Almost uniform weak n-randomness

CCR2013 23-27 Sep 2013, Moscow, Russia

Kenshi Miyabe JSPS Research Fellow at The University of Tokyo

Overview

- * Motivation
- * uniform relativization
- van Lambalgen's theorem for uniform Kurtz randomness
- * almost uniform relativization

Question

What does it mean by saying that

"two objects are random relative to each other"?

If we say that a set $A \in 2^{\omega}$ is computable relative to a set $B \in 2^{\omega}$, then it usually means that

$$A \leq_T B$$
.

We can consider many variants:

$$A \leq_{tt} B, \ A \leq_{wtt} B, \ A \leq_{m} B, \cdots$$

A natural answer

Theorem (van Lambalgen 1987)

 $A \oplus B$ is Martin-Löf random

 \iff A is Martin-Löf random

and B is Martin-Löf random relative to A.

 \Rightarrow : easy direction

⇐: difficult direction

A ML-test is a sequence $\{V_n\}$ of uniformly c.e. open sets such that $\mu(V_n) \leq 2^{-n}$ for all n. A set B is ML-random if $B \notin \bigcap_n V_n$ for each ML-test.

A ML-test relative to A is a sequence $\{V_n\}$ of uniformly Ac.e. open sets such that $\mu(V_n) \leq 2^{-n}$ for all n. A set Bis ML-random relative to A if $B \notin \bigcap_n V_n$ for each ML-test relative to A.

Failure of vL-theorem

- * "easy direction" does not hold for
- Schnorr randomness or computable randomness (Merkle-Miller-Nies-Reimann-Stephan 2006, Yu 2007)
- * Kurtz randomness (Franklin-Stephan 2011)
- * weak 2-randomness (Barmpalias-Downey-Ng 2011)

Interpretations

- * ML-randomness is more natural than other randomness notions.
- * The way of relativization was not appropriate.

Uniform relativization

 $A \leq_T B$ if there is a Turing reduction Φ such that $A = \Phi^B$. Note that Φ^Z may not be defined for $Z \neq B$.

 $A \leq_{tt} B$ if there is a Turing reduction Φ such that Φ^Z is defined for each $Z \in 2^{\omega}$ and $A = \Phi^B$.

We know that

$$\leq_{tt} \Rightarrow \leq_T$$

but the converse does not hold.

A Schnorr test is a sequence $\{V_n\}$ of uniformly c.e. open sets such that $\mu(V_n) = 2^{-n}$ for all n. A set B is Schnorr random if $B \notin \bigcap_n V_n$ for each Schnorr test.

A Schnorr test can be identified with a computable function from ω to τ where τ is the class of open sets.

Uniform relativization

Definition

A uniform Schnorr test is a computable function $f: 2^{\omega} \times \omega \rightarrow$

 τ such that $\mu(f(X,n)) = 2^{-n}$.

We call $\{f(A, n)\}$ a Schnorr test uniformly relative to A.

B is Schnorr random uniformly relative to A if B passes all

Schnorr tests uniformly relative to A.

Theorem (M. 2011 and M.-Rute 2013)

 $A \oplus B$ is Schnorr random

 \iff A is Schnorr random

and B is Schnorr random uniformly relative to A.

 $A \oplus B$ is computably random

 \iff A is computably random uniformly relative to B and B is computably random uniformly relative to A.

Definition

A Demuth test is a sequence of c.e. open sets $\{V_n\}$ such that $\mu(V_n) \leq 2^{-n}$ for all n, and there is an ω -c.e. function f such that $V_n = [W_{f(n)}]$.

A Demuth_{BLR} test is a Demuth test relative to A where f is ω -c.e. by A, that is, the approximation is A-computable but the bound on the number of changes is computable.

Theorem (Diamondstone-Greenberg-Turetsky)

Van Lambalgen's theorem holds for Demuth $_{\rm BLR}$ randomness.

Another relativization

- B is Schnorr random relative to A
 B is Schnorr random uniformly relative to A
- * There exists A such that the converse does not hold.
- Suppose that A is computable.
 Then B is Schnorr random
 iff B is Schnorr random relative to A
 iff B is Schnorr random uniformly relative to A.

Unusual usage of terminology

- * The usual way to see is that, "we define tests and randomness notions, and then relativize them".
- * We need to talk about reduction to distinguish the and T or usual relativization and uniform relativization.
- * Uniform Schnorr randomness means Schnorr randomness with uniform relativization.

Uniform Kurtz randomness

Kurtz randomness

Theorem (Franklin-Stephan '11)

- If A is Kurtz random and B is A-Kurtz random, then $A \oplus B$ is Kurtz random.
- There exists a pair A, B such that $A \oplus B$ is Kurtz random and neither A nor B is Kurtz random relative to the other.

The "difficult direction" holds but the "easy direction" does not hold.

Definition

A uniform Kurtz test is a total computable function f:

 $2^{\omega} \to \tau$ such that $\mu(f(Z)) = 1$ for all $Z \in 2^{\omega}$.

