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Abstract Some measures of randomness have been introduced for Martin-
Löf randomness such as K-reducibility, C-reducibility and vL-reducibility. In
this paper we study Schnorr-randomness versions of these reducibilities. In
particular, we characterize the computably-traceable reducibility via relative
Schnorr randomness, which was asked in Nies’ book [22, Problem 8.4.22]. We
also show that Schnorr reducibility implies uniform-Schnorr-randomness ver-
sion of vL-reducibility, which is the Schnorr-randomness version of the result
that K-reducibility implies vL-reducibility.
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1 Introduction

1.1 K-reducibility as a measure of randomness

The theory of algorithmic randomness clarifies the meaning of randomness of
infinite binary sequences from the computability point of view. For instance,
a set X ∈ 2ω is ML-random if and only if K(X ↾ n) > n − O(1) where K is
the prefix-free Kolmogorov complexity. Roughly saying, a sequence is random
if the complexities of the initial segments of the sequence is high.

The main theme of this paper is to understand the assertion that a sequence
is “more random” than another sequence. By the above result, it is natural to
define it via the complexities of the initial segments. One such partial order is
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K-reducibility defined by X ≤K Y if and only if K(X ↾ n) ≤ K(Y ↾ n)+O(1).
We can similarly C-reducibility where C is the plain Kolmogorov complexity.

1.2 LR-reducibility

One direction to analyse K-reducibility is the one via lowness. The researchers
have studied the class of the sets X satisfying X ≤K ∅. Such a set is called K-
trivial. Surprisingly, this class has a characterization via relative randomness.
A set X is called low for ML-randomness if each ML-random is ML-random
relative to X. The intuition behind this is that the set can not derandomize
any random set. In fact, a set is K-trivial if and only if it is low for ML-
randomness [21]. This result says that being far from random is equivalent to
computationally weakness. This is an interesting relation between the theory
of randomness and computability theory.

Nies [21] introduced low-for-random reduciblity (LR-reduciblity), which is
defined by X ≤LR Y if and only if every ML-random set relative to Y is ML-
random relative to X. We also consider LK-reducibility defined by X ≤LK Y
if and only if KY (n) ≤ KX(n) + O(1). In particular, a set is called low for
K if X ≤LK ∅. Nies [21] also showed that lowness for ML-randomness is
equivalent to lowness for K. Kjos-Hanssen et al. [12] strengthned this result
to that LK-reducibility is actually equivalent to LR-reducibility.

1.3 Van Lambalgen reducibility

A very useful tool to analyse K-reducibility is van Lambalgen reducibility,
which was introduced in Miller and Yu [16]. We say that X ≤vL Y if and only
if, for every ML-random Z, if X⊕Z is ML-random, then Y ⊕Z is ML-random.
Notice that this ia a measure of randomness for ML-random sets. This is (as the
name indicates) inspired by van Lambalgen’s theorem, which says that X⊕Y
is ML-random if and only if X is ML-random and Y is ML-random relative to
X. Notice that vL-reducibility is the inverse of LR-reducibility for ML-random
sets by van Lambalgen’s theorem. Many properties are easy to prove for vL-
reducibility because of close connection to Turing reducibility. Furthermore,
Miller and Yu [16] showed that K-reducibility implies vL-reducibility, and
C-reducibility implies vL-reducibility. By this result, we can deduce many
properties for K-reducibilities and the interaction with Turing reducibility.

1.4 Schnorr-randomness versions

As already stated, the main theme of this paper is to understand a measure of
randomness (more random than another), but, not in the sense of Martin-Löf
randomness but in the sense of Schnorr randomness.

Downey and Griffiths [6] showed that X ∈ 2ω is Schnorr random if and
only if KM (X ↾ n) > n − O(1) for every computable measure machine M .
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Hence, the natural measure of randomness in the sense of Schnorr randomness
is Schnorr reducibility, which is defined by X ≤Sch Y if for every computable
measure machine M there is a computable measure machine N such that
KN (X ↾ n) ≤ KM (Y ↾ n) +O(1).

Here, natural questions arise:

(A) What is a Schnorr-randomness version of C-reducibility?
(B) What is a Schnorr-randomness version of LR-reducibility?
(C) Is Schnorr-randomness version of vL-reducibility useful to analyse Schnorr

reduciblity?

For an answer to Question (A), we claim in Section 3.2 that total machines
play a part of plain machines in the study of Schnorr randomness.

On Question (B), unlike the case of ML-randomness, Schnorr triviality
is not equivalent to lowness for Schnorr randomness. Franklin and Stephan
[9], instead, showed that Schnorr triviality is equivalent to truth-table version
of lowness for Schnorr randomness. Miyabe [18] noted that we can see this
as a different way to relativize and Miyabe and Rute [20] call this uniform
relativization.

With the usual relativization, the following are equivalent for a set A:

(i) A is low for Schnorr randomness,
(ii) A is low for Schnorr tests,
(iii) A is computably traceable,
(iv) A is low for computable measure machines,

which is shown by Terwijn and Zambella [25], Kjos-Hanssen et al. [13] and
Downey et al. [5]. Computable traceability is a notion inspired by a one in
set theory. It is an open question whether K-triviality has a characterization
via traceability. Notice that the equivalence between (i) and (iv) is a Schnorr-
randomness version of X ≤LR ∅ ⇐⇒ X ≤LK ∅. Thus, it is a natural question
whether the reducibility versions are also equivalent. In particular, Nies [22,
Problem 8.4.22] asked whether the reducibility versions of (i) and (iii) are
equivalent. We give the affirmative answer to this question in Section 4.

