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Integral tests and
L^1-computability
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integral test

Definition

An integral test is a lower semicomputable function f :

[0, 1] � R+
such that

�
f dµ < �.

Theorem (see the book by Li & Vitányi)

A real x � [0, 1] is ML-random if and only if f(x) < � for

each integral test f .
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Theorem (M. 20xx)

A real x � [0, 1] is weakly 2-random if and only if f(x) < �
for each loser semicomputable function f such that f is finite

almost everywhere.

Theorem (M. 20xx)

A real x � [0, 1] is Schnorr random if and only if f(x) < �
for each lower semicomputable function f : [0, 1] � R+

such

that
�

f dµ is a computable real.

Theorem (M. 2013)

A real x � [0, 1] is Kurtz random if and only if f(x) < �
for each extended computable function f : [0, 1] � R+

such

that
�

f dµ is a computable real.
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Definition (Pour-El& Richards, Pathak et al, M. 20xx)

A function f :� [0, 1] � R is called e�ectively L1-

computable if there is a computable sequence {fn} of

rational step functions such that ||fn � fn�1||1 � 2�n�1 for

each n and f(x) = limn fn(x).

Theorem (M. 20xx)

The following are equivalent up to Schnorr null:

1. the di�erence between two Schnorr integral tests

2. an e�ectively L1-computable function
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Let f :✓ 2

! ! R be an e↵ectively L1
-computable function.

Then,

M(�) =

R
[�] f dµ

µ([�])

is a computable martingale.

1. Such a martingale M converges along each Schnorr

random real.

2. Each Schnorr random real is a Lebesgue point for each

L1
-computable function.

3. A function that is a computable point in the variation

norm is di↵erentiable at each Schnorr random point.
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Roughly speaking,

the di�erence between two Kurtz integral tests

= a.e. computable functions.

Theorem (M. 2013)

The following are equivalent for z:

1. z is Kurtz random.

2. z is a Lebesgu point for each a.e. computable function.

9



finite for 
integral 

tests
integral test

difference
btw two 

integral tests

induced 
martingale

integral of  
integral 

tests

Lebesgue 
point

W2R
lower 

semicomp.
+ finite a.e.

? ? ? ?

MLR
lower 

semicomp.
+ integrable

? ? ? ?

CR - - comp. mar non-dec. 
comp. func

CR

SR
lower 

semicomp.
+ comp. 
integral

L^1-comp -
comp. in 
variation 

norm
SR

WR
extended 

computable
+ integrable

a.e. comp - differentiab
le a.e.

WR

10



A real r 2 [0, 1] is computable if there is a computable se-

quence {qn} of rationals such that |qn � qn�1|  2

�n�1
for

each n and r = limn qn.

r is called weakly computable if replace

P
n |qn�qn�1| < 1

in the above. It is equivalent to the di↵erence between two

left-c.e. reals.

r is called computably approximable (c.a.) if r = limn qn for

a computable sequence {qn} of rationals. It is equivalent to

�

0
2 and T ;0.
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Definition (M. 20xx)

A function f :� [0, 1] � R is called weakly L1-computable

if there is a computable sequence {fn} of rational

step functions such that
�

n ||fn � fn�1||1 < � and

f(x) = limn fn(x).

Definition (M. 20xx)

A function f :� [0, 1] � R is called L1-c.a. if there is a com-

putable sequence {fn} of rational step functions such that

f(x) is defined almost everywhere and f(x) = limn fn(x).
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Theorem (M. 20xx)

The following are equivalent up to ML-null:

1. the di�erence between two integral tests

2. a weakly L1-computable function

Theorem (M. 20xx)

The following are equivalent up to W2-null:

1. the di�erence between two weak 2-integral tests

2. an L1-c.a. function

.
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Layerwise computability and 
conditional probability
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Theorem (Hoyrup & Rojas 2009)

Let f : X ! R+
be a layerwise lower semi-computable func-

tion. If
R
f dµ is computable then f is layerwise computable.
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Definition (M. 20xx)

A function f :� [0, 1] � R is called Schnorr layerwise com-

putable if there is a Schnorr test {Un} such that f |[0,1]\Un
is

uniformly computable.

