B,

at least one of A and B is Kurtz random.

24