With uniform relativization, Miyabe [17] showed the equivalence among
the reducibility versions of lowness for uniform Schnorr randomness, lowness
for uniform Schnorr tests and lowness for uniformly computable measure ma-
chines.

We also give characterizations of some reducibilities via integral tests in
Section 4.

On Question (C), the key in defining vL-reducibility is van Lambalgen’s
theorem. For Schnorr randomness, van Lambalgen’s theorem does not hold
with the usual relativization while it does hold with uniform relativiation [18,
20]. By this result, we define a Schnorr-randomness version of vL-reducibility
and study the relation with Schnorr reducibility in Section 6. In particular,
we show that Schnorr reducibility implies the Schnorr-randomness version of
vL-reducibility.

In Section 5, we strengthen the Ample Excess Lemma, which is a key
lemma in the study of vL-reducibility. This result will be used in the next
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section, Section 6. We also study the property of maximality up to a constant
infinitely often for Schnorr randomness with independent interest.

2 Preliminaries

In this section, we fix notations and review definitions and results we use in
later sections. This includes the results on the reducibilities relating to ML-
randomness and some useful tools used to study Schnorr randomness such
as some results on computable analysis, uniform relativization and Schnorr
integral tests.

2.1 Notation

A string σ ∈ 2<ω sometimes denotes the natural number n such that σ is
the n-th lexicographical order. For instance, the empty string represents the
natural number 0 and the string 0 represents the natural number 1. For the
avoidance of confusion, we sometimes use the notation σ. For instance, 1 = 2.
For a string σ with length n, we have 2n − 1 ≤ σ ≤ 2n+1 − 2.

2.2 ML and Schnorr randomness

For background on the theory of algorithmic randomness, we refer to Downey
and Hirschfeldt [7] and Nies [22].

We consider Cantor space 2ω with the uniform measure µ.
AML-test is a sequence of uniformly c.e. open sets {Un} such that µ(Un) ≤

2−n for every n. A set X ∈ 2ω is ML-random if X ̸∈
∩

n Un for every ML-test
{Un}. There is a universal ML-test {Vn} in the sense that X is ML-random if
and only if X ̸∈

∩
n Vn.

A Schnorr test is a ML-test {Un} such that µ(Un) is uniformly computable.
A set X is Schnorr random if X ̸∈

∩
n Un for every Schnorr test {Un}. It is

known that there is no universal Schnorr test.
A Schnorr Solovay test is a sequence of uniformly c.e. open sets {Un} such

that
∑

n µ(Un) is a computable real. A set X is Schnorr random if and only
if, for every Schnorr Solovay test, X ∈ Un for at most finitely many n.

The Levin-Schnorr theorem says that a set X is ML-random if and only
if K(X ↾ n) > n − O(1) where K is the universal prefix-free Kolmogorov
complexity and X ↾ n denotes the initial segment of X with the length n. For
a prefix-free machine M , the measure of M is

ΩM =
∑

σ∈dom(M)

2−|σ|.

The measure of M is left-c.e. in general. The machine is called a computable
measure machine (c.m.m. for short) if the measure of M is computable. A



Reducibilities relating to Schnorr randomness 5

set X is Schnorr random if and only if KM (X ↾ n) > n − O(1) for every
computable measure machine.

2.3 Computable analysis

For background on computable analysis, see [26,3]. An integral test is a lower

semicomputable function t : 2ω → R+
with

∫
t dµ < ∞. A set X is ML-

random if and only if t(X) < ∞ for every integral test. A Schnorr integral

test is a lower semicomputable function t : 2ω → R+
such that

∫
t dµ is a

computable real. A set X is Schnorr random if and only if t(X) < ∞ for every
Schnorr integral test [19, Theorem 3.5].

2.4 Uniform relativization

For details of uniform relativization, see [20] or [11]. Uniform relativization
is a relativization different from the usual way. For some X ∈ 2ω, Schnorr
randomness relative to X is different from Schnorr randomness uniformlly
relative to X. The following is one characterization of Schnorr randomness
with uniform relativization. A uniformly computable measure machine is an
oracle prefix-free machine M such that the function X 7→ ΩMX is computable.
A set X is Schnorr random uniformly relative to Y if and only if KMY (X ↾
n) > n − O(1) for every uniformly computable measure machine M ([18,
Theorem 4.14] and [17, Theorem 2.4]).

With uniform relativization, lowness notions behave well for Schnorr ran-
domness [17]. Furthermore, van Lambalgen’s theorem for Schnorr randomness
holds as follows.

Theorem 1 (Miyabe [18], Miyabe and Rute [20]) A set X⊕Y is Schnorr
random if and only if X is Schnorr random and Y is Schnorr random uni-
formly relative to X.

Note that van Lambalgen’s theorem for Schnorr randomness with the usual
relativization does not hold [14,27]. See also [22, Remark 3.5.22].

3 Some kinds of machines

In this section, we show some results on some kinds of machines that are used
to characterize Schnorr randomness. These facts are often used throughout
the paper.
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3.1 The variant of halting probability

For a universal prefix-free machine U , the value ΩU =
∑

σ∈dom(U) 2
−|σ| is

called halting probability and has studied extensively (see [7, Chapter 9]).

Chaitin [4] also defined Ω̂ =
∑

σ∈2<ω 2−K(σ). Notice that this value de-
pends on the universal Turing machine used to define K. Extending this defi-
nition, we use the following notation.

