Variants of Layerwise Computability

Agrentina-Japan-New Zealand Workshop 2 Dec 2013, Auckland, New Zealand

MIYABE Kenshi JSPS Research Fellow at Tokyo Daigaku Effective version of measurability
 many applications

Omega operator

Demuth randomness implies GL_1.

Layerwise computability

White the state of the second of the second

Measurability

Let X, Y be spaces and B_X, B_Y be the set of Borel sets on these spaces. $f: X \to Y$ is measurable if

 $f^{-1}(E) \in B_X$ for every $E \in B_Y$.

Effective versions of this notion have been studied in computable analysis, especially by Brattka.

Another Measurability

Let μ^* be an outer measure on a set X. A subset $S \subset X$ is called μ^* -measurable if

$$\mu^*(A) = \mu^*(A \cap S) + \mu^*(A \setminus S)$$

for every $A \subseteq X$. (This condition is called Carathéodory condition.)

Then, we have the measure μ on the measurable sets. Similarly, we can define μ -measurable functions. In this talk, we only talk about this measurability.

Problem

12 YO 1 19 19 19

The definition is far from constructive.How do we effectivize?

IN THE & SPECIFIC MARKED STREET

and a to have shown

Lusin's Theorem

The theorem says that measurability means that one can approximate by continuous functions.

Theorem

A function $f : [0,1] \to \mathbb{R}$ is measurable if and only if, for every $\epsilon > 0$, there is a compact set K and a continuous function g such that

(i)
$$\mu(K) > 1 - \epsilon$$

(ii) $f|_K = g|_K$.

Computable Measurable Function

A function $f : [0,1] \to \mathbb{R}$ is computably measurable if, for every $n \in \omega$, one can uniformly compute a co-c.e. closed set K_n and a computable function g_n such that

(i) $\mu(K_n) \ge 1 - 2^{-n}$ (ii) $\mu(K_n)$ is uniformly computable, (iii) $f|_{K_n} = g_n|_{K_n}$.

Schnorr Layerwise Computability

Definition (M. after Hoyrup and Rojas) A function $f : [0,1] \to \mathbb{R}$ is Schnorr layerwise computable if and only if there is a Schnorr test $\{U_n\}$ and a sequence $\{g_n\}$ of uniformly computable functions such that

$$f|_{K_n} = g_n|_{K_n}$$

where $K_n = [0, 1] \setminus U_n$.

Rute defined computable measurability by functions approximated via the distance

$$d_{meas}(f(x),g(x))d\lambda$$

where

$$d_{meas}(x, y) = \max\{1, |x - y|\}.$$

M. defined computable measurability by functions such that the preimages of every computable measurable sets are computable measurable sets. They are all equivalent. Many applications

and and an an an and a start when the second of the second

Ask Bienvenu or Shen.

and a state with the

CARD N IN COMPANY

secondary for them

CONTRACTOR AND AND AND AND AND

Observation by Bienvenu

The Omega operator Ω is layerwise computable relative to \emptyset' . This implies that every 2-random set is GL_1 .

Question

Can we improve this so that the improved theorem implies that every Demuth random set is GL_1 ? The Chaitin's Ω is defined by

$$\Omega = \sum_{\sigma \in \operatorname{dom}(U)} 2^{-|\sigma|}$$

where U is a universal Turing machine.

Proposition

- $0 < \Omega < 1$.
- Ω is a left-c.e. real.
- Ω is ML-random.
- $\Omega \equiv_T \emptyset'$.

The Omega operator Ω is defined by

$$\Omega^X = \sum_{\sigma \in \operatorname{dom}(U^X)} 2^{-|\sigma|}$$

where U^X is a universal Turing machine relative to X.

Proposition

- $\Omega : [0,1] \to [0,1].$
- Ω is a lower semicomputable function.
- Ω^X is ML-random relative to X for every X.
- $\Omega^X \oplus X \equiv_T X'$.

- 2-randomness
- Demuth randomness
- ML-randomness
- Schnorr randomness

$A \in 2^{\omega}$ is GL_1 if

 $A' \leq A \oplus \emptyset'.$

Variants of computability of reals and functions

Variants of computability of reals

effectively computable reals
weakly computable reals
divergence bounded computable reals
computably approximable

Computable Reals

Definition (Turing '36, Robinson '51) A real $x \in [0, 1]$ is computable if there is a computable sequence $\{r_n\}$ of rationals such that

(i) the sequence converges to x,

(ii) $|r_n - r_{n-1}| \le 2^{-n}$ for every *n*.

We say that the convergence is effective.

Computable Approximation

Definition (Weihrauch and Zheng '98) A real $x \in \mathbb{R}$ is computably approximable if there is a computable sequence $\{r_n\}$ of rationals such that

 $x = \lim_{n} r_n.$

Theorem (Ho '99)

A real x is c.a. if and only if it is \emptyset' -computable.

