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Kenshi Miyabe (University of  Tokyo)

Research area:
 - algorithmic randomness
 - computable analysis
 - game-theoretic probability
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algorithmic randomness
 - computable aspects of  limit theorems

Characterization of  Kurtz randomness by a differentiation theorem, 
Theory of  Computing Systems, 52(1):113-132, 2013. 

Van Lambalgen’s Theorem for uniformly relative Schnorr and 
computable randomness (with J. Rute), Proceedings of  the Twelfth 
Asian Logic Conference, 251-270, 2013.

Truth-table Schnorr randomness and truth-table reducible 
randomness, Mathematical Logic Quarterly 57(3):323-338, 2011

An extension of  van Lambalgen’s Theorem to infinitely many 
relative 1-random reals, Notre Dame Journal of  Formal Logic, 51(3):
337-349, 2010.
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computable analysis
 - computability of  real functions

L1-computability, layerwise computability and Solovay reducibility, 
Computability, 2:15-29, 2013. 

An optimal superfarthingale and its convergence over a computable 
topological space, LNAI 7070, 273-284, 2013.

Computable measure theory and algorithmic randomness, in 
preparation.
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game-theoretic probability
 - probability theory based on the idea of  
algorithmic randomness

The law of  the iterated logarithm in game-theoretic probability with 
quadratic and stronger hedges (with A. Takemura), Stochastic 
Processes and their Application, 123, 3132-3152, 2013.

Convergence of  random series and the rate of  convergence of  the 
strong law of  large numbers in game-theoretic probability (with A. 
Takemura), Stochastic Processes and their Applications, 122:1-30, 
2012.
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The aim of  this talk is to give an introduction to 
game-theoretic probability, which is a new 
framework of  probability theory and has many 
applications including finance.
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Prof. Akimichi Takemura (University of  Tokyo)

With Takeuchi and Kumon, he has been 
advocating game-theoretic probability in Japan. 
He has published more than 10 papers on game-
theoretic probability.
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Overview of  the talk

Motivation
 - A brief  history on probability theory

An introduction on game-theoretic probability

Some results on Brownian motion
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Motivation
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Hilbert (1862-1943)

Hilbert’s 23 problmes on 
International Congress of  
Mathematicians at 1900

6th “Mathematical 
treatment of  the axioms of  
physics”
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Many mathematical models of  physical systems 
are deterministic.

Deterministic models have limits.
(Consider the kinetic theory of  gases.)
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Hilbert’s idea can be summarized as follows.

Find axioms of  probability.

Use it to make a model of  physical systems.
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Kolmogorov (1903-1987)

Probability axioms (1933), 
which answers Hilbert’s 
problem, are widely used.
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Nikkei Stock Average
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Researchers usually start from the assumption 
that “stock-market prices follow Brownian 
motion”

because one tries to make a probabilistic model.

Mathematics start from axioms.
Should a theory start from a (probabilistic) 
model?

How can we verify the assumption?
We need another view to science.
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I have already expressed the point of  view that 
the basis of  the applicability of  the 
mathematical theory of  probability to random 
events of  the real world is the frequency 
approach to probability in one form or another, 
which was so strongly advocated by von Mises.

Kolmogorov 1963
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von Mises (1883-1953)

von Mises (1883-1953)

Frequency approach 
(1919-)
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Like all the other natural sciences, the theory of  
probability starts from observations, orders them, 
classifies them, derives from them certain basic concepts 
and laws and, finally, by means of  the usual and 
universally applicable logic, draws conclusions which 
can be tested by comparison with experimental results. 
In other words, in our view the theory of  probability is a 
normal science, distinguished by a special subject and 
not by a special method of  reasoning.

“Probability, statistics and truth” by von Mises.
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What is given? - Data

What is the goal? - Predict
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“First the Collective - then the Probability.”

For von Mises, randomness yields probability.
(The standard idea is that probability yields 
randomness.)

However, he did not give a proper notion of  
randomness.
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Typical (Martin-Löf  1966)
 - there is no special property effectively found

Unpredictable (Schnorr 1971; Ville)
 - there is no effective procedure to predict the 
next data

Incompressible (Schnorr 1973, Levin 1973, 
Chaitin 1975; Kolmogorov)
 - there is no short program that produces the 
data

Algorithmic randomness
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Unpredictability yields probability.
 - Game-theoretic probability

Incompressibility yields probability.
 - Algorithmic probability
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An introduction to game-
theoretic probability

23



We will show the strong law of  large numbers in 
game-theoretic probability.

In other words, unpredictability yields SLLN.

Note that we do not use measure (at least 
explicitly).
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“I can predict whether the stock-price will go up 
or down tomorrow”.

Let’s test it.

He can choose how many tickets he buys.
You can buy one ticket for one euro.
You will receive two euros for one ticket if  the 
price goes up. So even odds.

His initial capital is finite. He should keep his 
capital nonnegative. The number of  tickets can 
be any real number such as 1/2 and -4/5.
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We do not care about how he predicts; he can 
use any model, the Internet and his friends.

He need not buy tickets every time.

He wins if  he increases his capital to infinity.
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unpredictable �� capital is bounded � SLLN

We can sometimes believe the boundedness almost surely,

sometimes not.
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K0 := 1.

n = 1, 2, . . .:

The player announces Mn � R.

xn � {�1, 1} is announced.

