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| < Research area:

I . . ,
- algorithmic randomness
| - computable analysis

M B o Al

- game-theoretic probability
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| algorithmic randomness |
- computable aspects of limit theorems I

| Characterization of Kurtz randomness by a differentiation theorem,

Theory of Gomputing Systems, 52(1):113-132, 2013.

Van Lambalgen’s Theorem for uniformly relative Schnorr and i

computable randomness (with J. Rute), Proceedings of the Twelfth t
} Asian Logic Gonference, 251-270, 2013.

‘Truth-table Schnorr randomness and truth-table reducible !

randomness, Mathematical Logic Quarterly 57(3):323-338, 2011

. An extension of van Lambalgen’s T heorem to infinitely many é:
1 relative l-random reals, Notre Dame Journal of Formal Logic, 51(3): |

337-349. 2010.
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| = computable analysis |
- computability of real functions
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= Ll-computability, layerwise computability and Solovay reducibility;
Computability, 2:15-29, 2013. |
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< An optimal superfarthingale and its convergence over a computable £

topological space, LNAI 7070, 273-284, 2013.
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< (Uomputable measure theory and algorithmic randomness, 1n |
preparation.
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game-theoretic probability
- probability theory based on the 1dea of

algorithmic randomness

The law ot the 1terated logarithm in game-theoretic probability with

| quadratic and stronger hedges (with A. Takemura), Stochastic i
{ Processes and their Application, 123, 3132-3152, 2013.

Convergence of random series and the rate of convergence of the :
strong law of large numbers in game-theoretic probability (with A.
Takemura), Stochastic Processes and their Applications, 122:1-30,

2012.
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< T'he aim of this talk 1s to give an introduction to
game-theoretic probability, which 1s a new i
framework of probability theory and has many
applications including finance.




Prof. Akimichi Takemura (University of Tokyo)

With Takeuchi: and Kumon, he has been

advocating game-theoretic probability in Japan.
| He has published more than 10 papers on game-
theoretic probability.
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Overview ot the talk
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<= Motivation

- A brief history on probability theory ‘
< An introduction on game-theoretic probability
< Some results on Brownian motion
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Motvation
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< Hilbert’s 23 problmes on
International Congress of
Mathematicians at 1900

< 6th “Mathematical
treatment of the axioms of
physics”
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< Many mathematical models of physical systems
are deterministic.

! < Deterministic models have limits.
(Consider the kinetic theory ot gases.)
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| = Hilbert’s idea can be summarized as follows.
|
|
! |
[ ,

P

- = Iind axioms of probability.

i = Use it to make a model of physical systems.
;
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Kolmogorov (1903-1987)
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< Probability axioms (1933),
which answers Hilbert’s
problem, are widely used.
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| : i e
Researchers usually start from the assumption I
that “stock-market prices follow Brownian ]'
| motion” |

because one tries to make a probabilistic model. |
| Mathematics start from axioms.
' Should a theory start from a (probabilistic)
model?
: How can we verity the assumption? §
| We need another view to science. i




Kolmogorov 1963

—— _-...“ L e i e I e R e Ll L ~ T - il e e e A
o > 1

1

] 1

% .

- &

)

1 1

| have already expressed the point of view that
the basis of the applicability ot the
mathematical theory of probability to random

| events of the real world 1s the frequency

| approach to probability in one form or another,
which was so strongly advocated by von Mises.




von Mises (1883-19353)
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< yon Mises (1883-1953)

< Frequency approach
(1919-)
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i
i Like all the other natural sciences, the theory of |
| probability starts from observations, orders them, H
| classifies them, derives from them certain basic concepts |
| and laws and, finally, by means of the usual and %
universally applicable logic draws conclusions which |
| can be tested by Comparlson with experimental results.

?

! In other words, 1n our view the theory of probability 1s a

| normal science, distinguished by a special subject and
| not by a special method of reasoning.

“Probability, statistics and truth™ by von Mises.
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{ = Whatis given? - Data
[

What 1s the goal? - Predict
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“First the Collective - then the Probability.”

For von Mises, randomness yields probability.
(The standard idea 1s that probability yields |

' f
| randomness.) i
However, he did not give a proper notion of

randomness.
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Algorithmic randomness |

{]

Typical (Martin-Léf 1966)

- there 1s no special property etfectively tound

Unpredictable (Schnorr 1971; Ville) |

- there 15 no eftective procedure to predict the
i next data

Incompressible (Schnorr 1973, Levin 1973,
Chaitin 1975; Kolmogorov)

f - there 1s no short program that produces the
| data




= Unpredictability yields probability.
- Game-theoretic probability
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1?
< Incompressibility yields probability:
| - Algorithmic probability
;
| !
;

! —— T TS SN s—

LA L AT P 2 i Pl 20 Y P S P Sl A S e e G A W N S P P A A Y | L TVl P, e K A £ S S KT S S e B T T WY e o AR Y S MY Pl 1 AN A N N N PP | A Wk W S W AAA U W i = B T

22



An mtroduction to game-
theoretlc probabﬂlty
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< We will show the strong law of large numbers 1n
came-theoretic probability.

< In other words, unpredictability yields SLLILN. |

< Note that we do not use measure (at least
explicitly).
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| “I can predict whether the stock-price will go up
or down tomorrow’ .

| Let’s test 1t.

He can choose how many tickets he buys.

| You can buy one ticket for one euro.

| You will receive two euros for one ticket if the
price goes up. So even odds.

His mitial capital 1s finite. He should keep his
capital nonnegative. 1 he number of tickets can
be any real number such as 1/2 and -4/5.
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< We do not care about how he predicts; he can
use any model, the Internet and his friends.