Weak computability

Definition (Ambos-Spies et al. 2000)

A real $x \in \mathbb{R}$ is weakly computable if there is a computable sequence $\{r_n\}$ of rationals such that

(i)
$$x = \lim_{n \to \infty} r_n$$
,
(ii) $\sum_{n \to \infty} |r_n - r_{n-1}| < \infty$

Theorem (Ambos-Spies et al. 2000) A real x is weakly computable if there are two left-c.e. reals α and β such that

$$x = \alpha - \beta.$$

Divergence bounded computability

Definition (Zheng '02)

A real $x \in \mathbb{R}$ is divergence bounded computable if there is a computable sequence $\{r_s\}$ of rationals such that

(i) x = lim_n r_n,
(ii) the number of non-overlapping pairs (i, j) of indices such that |x_i - x_j| ≥ 2⁻ⁿ is bounded by a computable function.

ar a, the number of such an n 40 is bounded by a comp. func

A hierarchy of sets

HIS STATUTE AND AND ANTIPATING STATUTE

Delta^0_2
omega-c.e. sets
d.c.e. sets
c.e. sets

computable sets

La device as the 1 sector device of the root of the first of the

in and the fact the

A hierarchy of reals

O'-computable reals
divergence bounded computable reals
weakly computable reals
left-c.e. reals
computable reals

Computable Functions

Definition (Pour-El-Richards '89) A function $f : [0,1] \to \mathbb{R}$ is computable if there is a computable sequence $\{r_n\}$ of rational polygons such that

(i)
$$f(x) = \lim_{n \to \infty} r_n(x)$$
 for all $x \in [0, 1]$
(ii) $||r_n - r_{n-1}||_{\infty} < 2^{-n}$.

Here, $||f||_{\infty} = \sup_{x \in [0,1]} |f|.$

Variants of computability of functions

(effectively) computable function
 uniformly weakly computable function
 uniformly divergence bounded computable function

uniformly computably approximable function

Uniformly Weakly Computable Functions

Definition (Bauer-Zheng '10)

A function $f : [0,1] \to \mathbb{R}$ is uniformly weakly computable if there is a computable sequence $\{r_n\}$ of rational polygons such that

(i)
$$f(x) = \lim_{n \to \infty} r_n(x)$$
 for all $x \in [0, 1]$.
(ii) $\sum_n ||r_n - r_{n-1}||_{\infty} \le 1$.

Recall that $||f||_{\infty} = \sup_{x \in [0,1]} |f|.$

Representations

(i) $\rho_{EC} = \rho$ (ii) ρ_{WC} (iii) ρ_{DBC}^h (iv) $\rho_{CA} = \lim \circ \rho$

THE REPORT OF STREET

and the second second second

and a for a what a function of the state for the set

Variants of computability of functions

(i) (effectively) computable = (ρ, ρ)-computable
(ii) uniformly WC = (ρ, ρ_{WC})-computable
(iii) uniformly DBC = (ρ, ρ^h_{DBC})-computable for some computable function h
(iv) uniformly CA = (ρ, ρ_{CA})-computable ?

Remark

Let f be a uniformly DBC function. If f(x) is defined, then

 $f(x) \leq_T x \oplus \emptyset'.$

Variants of layerwise computability

Real or Function	Test
Computable	Schnorr
Weakly Computable	ML
Divergence Bounded Computable	Demuth
Computably Approximable	Weak 2?

Demuth randomness

Definition

A Demuth test is a sequence $\{U_n\}$ of c.e. open sets such that $\mu(U_n) \leq 2^{-n}$, and there is an ω -c.e. function f such that $U_n = [W_{f(n)}]$. A set X is Demuth random if $Z \notin U_n$ for almost all n.

Demuth-layerwise DBC

Definition

A function $f : [0,1] \to \mathbb{R}$ is Demuth-layerwise divergence bounded computable if there are

• a Demuth test $\{U_n\}$

• a uniform sequence $\{f_n\}$ of uniformly DBC functions

such that

$$f|_{K_n} = f_n|_{K_n}$$
 where $K_n = [0, 1] \setminus \bigcup_{k=n}^{\infty} U_k$.

Main theorem of this talk

Theorem

Every integrable lower semicomputable function is Demuthlayerwise DBC.

Corollary In particular, the omega operator Ω is Demuth-layerwise DBC. Hence, every Demuth random set is GL_1 .

ML-layerwise WC

Definition

A function $f : [0, 1] \to \mathbb{R}$ is ML-layerwise weakly computable if there are

(i) a Solovay test {U_n}
(ii) a sequence {f_n} of uniformly weakly computable functions

such that

$$f|_{K_n} = f_n|_{K_n}$$
 where $K_n = [0, 1] \setminus \bigcup_{k \in \mathbb{N}} U_k$.

 $k \equiv n$

p-weakly computability

Definition

For 0 , a real x is*p* $-weakly computable if there is a computable sequence <math>\{r_n\}$ of rationals

(i) $x = \lim_{n \to \infty} r_n$ (ii) $\sum_{n \to \infty} |r_n - r_{n-1}|^p < \infty$.

If $p \leq q$, then *p*-weakly computability implies *q*-weakly computability.

Theorem Every 1/2-weakly L^1 -computable function is ML-layerwise weakly computable.

Remark

The omega operator is not ML-layerwise weakly computable.

These two theorems also can be seen as effectivizations of one direction of Lusin's theorem.

Summary

 We have hierarchies of reals, continuous functions and layerwise continuous functions.

* The omega operator is Demuth-layerwise DBC.

Are there any other interesting measurable functions that is computable in some sense?

How about the converse?

References

- * M. Hoyrup and C. Rojas. An Application of Martin-Lof randomness to Effective Probability Theory. CiE 2009, 260-290, 2009.
- K. Miyabe. L^1-computability, layerwise computability and Solovay reducibility. Computability, 2:15-29, 2013.
- * J. Rute. Randomness, martingales and differentiability I. In preparation.
- X. Zheng. Recursive Approximability of Real Numbers. Mathematical Logic Quarterly, 48, 2002.
- M. Bauer and X. Zheng. On the Weak Computability of Continuous Real Functions. CCA 2010, EPTCS 24, 29-40, 2010.