L^1-computability and the computability of conditional probability

Analysis, Randomness and Applications 2013 27 June 2013

Kenshi Miyabe JSPS Research Fellow at The University of Tokyo

The topic

differentiability

van Lambalgen's theorem for non-uniform measures

Overview

- integral test
- L^1-computability
- convergence of martingales
- differentiability
- layerwise computabilityconditional probability

Integral tests and L^1-computability

integral test

Definition

An integral test is a lower semicomputable function f: $[0,1] \to \overline{\mathbb{R}}^+$ such that $\int f \, d\mu < \infty$.

Theorem (see the book by Li & Vitányi) A real $x \in [0, 1]$ is ML-random if and only if $f(x) < \infty$ for each integral test f.

Theorem (M. 20xx)

- A real $x \in [0, 1]$ is weakly 2-random if and only if $f(x) < \infty$ for each loser semicomputable function f such that f is finite almost everywhere.
- Theorem (M. 20xx)

A real $x \in [0, 1]$ is Schnorr random if and only if $f(x) < \infty$ for each lower semicomputable function $f : [0, 1] \to \overline{\mathbb{R}}^+$ such that $\int f \ d\mu$ is a computable real.

Theorem (M. 2013)

A real $x \in [0, 1]$ is Kurtz random if and only if $f(x) < \infty$ for each extended computable function $f : [0, 1] \to \overline{\mathbb{R}}^+$ such that $\int f \ d\mu$ is a computable real. **Definition** (Pour-El& Richards, Pathak et al, M. 20xx) A function $f :\subseteq [0,1] \to \mathbb{R}$ is called effectively L^1 computable if there is a computable sequence $\{f_n\}$ of rational step functions such that $||f_n - f_{n-1}||_1 \leq 2^{-n-1}$ for each n and $f(x) = \lim_n f_n(x)$.

Theorem (M. 20xx)

The following are equivalent up to Schnorr null:

1. the difference between two Schnorr integral tests 2. an effectively L^1 -computable function

7

Let $f :\subseteq 2^{\omega} \to \mathbb{R}$ be an effectively L^1 -computable function. Then,

$$M(\sigma) = \frac{\int_{[\sigma]} f \, d\mu}{\mu([\sigma])}$$

is a computable martingale.

- 1. Such a martingale M converges along each Schnorr random real.
- 2. Each Schnorr random real is a Lebesgue point for each L^1 -computable function.
- 3. A function that is a computable point in the variation norm is differentiable at each Schnorr random point.

Roughly speaking,

the difference between two Kurtz integral tests = a.e. computable functions.

Theorem (M. 2013)

The following are equivalent for z:

1. z is Kurtz random.

2. z is a Lebesgu point for each a.e. computable function.

finite for integral tests	integral test	difference btw two integral tests	induced martingale	integral of integral tests	Lebesgue point
W2R	lower semicomp. + finite a.e.	5	5	5	?
MLR	lower semicomp. + integrable	? ?	?	?	5
CR	-	-	comp. mar	non-dec. comp. func	CR
SR	lower semicomp. + comp. integral	L^1-comp	-	comp. in variation norm	SR
WR	extended computable + integrable	a.e. comp	-	differentiab le a.e.	WR

participation is appropriate taxistic a provincial series across

A real $r \in [0, 1]$ is computable if there is a computable sequence $\{q_n\}$ of rationals such that $|q_n - q_{n-1}| \le 2^{-n-1}$ for each n and $r = \lim_n q_n$.

r is called weakly computable if replace $\sum_{n} |q_n - q_{n-1}| < \infty$ in the above. It is equivalent to the difference between two left-c.e. reals.

r is called computably approximable (c.a.) if $r = \lim_{n \to \infty} q_n$ for a computable sequence $\{q_n\}$ of rationals. It is equivalent to Δ_2^0 and $\leq_T \emptyset'$. **Definition** (M. 20xx) A function $f :\subseteq [0,1] \to \mathbb{R}$ is called weakly L^1 -computable if there is a computable sequence $\{f_n\}$ of rational step functions such that $\sum_n ||f_n - f_{n-1}||_1 < \infty$ and $f(x) = \lim_n f_n(x).$

Definition (M. 20xx)

A function $f :\subseteq [0, 1] \to \mathbb{R}$ is called L^1 -c.a. if there is a computable sequence $\{f_n\}$ of rational step functions such that f(x) is defined almost everywhere and $f(x) = \lim_n f_n(x)$.

Theorem (M. 20xx)

The following are equivalent up to ML-null:

1. the difference between two integral tests 2. a weakly L^1 -computable function

Theorem (M. 20xx)

The following are equivalent up to W2-null:

1. the difference between two weak 2-integral tests 2. an L^1 -c.a. function

finite for integral tests	integral test	difference btw two integral tests	induced martingale	integral of integral tests	Lebesgue point
W2R	lower semicomp. + finite a.e.	L^1-c.a.	5	5	?
			left-c.e.	interval c.e.	density-one
MLR	lower semicomp. + integrable	weak L^1- comp	_	-	density-one
MLR	lower semicomp. + integrable	-	-	comp. with bounded variation	MLR

Layerwise computability and conditional probability

Theorem (Hoyrup & Rojas 2009) Let $f: X \to \overline{\mathbb{R}}^+$ be a layerwise lower semi-computable function. If $\int f d\mu$ is computable then f is layerwise computable.

