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T heme

B Random = incompressible

B Descriptive complexity 1s one of the measure of
randomness.




Kolmogorov Complexity

1. If X is random, then
K(X | n)~n.
2. If X is half-random, then
K(X [ n)~n/2.
3. It X is far from random, then

K(X [ n)~ K(n) ~ logn.




Random and Non-random

Definition

A set X € 2¥ is ML-random if there exists a constant ¢ € w

such that
KX |n)>n-—c

for every n.
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FIGURE 3.3. Complexity oscillations of a typical random sequence w

From L1 and Vitany1 (2008) p.224







Initial Segment Complexity




Kolmogorov Complexity

The Kolmogorov complexity K of a string o is defined by
K(o) =min{|7| : U(r) =0}

where U is the prefix-free universal Turing machine.

In other words, K (o) is the length of shortest programs that

produces o.




For each string o € 2<%, we have

K(o) < lo| + K(lo|) +O(1).

No set X € 2% satisfies with

KX |[n)>n+ K(n)—0(1).

The class of the sets satistying
K(X |n)>n—0(1)

has the measure 1. Such a set is called a MIL-random set.







Theorem (Ample Excess Lemma; Miller and Yu 2008)
A set X € 2% is ML-random if and only if

Z 2n—K(X 1) = Go

Corollary
Let X be a ML-random set. Then,

K(X n)>n+K*(n)—0(1).

An important theorem with many applications!!
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Schnorr Randomness

A machine is a partial computable function M :C 2<% —

2<% The measure of a machine is

Oy = Z 2yl

ocedom (M)

A machine with a computable measure is called a com-
putable measure machine. A set X is called Schnorr random
if

for every computable measure machine.
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(Juestion

Does a Schnorr version of
Ample Excess LLemma hold?




A variant of Omega

Let -
Wi Z p @)

Recall that {1y is ML-random when U is a prefix-free uni-
versal Turing machine. Chaitin has observed QU is also M L-

random.

If M is a computable measure machine (which means that

(2 is computable), then Qs is also computable.
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Extended Ample Excess Lemma

Lemma (M.)
For a machine M, let fp; : 2 — R be the function such
that

fam(X) = Z e S
n=0

Then, we have

/fM(X) dp = QM-

In particular, if M is a computable measure machine, fp; is

a Schnorr integral test.
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Recall that

O

far(X) = Yoz Rxn)

n=0

Then

n=>0

P Z Z 2n—KM(J) .9

n=0oc&2™

Z 2—KM(0)

—QO
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Proposition (M.)

Let X be a Schnorr random set. For every computab.

sure machine M, there exists a uniformly computa

sure machine N such that

Ky(X Tn)>n+ Kyx(n) —O(1).

€ INECa-

D]

€ IICa-
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Lemma (M.-Rute 2013)

Let t be a Schnorr integral test. Then there is a sequence

{h,} of uniformly computable total functions h, : 2* —
0, 00) such that

1. h, <t everywhere,

2. if X is Schnorr random, then there is some n such
that h,(X) = t(X).
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Theorem (Miller and Yu 2008)
X®Z is ML-random if K(X [ (Z [ n)) > (Z [ n)+n—0(1).

Theorem (M.)
X @& Z is Schnorr random iff Ky (X [ (Z | n)) > (Z |

n)+n — O(1) for every computable measure machine M.
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Theorem (Miller and Yu 2008)
Let Z be ML-random. The following are equivalent.

1. X ® Z 1s ML-rand

OI11.

2. (X In)+ K(X

Theorem (M.)

'n) > 2n — 0O(1).

Let Z be Schnorr random. The following are equivalent.

1. X & Z is Schnorr-random.
2. On(X T n)+ Ky(X | n) > 2n — O(1) for every

computable measure machine M and every decidable

machine V.
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B The results by Miller and Yu (2008) was used to
show the relation between K, C and vL-

reducibility.

B Similarly, the results presented here provide its
Schnorr version; the relation between Schnorr,

dm (decidable machine) and vL.S-reducibility:




Theorem (Miller 2009)
A set X € 2% is 2-random if and only if

K(X [n)>n+ K(n)—O(1)

for infinitely many n.

Theorem (M.)

For a computable measure machine M, there exists a com-
putable measure machine /N such that, for every Schnorr

random set X,
Ky(X Tn)>n+ Ky(n) —O(1)

for infinitely many n.
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Summary

B We looked at initial segment complexity of Schnorr
random set.

® 'T'his requires uniform relativization and computable
analysis.

B More relation with truth-table reduction.
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