L^1-computability and Schnorr randomness

In a seminar at Universität der Bundeswehr München 26 Aug 2013

Kenshi Miyabe JSPS Research Fellow at The University of Tokyo

L^1-computability

Lebesgue differentiation theorem
Radon-Nikodym derivative
van Lambalgen's theorem

Theorem (Lebesgue 1904) Every nondecreasing function $f : [0, 1] \to \mathbb{R}$ is differentiable almost everywhere.

Theorem (Brattka-Miller-Nies 20xx) A real $x \in [0, 1]$ is computably random if and only if every nondecreasing computable function $f : [0, 1] \rightarrow \mathbb{R}$ is differentiable at x.

Theorem (Lebesgue 1910) Let $f: [0,1] \to \mathbb{R}$ be an integrable function. Then, $\lim_{\epsilon \to 0} \frac{1}{\lambda(B(x,\epsilon))} \int_{B(x,\epsilon)} f \, d\lambda = f(x)$ almost everywhere. Here, λ is the Lebesgue measure. Such a point x is called a Lebesgue point for f. We will show some effectivizations of this result.

Theorem (Pathak-Rojas-Simpson) A real $x \in [0, 1]$ is Schnorr random if and only if x is a Lebesgue point for each effective L^1 -computable function.

L^1-computability and uniqueness

Let $f : [0,1] \to \mathbb{R}$ be a function. The L^1 -norm $||f||_1$ is defined by

$$|f||_1 = \int |f| \, d\mu$$

where μ is the Lebesgue measure.

A function $f : [0,1] \to \mathbb{R}$ is L^1 -computable if it can be approximated by simple functions in the L^1 -norm. (The precise definition is two pages later.)

Definition A rational step function is a finite sum

$$f = \sum_{k=1}^{n} r_k \mathbf{1}_{(p_k, q_k)}$$

where $r_k \in \mathbb{Q}$ and $p_k, q_k \in \mathbb{Q} \cap [0, 1]$.

We do not require the intervals pairwise disjoint. It does not matter whether it is an open interval or closed interval. **Definition** (Pour-El & Richard) A function $f : [0,1] \to \mathbb{R}$ is L^1 -computable if there exists a computable sequence $\{s_n\}$ of rational step functions such that

 $||f - s_n|| < 2^{-n}$

for all n.

An L^1-computable function is a computable point in the L^1-space.

If f is L^1-computable and g is equivalent to f up to null set, then g is also L^1-computable.

Being a Lebesgue point does not make sense!

Definition (Pathak-Rojas-Simpson, M.) A function $f :\subseteq [0,1] \to \mathbb{R}$ is effectively L^1 -computable if there exists a computable sequence $\{s_n\}$ of rational step functions such that $||f - s_n|| < 2^{-n}$ for all n and

$$f(x) = \lim_{n} s_n(x)$$

for all $x \in [0, 1]$.

Note that f can be partial!

Theorem (M.; Pathak-Rojas-Simpson) Let f, g be effective L^1 -computable functions. (i) f is defined up to Schnorr null. (ii) f = g a.e. if and only if f and g are equal up to Schnorr null. Thus, it does not depend on the representation up to Schnorr null.

A basic open set on [0, 1] is

(p,q), [0,q), (p,1]

for $p, q \in \mathbb{Q}$. There is a computable enumeration of basic open sets. An open set $U \subseteq [0, 1]$ is c.e. if $U = \bigcup_i B_i$ for a computable sequence $\{B_i\}$ of basic open sets. A Schnorr test is a sequence $\{U_n\}$ of uniformly c.e. open sets such that $\mu(U_n) \leq 2^{-n}$ and $\mu(U_n)$ is uniformly computable. A class N is Schnorr null if it is covered by a Schnorr test $\{U_n\}$, that is, $N \subseteq \bigcap_n U_n$. A real $x \in [0, 1]$ is Schnorr random if it avoids each Schnorr null class, that is, $x \notin \bigcap_n U_n$.

Definition

A Schnorr Solovay test is a computable sequence $\{B_n\}$ of basic open sets such that $\sum_n \mu(B_n)$ is a computable real.

Theorem

A set A is Schnorr random if and only if $A \in B_n$ for at most finitely many n for each Schnorr test $\{B_n\}$.

Definition (M.)

A Schnorr integral test is a lower semicomputable function $f: [0,1] \to \overline{\mathbb{R}}^+$ such that $\int f \ d\mu$ is a computable real.

Theorem (M.)

A point $x \in [0, 1]$ is Schnorr random if and only if $f(x) < \infty$ for each Schnorr integral test.