A set B is called Kurtz random uniformly relative to A if

 $B \in f(A)$ for each uniform Kurtz test f.

easy direction

Theorem (M.-Kihara)

If $A \oplus B$ is Kurtz random,

then B is Kurtz random uniformly relative to A.

Corollary There is a pair $A, B \in 2^{\omega}$ such that B is Kurtz random uniformly relative to A and not Kurtz random relative to A.

difficult direction

Theorem (M.-Kihara)

There is a pair A, B such that A and B are mutually uniformly Kurtz random and $A \oplus B$ is not Kurtz random.

So, the "easy direction" does hold but the "difficult direction" does not hold!!

If A(n) = 0 or B(n) = 0 for all n, then $A \oplus B$ is not Kurtz random.

Proof

Let $\{f_i\}$ be an enumeration of all uniform Kurtz tests. At stage s, we define $\alpha_s \prec A$ and $\beta_s \prec B$ such that $|\alpha_s| = |\beta_s|$. At stage s = 2i, search $\beta \succeq \beta_s$ and m such that

$$\llbracket \beta \rrbracket \subseteq f_i(\alpha_s 0^m).$$

Such β and m always exist. We assume $|\alpha_s 0^m| \ge |\beta|$. Define

$$\alpha_{s+1} = \alpha_s 0^m, \ \beta_{s+1} = \beta 0^{|\alpha_s| + m - |\beta|}.$$

At stage s = 2i + 1, define α_{s+1} and β_{s+1} similarly by replacing α and β .

Almost uniform relativization

* The usual relativization is too strong for the easy direction to hold.

* The uniform relativization may be too weak for the difficult direction to hold

Theorem (Frankline and Stephan '11)

If A is Kurtz random and B is A-Kurtz random, then $A \oplus B$ is Kurtz random.

Proof

Let A be a Kurtz-random set and U be an arbitrary c.e. open set U with measure 1. For each rational r < 1, let

$$U_r = \{ P : \mu(\{Q : P \oplus Q \in U\}) > r \}.$$

Then U_r is a c.e. open set.

For each r, we have $\mu(U_r) = 1$.

Since A is Kurtz random, $A \in U_r$ for each r. Let

$$T = \{Q : A \oplus Q \in U\}.$$

Then T is a A-c.e. open set with measure 1. Since B is A-Kurtz random, we have $B \in T$. Hence $A \oplus B \in U$. Since U is arbitrary, $A \oplus B$ is Kurtz random.

Definition

A almost uniform (a.u.) Kurtz test is a computable function $f: 2^{\omega} \to \tau$ such that $\mu(f(Z)) = 1$ for almost every $Z \in 2^{\omega}$. A set B is Kurtz random a.u. relative to A if $B \in f(A)$ for each a.u. Kurtz test f such that $\mu(f(A)) = 1$.

 $random \Rightarrow a.u. random \Rightarrow uniformly random$

Theorem (M.) $A \oplus B$ is Kurtz random iff A is Kurtz random and B is Kurtz random a.u. relative to A.

Definition

An a.u. weak n-test is a computable function $f: 2^{\omega} \to \Sigma_n^0$ such that $\mu(f(Z)) = 1$ for almost every $Z \in 2^{\omega}$. A set B is weakly n-random a.u. relative to A if $B \in f(A)$ for each a.u. weak n-test f such that $\mu(f(A)) = 1$.

Definition (Brattka 2005)

Let (X, d, α) be a separable metric space. We define representations $\delta_{\Sigma_k^0(X)}$ of $\Sigma_k^0(X)$, $\delta_{\Pi_k^0(X)}$ of $\Pi_k^0(X)$ for $k \geq 1$ as follows:

- $\delta_{\Sigma_1^0(X)}(p) := \bigcup_{(i,j)\ll(p)} B(\alpha(i), \overline{j}),$
- $\delta_{\Pi_k^0(X)}(p) := X \setminus \delta_{\Sigma_k^0(X)}(p),$
- $\delta_{\Sigma_{k+1}^0(X)} \langle p_0, p_1, p_2, \cdots \rangle := \bigcup_{i=0}^{\infty} \delta_{\Pi_k^0(X)}(p_i),$

for all $p, p_i \in \omega^{\omega}$.

Theorem (M.)

 $A \oplus B$ is weak n-random iff A is weak n-random and B is weak n-random a.u. relative to A.

van Lambalgen's theorem

		a.u.	uniform
Demuth	Fail	ŗ	Hold
weak 2	Fail	Hold	j
ML	Hold	Hold	Hold
computable	Fail	Ş	Hold in a weak sense
Schnorr	Fail	Hold	Hold
Kurtz	Fail	Hold	Fail

Lowness

		a.u.	uniform
Demuth	studied	?	studied
weak 2	K-trivial	K-trivial	K-trivial
ML	K-trivial	K-trivial	K-trivial
computable	computable	Ç	ç
Schnorr	Low(SR)	?	Schnorr trivial
Kurtz	studied	?	studied