Theorem (M. 20xx)

The following are equivalent up to Schnorr null:

1. an e�ectively L1-computable function

2. a Schnorr layerwise computable function with a com-

putable integral
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Does van Lambalgen’s theorem hold for non-
uniform measures?
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Let µ be a measure on 2

! ⇥ 2

!

. The first marginal µ1 is

defined by

µ([�]) = µ([�]⇥ 2

!

).

The conditional measure µ

x

2 with respect to x is defined by

µ

x

2([⌧ ]) = lim

n

µ([x � n]⇥ [⌧ ])

µ([x � n]⇥ 2

!

)

.
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Theorem (Bienvenu-Hoyrup-Shen)

Let µ be a computable measure on 2! ⇥ 2!. Consider the

following statement:

(x, y) is µ-random if and only if x is µ1-random and y is

µ

x

2 -random relative to x.

1. This holds if x 7! µ

x

2 is layerwise computable.

2. This does not hold in general.

3. This holds for 2-randomness.
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Observation

Let d be a computable martingale. Then, limn d(x � n)

is not computable from x in general. Probably, there is a

computable martingale d such that, for all x,

lim
n

d(x � n) �T x�.

Let d be a martingale with L1-computable density. Then,

the function
x �� lim

n
d(x � n)

is e�ectively L1-computable.
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µ �! x 7! µ

x

2

f �! x 7! f

x

2
Show the following:

1. If f is e�ectively L1(� � �)-computable, then x �� fx
2

is e�ectively L1(µ1)-computable.

2. If g is e�ectively L1-computable, it is Schnorr layer-

wise computable.

3. h �� h� is computable.
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Definition (Brattka 2001)

A represented space (x, �) is called a computable vector

space if (X,+, ·, 0) is a vector space such that (i)+ is com-

putable, (ii)· is computable, (iii)0 is a computable point.

A tuple (X, || · ||, e) is called a computable normed space if

(i)||·|| is a norm, (ii)the linear span of the range of e is dense,

(iii)(X, d,↵e) is a computable metric space, (iv)(x, �X) is a

computable vector space.

If (x, d) is a complete metric space, then we call it a com-

putable Banach space.
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Proposition

Let X be a computable metric space and µ be a computable

measure on it. Then, the L1-space equipped with a structure

is a computable Banach space.

Proposition

1. If f is e�ectively L1(� � �)-computable, then x �� fx
2

is e�ectively L1(µ1)-computable.

2. If g is e�ectively L1-computable, it is Schnorr layer-

wise computable.

3. h �� h� is computable.
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Theorem

Let µ be a measure on 2

! ⇥ 2

!

with an L

1
-computable den-

sity f w.r.t. �. Then, µ

x

2 has density f

x

2 w.r.t. � up to

µ1-Schnorr null.

To prove this we use an e↵ective Levy 0-1 law.

Theorem

If µ has an L

1
-computable density, then x 7! µ

x

2 is µ1-

Schnorr layerwise computable.
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Theorem (M. with a result in BHS)

Let µ be a measure with an L1-computable density. Then

van Lambalgen’s theorem holds for Martin-Löf randomness

and µ.

Theorem (M. with a result by Rute)

Let µ be a measure with an L1-computable density. Then

van Lambalgen’s theorem holds for uniform Schnorr ran-

domness and µ.
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µ �! x 7! µ

x

2

f �! x 7! f

x

2

Theorem

Let f be a Schnorr layerwise computable function with a

computable integral to a computable Banach space. Then f

is e�ectively L1-computable up to Schnorr null.
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Theorem

Let µ be a measure with an L1(�)-computable density f .

Then x is µ-Schnorr random if and only if x is �-Schnorr

random and f(x) > 0.
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Summary

An effective L^1-computable function works well 
almost everywhere!

Assuming the existence of  L^1-computable 
density makes it easier to study the measure.

How strong is the assumption?
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