Theorem

Each difference between two Schnorr integral tests is equivalent to an effective L^1 -computable function up to Schnorr null. Each effective L^1 -computable function is equivalent to the difference between two Schnorr integral tests up to Schnorr null.

Notice that

$$||s_{n+1} - s_n|| \le ||f - s_{n+1}|| + ||f - s_n|| < 2^{-n+1}$$

Split $s_{n+1} - s_n$ into the positive part t_n^+ and the negative part t_n^- . Then,

$$f(x) = \sum_{n} (s_{n+1}(x) - s_n(x)) = \sum_{n} t_n^+(x) - \sum_{n} t_n^+(x),$$

if $\sum_{n} t_n^{\pm}(x)$ is defined. Note that $||t^+|| + ||t^-|| < 2^{-n+1}$ and $\sum_{n} t_n^{\pm}(x)$ are computable.

Proof Sketch of effective LDT. Let

$$g_n(x) = \frac{\int_{[x \upharpoonright n]} f \, d\mu}{2^{-n}}$$

Notice that

(i) g_n(x) converges f(x) a.e.,
(ii) g_n is a rational step function,
(iii) the convergence is also effective,
(iv) h(x ↾ n) = g_n(x) is a martingale,
(v) we can "speed up" the convergence.

Use Marayne-Solecki trick to get the theorem.

Let μ be a measure with L^1 -computable density w.r.t. λ , that is, $\mu(A) = \int_A f \ d\lambda$ for an L^1 -computable function. Then, f is the Radon-Nikodym derivative of μ w.r.t. λ . No more "up to null"!

Theorem (Hoyrup and Rojas) Let μ, λ be such that $\mu \ll \lambda$ and μ is computably norm able relative to λ . Then the Radon-Nikodym derivative $\frac{d\mu}{d\lambda}$ can be computed as an element of $L^1(\lambda)$ from μ and λ .

Corollary

If we further assume that μ and λ are computable, then the Radon-Nikodym derivative is unique up to Schnorr null.

Let λ be the uniform measure on 2^{ω} . Let μ be a computable measure on 2^{ω} such that $\mu \ll \lambda$. Then,

$$g(x) = \lim_{n} \frac{\mu(x \restriction n)}{\lambda(x \restriction n)}$$

is defined for each computably random point x, and g is a Radon-Nikodym derivative of μ w.r.t. λ .

Schnorr layerwise computability

Let f be an effective $L^1(\lambda)$ -computable function on [0, 1]. Then,

 $f(x) \leq_T x.$

Definition (M.; Hoyrup-Rojas)

A function $f : [0, 1] \to \mathbb{R}$ is Schnorr layerwise computable if there is a Schnorr test $\{U_n\}$ such that $f|_{X \setminus U_n}$ is uniformly computable.

(i) Computable correctly with high probability.(ii) Computable with advice.(iii) Computable in the limit.

Theorem (M.)

Each effective L^1 -computable function is Schnorr layerwise computable. Each Schnorr layerwise computable function with computable integral is equivalent to an effective L^1 computable function up to Schnorr null. **Theorem** (M. & Rute) Let f be an effective L^1 -computable function. Then, there are a Schnorr test $\{U_n\}$ and a sequence $\{f_n\}$ of uniformly computable total functions such that

 $f|_{X\setminus U_n} = f_n|_{X\setminus U_n}.$

The fact in the previous page was used to show van Lambalgen's theorem for Schnorr randomness.

Theorem (M. & Rute)

 $X \oplus Y$ is Schnorr random if and only if X is Schnorr random and Y is Schnorr random uniformly relative to X. **Theorem** (Lusin's Theorem) Let $f : [0,1] \to \mathbb{R}$. Then, f is measureble if and only if, for each $\epsilon > 0$, there are a continuous function g and a compact set K such that

> $\mu([0,1]\backslash K) < \epsilon,$ $f(x) = g(x) \text{ for } x \in K.$

Thus, Schnorr layerwise computability is an effective version of measurability. Furthermore, we can formalize this idea. We define a computable measurable set similarly to an effective L^1 -computable function.

Theorem

A function $f :\subseteq [0,1] \to \mathbb{R}$ is Schnorr layerwise computable if and only if $f^{-1}(B_i)$ is a computable measurable set uniformly in *i*, where $\{B_i\}$ is a computable sequence of basic open sets.

Thus, we also call it an effectively measurable function.

Summary

 L^1-computability and Schnorr layerwise computability seem important notions.

How about variants?

How related to

- computation with advice,
- randomized algorithm
- learnability?