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Kenshi Miyabe

algorithmic randomness
 = computability theory + information theory + etc.

computable analysis
 = the study of  computability of  real functions.

Study the notion of  probability via computability theory.
(Probability in statistics, learning theory, randomized 
algorithm and dynamical systems.)

Introduction
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Chaos theory studies the behavior of  dynamical 
systems that are highly sensitive to initial 
conditions. *snip* In other words, the 
deterministic nature of  these systems does not 
make them predictable.
“Wikipedia: Chaos theory”
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The orbit is “unpredictable”
when the initial point is 

“unpredictable” or “random”.
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Computability theory and 
algorithmic randomness
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What is random?

Typicalness (Martin-Löf  1966)

Unpredictability
(von Mises 1919, Ville 1939, Schnorr 1971)

Incompressibility
(Kolmogorov, Levin-Schnorr 1973)
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Unpredictability

The initial capital is 1 yen.

One predicts the next bit given a finite binary sequence.

 One bets his money to 0 or 1; the money doubles if  
correct and one loses the money if  wrong.

If  the capital is bounded, we say the sequence is 
unpredictable.

9



Martingale
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Roughly speaking, non-ML-random sequences are the 
ones one can find some regularity infinitely often.

Addition, deletion or change of  finite bits preserve ML-
randomness.

The set of  all ML-random sequences has measure 1.

Every ML-random sequence satisfies with SLLN.
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Kučera’s theorem
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Computability of  real functions
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Summary of  former half

The orbit is unpredictable because the initial point is 
unpredictable.
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Computable initial points and 
orbits
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Random initial points?

One can calculate space average by computing time 
average with a “random” initial point.

“One can take a rational numver (or an algebraic 
number) randomly. It will be correct almost surely.” This 
is wrong.

Can we take a computable initial point with a desired 
property?
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Schnorr randomness
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L^1-computability
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L^1-computability
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Convergence speed
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Randomness deficiency
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Summary

For a well-behaved function, one can find a computable 
point with the desired property.

Convergence rate depends on the randomness deficiency.
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Related work

The values of  entropies of  subshifts of  finite type over 
Z^d (d is larger than 1) are exactly right-c.e. reals. 
(Hochman and Meyerovitch 2010)

The complexity of  the orbits of  random points equals to 
the Kolmogorov-Sinaï entropy. (An effectivization of  
Brudno’s theorem.) The supremum of  the complexity of  
orbits equals the topological entropy. (Galatola-Hoyrup-
Rojas 2010)
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Future work

How about polynomial-time computable points?
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