< He need not buy tickets every time.

< He wins 1t he increases his capital to infinity.
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% unpredictable <= capital is bounded = SLLN |
1
l We can sometimes believe the boundedness almost surely, |
| sometimes not.
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The player announces M,, € R.
r, € {—1,1} is announced.
B e AR S O e i

The player should keep K,, nonnegative.

The player wins if sup,, £,, = oc. }
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i The capital IC,, depends on the move of {M,,} and {z,}. |
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r Skeptic announces M,, € R. i
E Reality announces z,, € {—1, 1}, H
ui K=k = e I jl
Skeptic must keep K,, nonnegative.

Reality must keep K,, from tending to infinity.

E Recall that M,, should not depend on z; for £ > n. ;
;
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< What we want to show 1s
“capital 1s bounded for any strategy => SLLN”, j
in other words, |
“not SLLN => capital 1s unbounded for some |
strategy’”.

|
1
¥
[
|
[
|
:_

\/
0‘0

Find such a strategy!
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Definition

| If there exists a strategy S of Skeptic such that E or

|
lim,, KC,, = oo happens, then we say that S forces FE. *

Theorem

In the protocol, Skeptic can force
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| Definition |
If there exists a strategy S of Skeptic such that E or
sup,, K, = oo happens, then we say that S weakly forces E.

Lemma {

For each ¢ > 0, Skeptic can weakly forces
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Proof |
Let ICp = 1. At round n, Skeptic buys €/C,,_1-tickets. Then

§ mn

Kn=]](1+ez).

=il

Since this is bounded, |

n n n n
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| One can show 1n game-theoretic probability |

- Strong Law ot Large Numbers
- Law of the Iterated Logarithm |
- Central Limit Theorem '

- probably almost all other limit theorems

T'hey logically imply the corresponding theorems
in measure-theoretic probability:




{ = What'’s probability in game-theoretic
| probability? |
|
|
' < It can be
- tendency of statistical model
| - the degree of belief
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| 1
F P(E) :=inf{e >0 : (3S)sup K> (wp - wy) > 1/€ 1:
i for all wyws--- € E}, “
| R(B) =1-F(E).
S denotes a strategy of Skeptic. 1'
' KC> is the capital of Skeptic at round n with the strategy S. ]
E} Consider a ticket by which you can receive 1 euro when E
. happens. i
E P(E) = Lowest price at which Skeptic can buy it.
i! P(E) = Highest price at which Skeptic can sell it. i




Some results on Brownian
motlon
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i Player: Forecaster, sSkeptic, Reality |
’ Protocol: Iy := 1.

iL :
3 ;
i

Forecaster announces m,, € R, v,, > 0.

Skeptic announces M,, € R, V,, > 0. 4

| Reality announces z,, € R.
Kn = Kn1 + Ma(@ — ) + Va(2n = ma)2 — v0). |

Skeptic must keep K,, nonnegative.

Reality must keep /IC,, from tending to infinity.
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Reality chooses a continuous function w : [0,00) — R |

Skeptic chooses an increasing sequence of stopping times |

' ’7'1§’7'2§°°° 1

and M,, and V,,. The capital process is

S ed(®) —C+Z (W(pnt1) — w(pn))

+ Vn(w)((w (Pn+1) = pryr) = (W (pn) = Pn)))

e M B et 5
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{ where p,, = 7, At, which is inspired from Lévy characteri-

zation of Wiener process.
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Skeptic is allowed to use a strategy whose capital is repre- |

i
|

£

sented by
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F

1

E where ) . c; converges.
[
3

Theorem (Vovk 2008)
Let W be the Wiener measure on (2, F). Then,

. for each A € F. }




[ge
|
! For a finite binary string o € 2<%, Kolmogorov complexity |
i
| is the minimal length of a program that produces the string:
: Ml ="min{ % = U= §|
| where U is a universal prefix-free Turing machine. One can 3
} think U as a programming language and 7 as a program
written in the language.

{ If K(o) > |o| —c for ¢ € N, then we say o is c-compressible.
|
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| Let C, be a set of such functions. 1'
;1' Fach tunction f € (), can be represented by a binary string ],
of length n. 1

Definition (Asarin and Prokovskiy 1986)

| Let {x,} be a sequence such that x,, € C,, for each n. The |
i sequence {x,} is called complex if there is a constant d > 0

such that K(x,) > n — d for all n. A function z € C|0, 1]

S I M B e Al 5

is a complex oscillation if there is a complex sequence {z,, }

RO i e

i
such that ||z — x,|| converges effectively to 0 as n — oo. i




Theorem (Asarin and Prokovskiy 1986)

The class of complex oscillations have Wiener measure 1.

Theorem (Fouché 2000)

A function is a complex oscillation if and only if it is Martin-

Lof random in C'0, 1] with Wiener measure.




Summary - |'hree tools!

| | '
Probabilistic model |

- the standard way and easy to use I

’ (Measure-theoretic probability does not care about null sets, in other words, does not 1!
I care the case that the assumption was wrong,) §

i (Game-theoretic probability
- direct modeling without probability

f Algorithmic randomness
: . . . . 1E:
{ - direct analysis of information I
| j




and Finance

Probability and Finance: It's Only a Game!

|
1 i
i Probability

It's Only a Game! by Glenn
! Shafer and Vladimir Vovk. Glenn Shafer |
New York: Wiley, 2001 '
| http://
www.probabilityandfinance
.com/

WILEY SERIES IN

PROBABILITY AND STATISTICS
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