Definition 1 For a prefix-free machine M , the value Ω̂M is defined by

Ω̂M =
∑

{2−KM (σ) : σ ∈ 2<ω, KM (σ) < ∞}.

The machine M is not universal in general, thus KM (σ) may be infinity.
For simplicity, we sometimes write 2−KM (σ) including the case of KM (σ) = ∞.

Notice that Ω̂M is a left-c.e. real for every machine M . If U is a prefix-free
universal machine, then Ω̂U is ML-random [7, p.229].

We will show that, if M is a computable measure machine, then Ω̂M is also
computable. To state a stronger statement, we recall Solovay reducibility. The
following is not the original definition by Solovay [24] but is a characterization
by [8]. Let α and β be left-c.e. reals. Then, a real α is Solovay reducible to a
real β (written α ≤S β) if and only if there are a constant d and a left-c.e.
real γ such that dβ = α+ γ.

Proposition 1 Let M be a prefix-free machine. Then,

Ω̂M ≤S ΩM .

In particular, if M is a computable measure machine, then Ω̂M is computable.

Proof For each τ ∈ 2<ω, let

ατ =
∑

{2−|σ| : M(σ) = τ} and βτ = 2−K(τ).

Then, ατ and βτ are left-c.e. reals uniformly in τ . Furthermore, γτ = ατ − βτ

is also a left-c.e. real uniformly in τ . Notice that

ΩM =
∑

τ∈2<ω

ατ =
∑

τ∈2<ω

(βτ + γτ ) = Ω̂M +
∑

τ∈2<ω

γτ .

Thus, Ω̂M ≤S ΩM . ⊓⊔

The relation ΩM ≤S Ω̂M does not hold in general. Let A be a c.e. set of
natural numbers such that

∑
n∈A 2−n is not computable and 0 ∈ A. We define

a prefix-free machine M by

M(σ) =

{
ϵ if σ = 0n1 for n ∈ A

↑ otherwise

where ϵ denotes the empty string. Then, ΩM =
∑

n∈A 2−(n+1) is not com-

putable while Ω̂M = 2−K(ϵ) = 1/2 is computable.
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3.2 Total machines

ML-randomness has a characterization via prefix-free Kolmogorov complexity.
Its Schnorr-randomness version is the characterization via computable measure
machines. ML-randomness also has a characterization by plain Kolmogorov
complexity as follows.

Theorem 2 (Miller and Yu [16]) The following are equivalent for a set
X ∈ 2ω:

(i) X is ML-random.
(ii) C(X ↾ n) ≥ n−K(n)−O(1).

Then, what is the counterpart of this result in the study of Schnorr random-
ness? Recall that a machine is called decidable if the domain of the machine is
computable, and Bienvenu and Merkle [1] showed that a set X is Schnorr ran-
dom if and only if for all decidable prefix-free machines M and all computable
orders g, we have KM (X ↾ n) ≥ n− g(n)−O(1). Notice that the inequalities
are similar. Thus, decidable machines are a first candidate. Notice that decid-
able machines without the requirement of prefix-freeness are essentially the
same as total machines. A machine is called total if the domain of the machine
is total, and total machines are used to characterize Schnorr triviality in Hölzl
and Merkle [10, Theorem 26]. In fact, we have a characterization of Schnorr
randomness via total machines.

Theorem 3 The following are equivalent for a set X:

(i) X is Schnorr random.
(ii) For every total machine N and every computable order g, we have

CN (X ↾ g(n)) ≥ g(n)− n−O(1).

(iii) For every computable measure machine M and every total machine N , we
have

CN (X ↾ n) ≥ n−KM (n)−O(1).

Remark 1 We can replace “total machine” in the statement with “decidable
machine”.

Proof (i)⇒(iii) Let M be a computable measure machine and N be a total
machine. For k ∈ ω, let

Vk,n = {σ ∈ 2n : CN (σ) < n−KM (n)− k}.

Each σ ∈ Vk,n should have a string τ such that |τ | < n − KM (n) − k and
N(τσ) = σ. Since the number of strings with the length less than m is 2m − 1,
we have

#Vk,n ≤ 2n−KM (n)−k.

Let

Gk = {Z ∈ 2ω : CN (Z ↾ n) < n−KM (n)− k for some n}.
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Notice that Gk =
∪

n[[Vk,n]]. We claim that {Gk} is a Schnorr test. Clearly, Gk

is a uniformly c.e. open set. The measure of Gk is

µ(Gk) ≤
∑
n

2−n · 2n−KM (n)−k ≤ 2−k.

Since M and N are decidable machines, the functions CN and KM are com-
putable and Vk,n is uniformly computable. Then,

∪
n≤N [[Vk,n]] is uniformly

computable. Furthermore, we have

µ

( ∪
n>N

[[Vk,n]]

)
≤
∑
n>N

2−KM (n)−k.

Since M is a computable measure machine, the value
∑

n 2
−KM (n) is a com-

putable real by Proposition 1. Thus, Gk is uniformly computable. Hence, {Gk}
is a Schnorr test.

If X is a Schnorr random, then Z passes the test {Gk} and CN (X ↾ n) ≥
n−KM (n)−O(1).

(iii)⇒(ii) Suppose that (ii) does not hold. Let N and g be the pair of the
witness. We define a computable measure machine M by

M(0n1) = g(n).

Then, KM (g(n)) = n+ 1. Hence, for every k there exists n such that

CN (X ↾ g(n)) < g(n)− n− k = g(n)−KM (g(n))− (k − 1).

Thus, (iii) does not hold. ⊓⊔

Our proof of (ii)⇒(i) uses the following characterization of Schnorr ran-
domness.