Kn := Kn�1 + Mnxn.

The player should keep Kn nonnegative.

The player wins if supn Kn = �.

The capital Kn depends on the move of {Mn} and {xn}.
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K0 := 1.

n = 1, 2, . . .:

Skeptic announces Mn 2 R.
Reality announces xn 2 {�1, 1}.
Kn := Kn�1 +Mnxn.

Skeptic must keep Kn nonnegative.

Reality must keep Kn from tending to infinity.

Recall that Mn should not depend on xk for k > n.
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What we want to show is
“capital is bounded for any strategy => SLLN”,
in other words,
“not SLLN => capital is unbounded for some 
strategy”.

Find such a strategy!

30



Definition

If there exists a strategy S of Skeptic such that E or

limn Kn = 1 happens, then we say that S forces E.

Theorem

In the protocol, Skeptic can force

lim

n

Pn
k=1 xk

n

= 0.
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Definition

If there exists a strategy S of Skeptic such that E or

supn Kn = 1 happens, then we say that S weakly forces E.

Lemma

For each ✏ > 0, Skeptic can weakly forces

lim sup

n!1

1

n

nX

i=1

xi  ✏.

.
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Proof

Let K0 = 1. At round n, Skeptic buys �Kn�1-tickets. Then

Kn =
n�

i=1

(1 + �xi).

Since this is bounded,

D �
n�

i=1

ln(1 + �xi) � �
n�

i=1

xi � �2
n�

i=1

x2
i � �

n�

i=1

xi � �2n,

�n
i=1 xi

n
� D

�n
+ �.

33



One can show in game-theoretic probability
- Strong Law of  Large Numbers
- Law of  the Iterated Logarithm
- Central Limit Theorem

- probably almost all other limit theorems

They logically imply the corresponding theorems  
in measure-theoretic probability.
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What’s probability in game-theoretic 
probability?

It can be
 - tendency of  statistical model
 - the degree of  belief
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P(E) := inf{� > 0 : (�S) sup KS
n(w0 · · · wn) � 1/�

for all w1w2 · · · � E},

P(E) :=1 � P(Ec).

S denotes a strategy of Skeptic.

KS
n is the capital of Skeptic at round n with the strategy S.

Consider a ticket by which you can receive 1 euro when E

happens.

P(E) = Lowest price at which Skeptic can buy it.

P(E) = Highest price at which Skeptic can sell it.
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Some results on Brownian 
motion

37



Unpredictability implies Wiener measure.

Incompressibility implies Wiener measure.
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Player: Forecaster, Skeptic, Reality

Protocol: K0 := 1.

n = 1, 2, . . .:

Forecaster announces mn � R, vn � 0.

Skeptic announces Mn � R, Vn � 0.

Reality announces xn � R.

Kn := Kn�1 + Mn(xn � mn) + Vn((xn � mn)2 � vn).

Skeptic must keep Kn nonnegative.

Reality must keep Kn from tending to infinity. .
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Reality chooses a continuous function � : [0, �) � R
Skeptic chooses an increasing sequence of stopping times

�1 � �2 � · · ·

and Mn and Vn. The capital process is

KG
t (�) :=c +

��

n=1

(Mn(�)(�(�n+1) � �(�n))

+ Vn(�)((�2(�n+1) � �n+1) � (�2(�n) � �n)))

where �n = �n � t, which is inspired from Lévy characteri-

zation of Wiener process.
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Skeptic is allowed to use a strategy whose capital is repre-

sented by �

i

KGi
t (�)

where
�

i ci converges.

Theorem (Vovk 2008)

Let W be the Wiener measure on (�, F). Then,

P(A) = W (A)

for each A � F .
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For a finite binary string � 2 2<!, Kolmogorov complexity

is the minimal length of a program that produces the string:

K(�) = min{|⌧ | : U(⌧) = �}

where U is a universal prefix-free Turing machine. One can

think U as a programming language and ⌧ as a program

written in the language.

If K(�) > |�|� c for c 2 N, then we say � is c-compressible.
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Let Cn be a set of such functions.

Each function f 2 Cn can be represented by a binary string

of length n.

Definition (Asarin and Prokovskiy 1986)

Let {xn} be a sequence such that xn 2 Cn for each n. The

sequence {xn} is called complex if there is a constant d > 0

such that K(xn) > n � d for all n. A function x 2 C[0, 1]

is a complex oscillation if there is a complex sequence {xn}
such that ||x� xn|| converges e↵ectively to 0 as n ! 1.
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Theorem (Asarin and Prokovskiy 1986)

The class of complex oscillations have Wiener measure 1.

Theorem (Fouché 2000)

A function is a complex oscillation if and only if it is Martin-

Löf random in C[0, 1] with Wiener measure.
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Summary - Three tools!

Probabilistic model
 - the standard way and easy to use
(Measure-theoretic probability does not care about null sets, in other words, does not 
care the case that the assumption was wrong.)

Game-theoretic probability
 - direct modeling without probability

Algorithmic randomness
 - direct analysis of  information
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If  you want to know more ...

Probability and Finance: 
It's Only a Game! by Glenn 
Shafer and Vladimir Vovk. 
New York: Wiley, 2001

http://
www.probabilityandfinance
.com/
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