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L^1-computability

Lebesgue differentiation theorem

Radon-Nikodym derivative

van Lambalgen’s theorem
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Theorem (Lebesgue 1904)

Every nondecreasing function f : [0, 1] � R is di�erentiable

almost everywhere.

Theorem (Brattka-Miller-Nies 20xx)

A real x � [0, 1] is computably random if and only if every

nondecreasing computable function f : [0, 1] � R is di�er-

entiable at x.
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randomness notions class of  functions

weak 2-randomness differentiable a.e.

Martin-Löf  randomness bounded variation

computable randomness Lipschitz or nondecreasing
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Theorem (Lebesgue 1910)

Let f : [0, 1] � R be an integrable function. Then,

lim
��0

1

�(B(x, �))

�

B(x,�)
f d� = f(x)

almost everywhere. Here, � is the Lebesgue measure.

Such a point x is called a Lebesgue point for f . We will

show some e�ectivizations of this result.
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Theorem (Pathak-Rojas-Simpson)

A real x � [0, 1] is Schnorr random if and only if x is a

Lebesgue point for each e�ective L1-computable function.
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L^1-computability and 
uniqueness
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Let f : [0, 1] � R be a function. The L1-norm ||f ||1 is

defined by

||f ||1 =

�
|f | dµ

where µ is the Lebesgue measure.

A function f : [0, 1] � R is L1-computable if it can be

approximated by simple functions in the L1-norm. (The

precise definition is two pages later.)
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Definition

A rational step function is a finite sum

f =
n�

k=1

rk1(pk,qk)

where rk � Q and pk, qk � Q � [0, 1].

We do not require the intervals pairwise disjoint. It does not

matter whether it is an open interval or closed interval.
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Definition (Pour-El & Richard)

A function f : [0, 1] � R is L1-computable if there exists

a computable sequence {sn} of rational step functions such

that
||f � sn|| < 2�n

for all n.
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An L^1-computable function is a computable 
point in the L^1-space.

If  f  is L^1-computable and g is equivalent to f  
up to null set, then g is also L^1-computable.

Being a Lebesgue point does not make sense!
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Definition (Pathak-Rojas-Simpson, M.)

A function f :� [0, 1] � R is e�ectively L1-computable if

there exists a computable sequence {sn} of rational step

functions such that ||f � sn|| < 2�n for all n and

f(x) = lim
n

sn(x)

for all x � [0, 1].

Note that f can be partial!
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Theorem (M.; Pathak-Rojas-Simpson)

Let f, g be e�ective L1-computable functions.

(i) f is defined up to Schnorr null.

(ii) f = g a.e. if and only if f and g are equal up to

Schnorr null. Thus, it does not depend on the repre-

sentation up to Schnorr null.
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A basic open set on [0, 1] is

(p, q), [0, q), (p, 1]

for p, q � Q. There is a computable enumeration of basic

open sets. An open set U � [0, 1] is c.e. if U =
�

i Bi for a

computable sequence {Bi} of basic open sets.
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A Schnorr test is a sequence {Un} of uniformly c.e. open sets

such that µ(Un) � 2�n and µ(Un) is uniformly computable.

A class N is Schnorr null if it is covered by a Schnorr test

{Un}, that is, N �
�

n Un.

A real x � [0, 1] is Schnorr random if it avoids each Schnorr

null class, that is, x ��
�

n Un.
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Definition

A Schnorr Solovay test is a computable sequence {Bn} of

basic open sets such that
�

n µ(Bn) is a computable real.

Theorem

A set A is Schnorr random if and only if A � Bn for at most

finitely many n for each Schnorr test {Bn}.
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Definition (M.)

A Schnorr integral test is a lower semicomputable function

f : [0, 1] � R+
such that

�
f dµ is a computable real.

Theorem (M.)