Lemma 1 The following are equivalent for a set X:

(i) X is Schnorr random,
(ii) For every computable order g and every computable sequence {Sn} of sets

of strings such that Sn ⊆ 2g(n) and #Sn = 2g(n)−n, we have X ↾ g(n) ∈ Sn

for at most finitely many n.

Proof (i)⇒(ii) This is because {[[Sn]]} is a Schnorr Solovay test.

(ii)⇒(i) Suppose that X is not Schnorr random. Then there exists a Schnorr
Solovay test {Gn} such thatX ∈ Gn for infinitely many n. We can assume that
Gn = [σn] for a computable sequence {σn} of strings without loss of generality.
Let α =

∑
n 2

−|σn|. Then, α is a computable real. Hence, there exists a com-
putable order h such that

∑
n>h(k) 2

−|σn| ≤ 2−k. Let g(k) be the maximum of

the lengths σn with h(k) < n ≤ h(k + 1). Then, there exists a computable se-

quence {Sk} of sets of strings such that Sk ⊆ 2g(k) and
∪h(k+1)

n=h(k)+1 σn ⊆ [[Sk]].

Since
∑h(k+1)

n=h(k)+1 2
−|σn| ≤ 2−k, we can assume that #Sn = 2g(n)−n. Since

X ∈ [σn] for infinitely many n, we have X ↾ g(n) ∈ Sn for infinitely many
n. ⊓⊔
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Proof (of (ii)⇒(i) of Theorem 3) Suppose that X is not Schnorr random.
Then, there exist a computable order g and a computable sequence {Sn} of
sets of strings such that Sn ⊆ 2g(n), #Sn = 2g(n)−2n and X ↾ g(n) ∈ Sn for
infinitely many n. We can assume that h(n) = g(n)− 2n is strictly increasing.

We define a total machine N as follows: Assume that N receives σ as
an input. If |σ| = g(n) − 2n for some n, let k ∈ ω be such that σ is the
k-th string in 2g(n)−2n. Then the machine N outputs k-th string in Sn. If
no n satisfy with |σ| = g(n) − 2n, then N outputs the empty string. Then,
CN (X ↾ g(n)) ≤ g(n)− 2n for infinitely many n. ⊓⊔

4 Reducibilities relating to lowness notions

In this section we characterize some reducibilities.

4.1 Computable traceable reducibility

Many traceability notions have been considered in the literature [10]. A trace is
a sequence {Tn} of sets. A trace is a trace for a partial function f , if f(n) ∈ Tn

holds for all n such that f(n) is defined. Nies [22, Excercise 8.4.21] defined the
following reducibility.

Definition 2 Let A,B ∈ 2ω. We say that A ≤CT B if there is a computable
order h such that for each f ≤T A there exists p ≤T B such that for all n we
have f(n) ∈ Dp(n) and |Dp(n)| ≤ h(n).

Here, Dk is the k-th finite set usually of strings. In other words, A ≤CT B
if there is a computable order h such that every A-computable function is
traced by a h-bounded B-computable trace.

As is in the excercise, ≤CT is transitive. Clearly, ≤CT is reflexive. It is easy
to see that ≤T implies ≤CT .

Remark 2 Notice that A ≤CT ∅ if and only if A is computably traceable.
Terwijn and Zambella [25] observed that c.e. traceability is equivalent to c.e.
traceability via every computable order. As is in Hölzl and Merkle [10, Remark
4], many variants have this property. The reducibility ≤CT also has this prop-
erty, that is, A ≤CT B if and only if every A-computable function is traced by
a B-computable trace via every computable order.

Recall that A is computably traceable if and only if A is low for Schnorr
randomness [25,13]. We strengthen this equivalence as follows, answering the
question of Nies [22, Problem 8.4.22] affirmatively.

Theorem 4 The following are equivalent for A,B ∈ 2ω:

(i) A ≤CT B,
(ii) Every Schnorr random set relative to B is Schnorr random relative to A.
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4.1.1 The proof of (i)⇒(ii)

We first prove the easy direction, (i)⇒(ii), by giving the following lemma.

Lemma 2 Suppose that A ≤CT B. Then, every A-Schnorr test is covered by
a B-Schnorr test.

We use the standard method to prove the implication from traceability to
a lowness notions such as Theorem 2 in [25]. The essential idea is that we
construct an open set which is a union of open sets with all possible oracles.
By the property of traceability, possible oracles are few and the measure of
the union can be small enough.

Proof Let {Un} be an A-Schnorr test. Then, there exists an A-computable
function f : ω → (2<ω)<ω such that∪

m

[[f(⟨n,m⟩)]] = Un and µ([[f(⟨n,m⟩)]]) ≤ 2−n−m−1.

Then, there exists a B-computable function p such that for all n we have
f(⟨n,m⟩) ∈ Dp(⟨n,m⟩) and |Dp(⟨n,m⟩)| ≤ n+m by Remark 2. We assume that,
for each S ∈ Dp(⟨n,m⟩), we have µ([[S]]) ≤ 2−n−m−1. For each n, we define an
open set Vn by

Vn =
∪
m∈ω

∪
S∈Dp(⟨2n+c,m⟩)

[[S]]

where c will be defined later. Then, {Vn} is a sequence of uniformly B-c.e. open
sets. For each S ∈ Dp(⟨n,m⟩), the measure µ([[S]]) is computable. Furthermore,

µ(
∪

m≥M

∪
S∈Dp(⟨2n+c,m⟩)

[[S]]) ≤
∑

m≥M

2−2n−c−m−1 × (n+m).