Definition (M. 20xx) A function $f :\subseteq [0,1] \to \mathbb{R}$ is called Schnorr layerwise computable if there is a Schnorr test $\{U_n\}$ such that $f|_{[0,1]\setminus U_n}$ is uniformly computable.

Theorem (M. 20xx)

The following are equivalent up to Schnorr null:

- 1. an effectively L^1 -computable function
- 2. a Schnorr layerwise computable function with a computable integral

Does van Lambalgen's theorem hold for nonuniform measures? Let μ be a measure on $2^{\omega} \times 2^{\omega}$. The first marginal μ_1 is defined by

$$\mu([\sigma]) = \mu([\sigma] \times 2^{\omega}).$$

The conditional measure μ_2^x with respect to x is defined by

$$\mu_2^x([\tau]) = \lim_n \frac{\mu([x \upharpoonright n] \times [\tau])}{\mu([x \upharpoonright n] \times 2^\omega)}.$$

Theorem (Bienvenu-Hoyrup-Shen)

Let μ be a computable measure on $2^{\omega} \times 2^{\omega}$. Consider the following statement:

(x, y) is μ -random if and only if x is μ_1 -random and y is μ_2^x -random relative to x.

- 1. This holds if $x \mapsto \mu_2^x$ is layerwise computable.
- 2. This does not hold in general.
- 3. This holds for 2-randomness.

Observation

Let d be a computable martingale. Then, $\lim_n d(x \upharpoonright n)$ is not computable from x in general. Probably, there is a computable martingale d such that, for all x,

 $\lim_{n} d(x \upharpoonright n) \equiv_{T} x'.$

Let d be a martingale with L^1 -computable density. Then, the function

$$x \mapsto \lim_{n} d(x \upharpoonright n)$$

is effectively L^1 -computable.

- 1. If f is effectively $L^1(\lambda \times \lambda)$ -computable, then $x \mapsto f_2^x$ is effectively $L^1(\mu_1)$ -computable.
- 2. If g is effectively L^1 -computable, it is Schnorr layerwise computable.
- 3. $h \mapsto h\lambda$ is computable.

Definition (Brattka 2001)

A represented space (x, δ) is called a computable vector space if $(X, +, \cdot, 0)$ is a vector space such that (i)+ is computable, (ii) is computable, (iii)0 is a computable point. A tuple $(X, ||\cdot||, e)$ is called a computable normed space if (i)||·|| is a norm, (ii) the linear span of the range of e is dense, (iii) (X, d, α_e) is a computable metric space, (iv) (x, δ_X) is a computable vector space.

If (x, d) is a complete metric space, then we call it a computable Banach space.

Proposition

Let X be a computable metric space and μ be a computable measure on it. Then, the L^1 -space equipped with a structure is a computable Banach space.

Proposition

- 1. If f is effectively $L^1(\lambda \times \lambda)$ -computable, then $x \mapsto f_2^x$ is effectively $L^1(\mu_1)$ -computable.
- 2. If g is effectively L^1 -computable, it is Schnorr layerwise computable.
- 3. $h \mapsto h\lambda$ is computable.

Theorem

Let μ be a measure on $2^{\omega} \times 2^{\omega}$ with an L^1 -computable density f w.r.t. λ . Then, μ_2^x has density f_2^x w.r.t. λ up to μ_1 -Schnorr null.

To prove this we use an effective Levy 0-1 law.

Theorem

If μ has an L^1 -computable density, then $x \mapsto \mu_2^x$ is μ_1 -Schnorr layerwise computable.

Theorem (M. with a result in BHS) Let μ be a measure with an L^1 -computable density. Then van Lambalgen's theorem holds for Martin-Löf randomness and μ .

Theorem (M. with a result by Rute) Let μ be a measure with an L^1 -computable density. Then van Lambalgen's theorem holds for uniform Schnorr randomness and μ .

$f \longrightarrow x \mapsto f_2^x$

 $x \mapsto \mu_2^x$

Theorem

Let f be a Schnorr layerwise computable function with a computable integral to a computable Banach space. Then fis effectively L^1 -computable up to Schnorr null.

Theorem

Let μ be a measure with an $L^1(\lambda)$ -computable density f. Then x is μ -Schnorr random if and only if x is λ -Schnorr random and f(x) > 0.

Summary

An effective L^1-computable function works well almost everywhere!

Assuming the existence of L^1-computable density makes it easier to study the measure.

* How strong is the assumption?

- K. Miyabe; L^1-computability, layerwise computability and Solovay reducibility, to appear in Computability.
- K. Miyabe; Characterization of Kurtz randomness by a differentiation theorem, Theory of Computing Systems, 52(1):113-132, 2013.
- M. Li and P. Vit'anyi. An introduction to Kolmogorov complexity and its applications. Graduate Texts in Computer Science. Springer-Verlag, New York, third edition, 2009.
- M. Hoyrup and C. Rojas. An Application of Martin-L "of Randomness to Effective Probability Theory. In CiE, pages 260–269, 2009.
- N. Pathak, C. Rojas, and S. G. Simpson. Schnorr randomness and the Lebesgue Differentiation Theorem. To appear in Proceedings of the American Mathematical Society.