A point x � [0, 1] is Schnorr random if and only if f(x) < �
for each Schnorr integral test.
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Theorem

Each di�erence between two Schnorr integral tests is equiv-

alent to an e�ective L1-computable function up to Schnorr

null. Each e�ective L1-computable function is equivalent

to the di�erence between two Schnorr integral tests up to

Schnorr null.
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Notice that

||sn+1 � sn|| � ||f � sn+1|| + ||f � sn|| < 2�n+1.

Split sn+1 � sn into the positive part t+n and the negative

part t�n . Then,

f(x) =
�

n

(sn+1(x) � sn(x)) =
�

n

t+n (x) �
�

n

t+n (x),

if
�

n t±n (x) is defined. Note that ||t+|| + ||t�|| < 2�n+1 and
�

n t±n (x) are computable.
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Proof Sketch of e�ective LDT.

Let

gn(x) =

�
[x�n] f dµ

2�n
.

Notice that

(i) gn(x) converges f(x) a.e.,

(ii) gn is a rational step function,

(iii) the convergence is also e�ective,

(iv) h(x � n) = gn(x) is a martingale,

(v) we can ”speed up” the convergence.

Use Marayne-Solecki trick to get the theorem. .
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Let µ be a measure with L1-computable density w.r.t. �,

that is, µ(A) =
�

A f d� for an L1-computable function.

Then, f is the Radon-Nikodym derivative of µ w.r.t. �.
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No more ”up to null”!

Theorem (Hoyrup and Rojas)

Let µ,� be such that µ � � and µ is computably norm able

relative to �. Then the Radon-Nikodym derivative dµ
d� can

be computed as an element of L1(�) from µ and �.

Corollary

If we further assume that µ and � are computable, then the

Radon-Nikodym derivative is unique up to Schnorr null.

26



Let � be the uniform measure on 2�. Let µ be a computable

measure on 2� such that µ � �. Then,

g(x) = lim
n

µ(x � n)

�(x � n)

is defined for each computably random point x, and g is a

Radon-Nikodym derivative of µ w.r.t. �.
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Schnorr layerwise 
computability
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Let f be an e�ective L1(�)-computable function on [0, 1].

Then,
f(x) �T x.
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Definition (M.; Hoyrup-Rojas)

A function f : [0, 1] � R is Schnorr layerwise computable if

there is a Schnorr test {Un} such that f |X\Un
is uniformly

computable.

(i) Computable correctly with high probability.

(ii) Computable with advice.

(iii) Computable in the limit.
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Theorem (M.)

Each e�ective L1-computable function is Schnorr layerwise

computable. Each Schnorr layerwise computable function

with computable integral is equivalent to an e�ective L1-

computable function up to Schnorr null.
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Theorem (M. & Rute)

Let f be an e�ective L1-computable function. Then, there

are a Schnorr test {Un} and a sequence {fn} of uniformly

computable total functions such that

f |X\Un
= fn|X\Un

.
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The fact in the previous page was used to show van Lam-

balgen’s theorem for Schnorr randomness.

Theorem (M. & Rute)

X �Y is Schnorr random if and only if X is Schnorr random

and Y is Schnorr random uniformly relative to X.
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Theorem (Lusin’s Theorem)

Let f : [0, 1] � R. Then, f is measureble if and only if, for

each � > 0, there are a continuous function g and a compact

set K such that

µ([0, 1]\K) < �,

f(x) = g(x) for x � K.

Thus, Schnorr layerwise computability is an e�ective version

of measurability. Furthermore, we can formalize this idea.
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We define a computable measurable set similarly to an ef-

fective L1-computable function.

Theorem

A function f :� [0, 1] � R is Schnorr layerwise computable

if and only if f�1(Bi) is a computable measurable set uni-

formly in i, where {Bi} is a computable sequence of basic

open sets.

Thus, we also call it an e�ectively measurable function.
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Summary

L^1-computability and Schnorr layerwise 
computability seem important notions.

How about variants?

How related to 
- computation with advice,
- randomized algorithm
- learnability?
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