Thus, the measure µ(Vn) is uniformly computable. By taking c sufficiently
large, we have µ(Vn) ≤ 2−n. Hence, g is a B-Schnorr test.

Finally, we cliam that U2n+c ⊆ Vn for all n. Suppose Z ∈ U2n+c. Then there
exists m such that Z ∈ [[f(⟨2n+ c,m⟩)]]. Thus, f(⟨2n+ c,m⟩) ∈ Dp(⟨2n+c,m⟩).
Hence Z ∈ Vn. ⊓⊔

Next we give a proof of the other direction, (ii)⇒(i) of Theorem 4 by giving
a series of lemmas.

4.1.2 The open covering method

First, we use the open covering method developed in [2]. This method is very
powerful and has been used to show some similar results such as [17,11].

An open set U ⊆ 2ω is bounded if µ(U) < 1. We say that an open set U is an
A-Schnorr open set if U is A-c.e. open and the measure µ(U) is A-computable.
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Lemma 3 Suppose that every Schnorr random set relative to B is Schnorr
random relative to A. Then, every bounded A-Schnorr open set is covered by
a bounded B-Schnorr open set.

Our proof of this lemma uses the following notation and the proposition.
For a set W ⊆ 2<ω, we denote by Wω the set of all sets of the form σ0σ1σ2 . . .
such that σi ∈ W for every i ∈ ω. A test is a non-increasing sequence {Un} of
open sets such that

∩
n Un has measure 0.

Proposition 2 (Bienvenu and Miller [2, Theorem 9]) The following are
equivalent for a set X ∈ 2ω:

(i) X is not Schnorr random.
(ii) X ∈ Uω for some bounded Schnorr prefix-free subset U of 2<ω.

The following is a rewritten version of Lemma 12 and Proposition 13 of
Bienvenu and Miller [2].

Proposition 3 (Bienvenu and Miller [2]) Let C be the class of bounded
Schnorr open sets and T e be the family of Schnorr tests. Let W be a prefix-free
subset of 2<ω such that [[W ]] cannot be covered by any set U ∈ C. Then there
exists X ∈ Wω that passes all tests T e.

Proof (of Lemma 3) We show the contrapositive. Let C be the class of B-
bounded Schnorr open sets and T e be the family of B-Schnorr tests. Let V
be a bounded A-Schnorr open set that is not covered by any bounded B-
Schnorr open set. Let W be a A-c.e. prefix-free subset such that [[W ]] = V . By
relativizing Proposition 3, there exists Z ∈ Wω that passes all test T e. Then,
Z is B-Schnorr random, but not A-Schnorr random by relativizing Proposition
2. ⊓⊔

4.1.3 Summable functions

Next we show a property of summable functions from the open covering prop-
erty with the method used in [12].

A function g : ω → R+ is called summable if
∑

n g(n) < ∞.

Lemma 4 Suppose that every bounded A-Schnorr open set is covered by a
bounded B-Schnorr open set. For every A-computable function f : ω → R+

such that
∑

n f(n) is A-computable, there exists a B-left-c.e. function g : ω →
R+ such that

∑
n f(n) is B-left-c.e. and f(n) ≤ g(n) for all n.

The proof is almost identical to that of Proposition 5.1 in the revised
version of [2] in arXiv. See also Section 5.2 in [17].
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4.1.4 KC Theorem

Finally, we show ≤CT from the property of summable functions via the KC
Theorem.

Lemma 5 Suppose that, for every A-left-c.e. function f : ω → R+ such that∑
n f(n) is A-computable, there exists a B-left-c.e. function g : ω → R+ such

that
∑

n f(n) is B-computable and f(n) ≤ g(n) for all n. Then, for every A-
computable measure machine M , there exists a B-computable measure machine
N such that KN (σ) ≤ KM (σ) +O(1).

The proof is almost identical to that of Proposition 27 in [2]. See also
Section 5.3 in [17].

Lemma 6 Suppose that, for every A-computable measure machine M , there
exists a B-computable measure machine N such that KN (σ) ≤ KM (σ)+O(1).
Then, we have A ≤CT B.

Proof Let f ≤T A. We can assume that f is a function from ω to 2<ω. Let
M be the A-c.m.m. defined by M(0n1) = f(n). Then there exists a B-c.m.m.
N and a constant c such that KN (σ) = KM (σ) + c for all σ. Consider the
function p such that

Dp(n) = {N(τ) : |τ | ≤ n+ c+ 1}.

Since N is a B-c.m.m., the domain of N is computable from B, thus so is
the set Dp(n) as a finite set and we have p ≤T B. Furthermore, for each n,
f(n) = M(0n1) and

KN (f(n)) ≤ KM (f(n)) + c ≤ n+ c+ 1.

Thus, f(n) ∈ Dp(n). Finally, notice that |Dp(n)| ≤ 2n+c+2. ⊓⊔

Now, we have finished the proof of Theorem 4.

4.2 Characterizations via integral tests

Summable functions are very similar to integral tests. Here, we characterize
some reducibilities via integral tests.

We say that a function f : 2ω → R+
is dominated by a function g : 2ω → R+

if f(X) ≤ g(X) for every X ∈ 2ω.

