Almost uniform relativization

Stand & All

Theorem (M.-Kihara)

The following are equivalent for a set $X \in 2^{\omega}$.

- 1. X is Kurtz random.
- For each computable union ⊕_h, letting X = A ⊕_h B, the sets A, B are mutually uniform Kurtz random.
 For each computable union ⊕_h, letting X = A ⊕_h B, at least one of A and B is Kurtz random.

Question

* Is this theorem really natural?

the state of the second

and the second second

The usual relativization is too strong for the easy direction to hold.

The uniform relativization may be too weak for the difficult direction to hold **Theorem** (Frankline and Stephan '11) If A is Kurtz random and B is A-Kurtz random, then $A \oplus B$ is Kurtz random.

Proof

Let A be a Kurtz-random set and U be an arbitrary c.e. open set U with measure 1. For each rational r < 1, let

 $U_r = \{P : \mu(\{Q : P \oplus Q \in U\}) > r\}.$

Then U_r is a c.e. open set.

For each r, we have $\mu(U_r) = 1$.

Since A is Kurtz random, $A \in U_r$ for each r. Let

 $T = \{Q : A \oplus Q \in U\}.$

Then T is a A-c.e. open set with measure 1. Since B is A-Kurtz random, we have $B \in T$. Hence $A \oplus B \in U$. Since U is arbitrary, $A \oplus B$ is Kurtz random.

Definition

A almost uniform (a.u.) Kurtz test is a computable function $f: 2^{\omega} \to \tau$ such that $\mu(f(Z)) = 1$ for almost every $Z \in 2^{\omega}$. A set *B* is Kurtz random a.u. relative to *A* if $B \in f(A)$ for each a.u. Kurtz test *f* such that $\mu(f(A)) = 1$.

random \Rightarrow a.u. random \Rightarrow uniformly random

7

Theorem (M.) $A \oplus B$ is Kurtz random iff A is Kurtz random and B is Kurtz random a.u. relative to A.

Proposition (M.)

If $A \oplus B$ is Kurtz random, then B is Kurtz random a.u. relative to A.

Proof

Suppose B is not Kurtz random a.u. relative to A. Then there is a.u. Kurtz test f such that $B \notin f(A)$ and $\mu(f(A)) =$ 1. Let

$$U = \{ X \oplus Y : Y \in f(X) \}.$$

Then U is a c.e. open set with measure 1. Since $A \oplus B \notin U$, $A \oplus B$ is not Kurtz random.

Proposition (M.)

If A is Kurtz random and B is Kurtz random a.u. relative to A, then $A \oplus B$ is Kurtz random.

Proof

Let U be a c.e. open set with measure 1. Consider

$$g(X) = \{Y : X \oplus Y \in U\}.$$

Then g is computable. Since U is measure 1, g(X) has measure 1 for almost every X. Hence g is an a.u. Kurtz test. Note that g(A) has measure 1. For each rational r < 1, let

$$V_r = \{X : \mu(g(X)) > r\}.$$

Then V_r is a c.e. open set with measure 1. Then $A \in V_r$ for each r.

Since B is Kurtz random a.u. relative to A, we have $B \in g(A)$, which implies $A \oplus B \in U$. Hence $A \oplus B$ is Kurtz random.

Definition

An a.u. weak *n*-test is a computable function $f: 2^{\omega} \to \Sigma_n^0$ such that $\mu(f(Z)) = 1$ for almost every $Z \in 2^{\omega}$. A set *B* is weakly *n*-random a.u. relative to *A* if $B \in f(A)$ for each a.u. weak *n*-test *f* such that $\mu(f(A)) = 1$.

Definition (Brattka 2005)

Let (X, d, α) be a separable metric space. We define representations $\delta_{\Sigma_k^0(X)}$ of $\Sigma_k^0(X)$, $\delta_{\Pi_k^0(X)}$ of $\Pi_k^0(X)$ for $k \ge 1$ as follows:

- $\delta_{\Sigma_1^0(X)}(p) := \bigcup_{(i,j) \ll (p)} B(\alpha(i), \overline{j}),$
- $\delta_{\Pi^0_k(X)}(p) := X \setminus \delta_{\Sigma^0_k(X)}(p),$
- $\delta_{\Sigma_{k+1}^0(X)}\langle p_0, p_1, p_2, \cdots \rangle := \bigcup_{i=0}^\infty \delta_{\Pi_k^0(X)}(p_i),$

for all $p, p_i \in \omega^{\omega}$.

Theorem (M.) $A \oplus B$ is weak *n*-random iff A is weak *n*-random and B is weak *n*-random a.u. relative to A.

Question

Is almost uniform relativization a natural notion?

		a.u.	uniform
Demuth	Fail	?	Hold
weak 2	Fail	Hold	?
ML	Hold	Hold	Hold
computable	Fail	?	Hold in a weak sense
Schnorr	Fail	Hold	Hold
Kurtz	Fail	Hold	Fail

TO DEPENDENT OF THE PARTY OF T

Lowness

HERE THE AND STRATE TO THE STRATE TO THE STATE TO THE AND THE TO THE AND THE THE A

and the second second

Question

Is lowness for a.u. Kurtz randomness equivalent to lowness for uniform Kurtz randomness?

$W2R \subsetneq auW2R \subseteq ?uW2R$

MLR = auMLR = uMLR

$SR \subsetneq auSR = uSR$

$\mathrm{WR} \subsetneq \mathrm{auWR} \subsetneq \mathrm{uWR}$

Low(R, S) is the set of oracles A such that $R \subseteq S^A$.

Low(W2R) = Low(W2R, MLR) = Low(MLR).

 $S \subseteq S' \Rightarrow \operatorname{Low}(R, S) \subseteq \operatorname{Low}(R, S'),$ $R \subseteq R' \Rightarrow \operatorname{Low}(R, S) \supseteq \operatorname{Low}(R', S),$

Low(auW2R) = Low(auW2R, auW2R)= Low(W2R, auW2R) $\subseteq Low(W2R, auMLR)$ = Low(W2R, MLR)= Low(MLR).

Low(auW2R) = Low(W2R, auW2R) $\supseteq Low(W2R, W2R)$ = Low(MLR).

		a.u.	uniform
Demuth	studied	5	studied
weak 2	K-trivial	K-trivial	K-trivial
ML	K-trivial	K-trivial	K-trivial
computable	computable	?	?
Schnorr	Low(SR)	?	Schnorr trivial
Kurtz	studied	?	studied

TO RELEASE A VERY AND A VERY AND A REPORT OF A VERY AND A

The second second second second second

CONTRACTOR INCOMENDATION INCOMENDATION OF AN AND AN ADDRESS OF AN ADDRESS OF A DRESS OF A DRESS OF A DRESS OF A

Is there any relation with "uniformly almost everywhere dominating"?
u.a.e.d iff High(W2R,2MLR))
Study High(W2R,W3R)

the second second second second

MLR - T SR - tt WR, W2R - au?

and the second sec

AND PARTY AND AN AN ADDRESS OF THE PARTY OF THE PARTY.

Definition

 $A \leq_{au} B$ if there is a reduction Φ such that $A = \Phi^B$ and

 $\Phi^Z(n) \downarrow$ for all *n* almost every $Z \in 2^{\omega}$.

 $\leq_{tt} \Rightarrow \leq_{au} \Rightarrow \leq_{T}$.