Theorem 5 A ≤CT B if and only if every A-Schnorr integral test is domi-
nated by a B-Schnorr integral test.
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Proof (The “if” direction)
Suppose that every A-Schnorr integral test is dominated by a B-Schnorr

integral test. Let Z be a set that is not Schnorr random relative to A. Then,
there exists an A Schnorr integral test f such that f(Z) = ∞. By the as-
sumption, there exists a B-Schnorr integral test g that dominates f . Then,
g(Z) = ∞ and Z is not Schnorr random relative to B. Since Z is arbitrary,
every Schnorr random set relative to B is Schnorr random relative to A. By
Theorem 4, we have A ≤CT B.

(The “only if” direction)
Suppose that A ≤CT B. Let f be an A-Schnorr integral test. Then, f can

be written as

f =
∑
n

pn1[σn]

where pn is an A-computable sequence of positive rationals and σn is an A-
computable sequence of strings. Let

f̂(k) =
∑

{pn : n ∈ ω, σn = k}.

Then, f̂ is an A-left c.e. function such that
∑

n f̂(n) is A-computable. Thus,
there exists a B-left-c.e. function ĝ : ω → R+ such that

∑
n ĝ(n) is B-

computable. Let

g =
∑
k

ĝ(k)1s(k)

where s(k) is the k-th binary string in lexicographical order. Then, g is an
B-integral test and f ≤ g. ⊓⊔

We can prove the following theorem by a similar way.

Theorem 6 For sets A,B ∈ 2ω, A ≤LR B if and only if every A-integral test
is dominated by a B-integral test.

For the proof, notice that Theorem 22 in [2] can be relativized.

5 Extended Ample Excess Lemma

It is well known that a set A ∈ 2ω is ML-random if and only if K(A ↾ n) >
n − O(1). The following Ample Excess Lemma says that K(A ↾ n) is larger
than n if A is ML-random.

Theorem 7 (Miller and Yu [16]) A set A ∈ 2ω is ML-random if and only
if
∑

n 2
n−K(A↾n) < ∞.

We would like to have a Schnorr-randomness version of this result. We
start from the following observation.



14 Kenshi Miyabe

Theorem 8 (Extended Ample Excess Lemma) For a machine M , let
fM : 2ω → R be a function such that

fM (X) =
∞∑

n=0

2n−KM (X↾n).

Then, we have ∫
fM (X) dµ = Ω̂M .

Proof This is because∫
fM (X) dµ =

∫ ∞∑
n=0

2n−KM (X↾n) dµ =

∞∑
n=0

∫
2n−KM (X↾n) dµ

=
∞∑

n=0

∑
σ∈2n

2n−KM (σ) · 2−n =
∑

σ∈2<ω

2−KM (σ) = Ω̂M .

⊓⊔

Notice that M can be a universal prefix-free machine and a computable
measure machine. Since fM is a lower semicomputable function, fM is an
integral test. Thus, Theorem 8 implies the “only if” direction of Theorem 7.
Recall that the “if” direction of Theorem 7 follows from the Levin-Schnorr
theorem.

In exactly the same way, we obtain a Schnorr-randomness version.

Corollary 1 A set A ∈ 2ω is Schnorr random if and only if
∑

n 2
n−KM (A↾n) <

∞ for every computable measure machine M .

Proof If A is not Schnorr random, then there is a computable measure machine
M such that KM (A ↾ n) < n for infintely many n, thus

∑
n 2

n−KM (A↾n) = ∞.
Suppose that A is Schnorr random. Let M be a computable measure ma-

chine. Then, fM is Schnorr integral test. Hence, fM (A) < ∞. ⊓⊔

There are many interesting theorems the proof of which uses the Ample
Excess Lemma. One of them is the following characterization of 2-randomness
via prefix-free Kolmogorov complexity.

Theorem 9 ([15]) A set A ∈ 2ω is 2-random (ML-random relative to ∅′) if
and only if K(A ↾ n) ≥ n+K(n)−O(1) for infinitely many n.

The proof of the “only if” direction goes like this. A corollary of the Ample
Excess Lemma says that, if A is ML-random, then K(A ↾ n) ≥ n+KA(n)−
O(1) [16]. Nies, Stephan and Terwijn [23] and Miller [15] showed that, for a
ML-random set A, A is 2-random if and only if A is weakly low for K, which
means that K(n) ≤ KA(n) + O(1) for infinitely many n. Thus, the result
follows.

Now we consider the Schnorr-randomness version of this result. The situ-
ation is quite different from the case of ML-randomness.
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Proposition 4 Let A be a Schnorr random set. For every computable measure
machine M , there exists a uniformly computable measure machine N such that

KM (A ↾ n) ≥ n+KNA(n)−O(1).

First notice that N depends on M in the statement. Such dependency
does not occur in the case of ML-randomness because of universality, but this
happens for Schnorr randomness because of lack of universality.

The proof is not simple because of the uniformity. One may try the follow-
ing proof idea first. Let d ∈ ω be such that fM (A) < 2d. Then construct a KC
set to induce a uniformly computable measure machine N from M and d with
the desired property. We wish that the following set is the KC set:

SX = {(−n+KM (X ↾ n) + d, n) : n ∈ ω}.

The weight w(X) of this set is

w(X) =
∑
n

2n−KM (X↾n)−d = 2−dfM (X).

Here, w(A) ≤ 1, but the inequality w(X) ≤ 1 may not be true for some X.
Thus, we should be careful when enumerating the pairs.

The key lemma of the proof is the following.

Lemma 7 (Lemma 2.1 in [20]) Let t be a Schnorr integral test. Then,
there is a uniformly computable sequence {hn} of total computable functions
hn : 2ω → [0,∞) such that hn ≤ t everywhere and if A is Schnorr random,
then there is some n such that hn(A) = t(A).

Proof (of Proposition 4) Let d ∈ ω be such that fM (A) < 2d. By the Extended
Ample Excess Lemma (Lemma 8), 2−dfM is a Schnorr integral test. Thus, by
Lemma 7, there is a total computable function h0 : 2ω → [0,∞) such that
h0 ≤ 2−dfM everywhere and h0(A) = 2−dfM (A).

Let h = min{h0, 1}. Then, h ≤ 1 everywhere, h is a total computable
function, h ≤ 2−dfM everywhere and h(A) = 2−dfM (A).

With using this h, we construct a KC set SX as follows. At stage n, we
construct SX

n ⊇ SX
n−1. By wn(X), we denote the weight of SX

n . We set SX =
limn S

X
n . Let SX

−1 be the empty set. Thus, w−1(X) = 0. For each n, exactly
one of the following holds:

h(X) > wn−1(X) + 2n−KM (X↾n)−d (1)

or

h(X) < wn−1(X) + 2n−KM (X↾n)−d + 2n+1−KM (X↾(n+1))−d. (2)

If (1) holds, then set SX
n = SX

n−1 ∪ (−n+KM (X ↾ n)+ d, n). If (2), then stop
enumerating and make SX satisfy w(X) = h(X).
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We claim that w(X) = h(X) for every X ∈ 2ω. If h(X) = 2−dfM (X), then
(1) always holds and w(X) = 2−dfM (X) = h(X). If h(X) < 2−dfM (X), then
(2) holds for some n and w(X) = h(X).

Let N be the uniformly computable measure machine constructed from the
KC set S via the KC Theorem. By construction,KNA(n) ≤ −n+KM (A ↾ n)+d
for every n. ⊓⊔

Since Schnorr-randomness version of 2-randomness is not clear, we consider
a Schnorr-randomness version of weak lowness for K.

Definition 3 A set A is called weakly low for computable measure machines if,
for every uniformly computable measure machineM , there exists a computable
measure machine N such that

KN (n) ≤ KMA(n) +O(1)

for infinitely many n.

This class is, however, too large in the following sense.

Proposition 5 Every set is weakly low for computable measure machines.

Proof Let A be a set and M be a uniformly computable measure machine. Let

m(n) = min{KMX (k) : k ≥ n, X ∈ 2ω}.

Since M is a decidable machine, m is a computable function. Clearly, m is
non-decreasing. Consider the set W defined by

W = {(m(n), n) : 1 ≤ m(n) ̸= m(n+ 1)}.

Then, the weight ofW is computable and ≤ 1. Let N be a computable measure
machine constructed from this KC set. Then, for every (m(n), n) ∈ W , we have

KN (n) ≤ m(n) ≤ KMA(n).

Since W is infinite, the proposition follows. ⊓⊔

Corollary 2 Let A be a Schnorr random set. For every computable measure
machine M , there exists a computable measure machine N such that

KM (A ↾ n) ≥ n+KN (n)−O(1)

for infinitely many n.

Proof Let A be a Schnorr random set and M be a computable measure ma-
chine. By Proposition 4, there exists a uniformly computable measure machine
N such that KM (A ↾ n) ≥ n + KNA(n) − O(1). By the proposition above,
there exists a computable measure machine L such that KL(n) ≤ KNA(n) for
infinitely many n. Thus,

KM (A ↾ n) ≥ n+KL(n)−O(1)

for infinitely many n. ⊓⊔
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Now we consider the “if” direction of Theorem 9, which follows from a
result in Solovay [24] (Corollary 4.3.3 in [7]) and Theorem 2.8 in [23]. This
result says that, if A is not 2-random, limn(n +K(n) −K(A ↾ n)) = ∞. For
the case of computable measure machines, this property holds, again, for every
set.

Proposition 6 Let A be a set. Then for every computable measure machine
N , there exists a computable measure machine M such that

lim
n
(n+KN (n)−KM (A ↾ n)) = ∞.

Lemma 8 For every computable measure machine N , there exists a com-
putable measure machine L and a computable order f such that

KL(n) ≤ KN (n)− f(n).

Proof We identify the machine N with a computable list {⟨σn, τn⟩} of pairs
of strings. Since N is a decidable machine, we can assume that τn = n. Since
N is a computable measure machine, there exists a computable order g such
that

∑
n>g(k) 2

−|σn| < 2−k. Without loss of generality, we can assume that

g(k+1)∑
n=g(k)+1

2−|σn| = 2−k.

Take a computable order h such that
∑

k 2
h(k)−k is a computable real, which

is less than 2c where c ∈ ω. The sequence of pairs of strings

⟨c− h(k) + |σn|, n⟩

where h(k) < n ≤ h(k + 1) is a KC set because

∑
k

h(k+1)∑
n=h(k)+1

2−c+h(k)−|σn| = 2−c
∑
k

2h(k)−k.

Since the weight is computable, the machine L constructed by this KC set is
a computable measure machine. Furthermore,

KL(n) ≤ KN (n)− h(k) + c

if h(k) < n ≤ h(k + 1). ⊓⊔

Proof (of Proposition 6) Let N be a computable measure machine and L be
a computable measure machine constructed in the lemma above. We define a
machine M by M(σ0σ1) = σ1 if L(σ0) = n. Since L is a computable measure
machine, so is M . Furthermore, for any τ ∈ 2n, we have KM (τ) ≤ n+KL(n).
Thus, the proposition follows. ⊓⊔
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One may try to understand that Proposition 4 says that, for every Schnorr
random set, the complexities of its initial segments are infinitely often maxi-
mal and Proposition 6 says that, for every set, the complexities of its initial
segments can not be infinitely often maximal. These intepretations, however,
contradict with each other. This is because it is not clear what is “maximal
complexity” in the case of Schnorr randomness. Also notice that the order of
quantifiers of the propositions are different.

6 vLS-reducibility

In this section we study a Schnorr-randomness version of van Lambalgen re-
ducibility. Almost all proofs are very similar to corresponding results in [16],
but again we should be careful about the order of quantifiers.

6.1 The definition of vLS-reducibility

Miller and Yu [16] defined the following reducibility. We say that X is van
Lambalgen reducible to Y , or simply vL-reducible to Y , and write X ≤vL Y ,
if for all Z, if X ⊕ Z is ML-random, then Y ⊕ Z is ML-random.

We consider its Schnorr-randomness version.

Definition 4 We define X ≤vLS Y by the following statement: for all Z ∈ 2ω,
if X ⊕ Z is Schnorr random, then Y ⊕ Z is Schnorr random.

The least vL-degree is 0vL = {X : X is not ML-random}. Similarly, the
least vLS-degree is 0vLS = {X : X is not Schnorr random}.

Recall that ≤vL is the converse of ≤LR for Martin-Löf random sets. The
Schnorr-randomness version of ≤LR is ≤LUS defined in [17, after Theorem 5.1]
byX ≤LUS Y if and only if every set that is Schnorr random uniformly relative
to Y is Schnorr random uniformly relative to X. For Schnorr random sets X
and Y , we have X ≤vLS Y if and only if Y ≤LUS X, by van Lambalgen’s
Theorem for Schnorr randomness (Theorem 1).

The following facts are almost immediate.

Proposition 7 (i) There is no join in the vLS-degree.
(ii) If Y ≤tt X and Y is Schnorr random, then X ≤vLS Y .
(iii) There is no maximal vLS-degree.
(iv) There is no minimal Schnorr-random vLS-degree.

6.2 Schnorr reducibility implies vLS-reducibility

One interesting property of vL-reducibility is that ≤K implies ≤vL. This is
because a set X ⊕ Z is ML-random iff K(X ↾ (Z ↾ n)) ≥ (Z ↾ n) + n−O(1),
which is shown by Miller and Yu [16]. Similarly, Schnorr reducibility implies
vLS-reducibility.
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Definition 5 (Miller and Yu [16]) Given X = x0x1 · · · and Z = z0z1 · · · ,
let X⊕̂Z be

z0x0x1z1x2x3x4x5z2 · · · zn−1x2n−2 · · ·x2n+1−3zn · · · .

Theorem 10 A set X ⊕ Z ∈ 2ω is Schnorr random iff

KM (X ↾ (Z ↾ n)) ≥ (Z ↾ n) + n−O(1)

for every computable measure machine M .

The proof is just a modification of the correspoinding result in Miller and
Yu [16], but we need to be careful about the order of the quantifier.

Proof Assume that X ⊕ Z is Schnorr random. Then, X⊕̂Z is also Schnorr
random. Let σ = Z ↾ n and σ′ = Z ↾ (n+ 1). Notice that

(X⊕̂Z) ↾ (σ + n+ 1) = (X ↾ σ)⊕̂σ′.

Let M be a computable measure machine. Then, there exists a computable
measure machine N such that

KM (X ↾ σ) ≥ KN ((X ↾ σ)⊕̂σ′) = KN ((X⊕̂Z) ↾ (σ + n+ 1)) ≥ σ + n−O(1).

For the other direction, suppose that X ⊕Z is not Schnorr random. Then,
there exists a computable measure machine M such that, for every k ∈ ω there
exists m ∈ ω such that

KM ((X⊕̂Z) ↾ m) ≤ m− k. (3)

Thus, for each η1, η2 ∈ 2<ω such that η1⊕̂η2 = (X⊕̂Z) ↾ m, there exists
τ1 ∈ 2<ω such that M(τ1) = η1⊕̂η2 and |τ1| ≤ m− k.

We define a computable measure machine N as follows. Suppose that N
receives τ as an input. Then, look for τ1, τ2, η1 and η2 such that τ = τ1τ2,
M(τ1) = η1⊕̂η2 and |η1τ2| = η2. If these are found, define N(τ) = η1τ2.

Clearly, N is a partial computable function, that is, a machine.
We show that N is prefix-free. For each τ ∈ 2<ω, if N(τ) halts, then the

separation τ = τ1τ2 is unique, because M is prefix-free. Furthermore, the
length of τ2 is determined by the equality |η1τ2| = η2, thus by η1 and η2,
which is again determined by τ1. Thus, N is prefix-free.

We show that the measure of N is computable because∑
{2−|τ1τ2| : τ1 ∈ dom(M), M(τ1) = η1⊕̂η2 and |τ2| = η2 − |η1|}

=
∑

{2−τ1 : τ1 ∈ dom(M)},

and M is a computable measure machine.
Take k and m satisfying the inequality (3). Let η1, η2 be such that η1⊕̂η2 =

(X⊕̂Z) ↾ m. Then there exists τ1 ∈ 2<ω such that M(τ1) = η1⊕̂η2 and
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|τ1| ≤ m− k. For n = |η2|, we have |η1| ≤ 2n − 2 and η2 ≥ 2n − 1, so there is
a string τ2 such that η1τ2 = X ↾ η2. Hence, N(τ1τ2) = X ↾ η2. Therefore,

KN (X ↾ (Z ↾ n)) =KN (X ↾ η2) ≤ |τ1τ2| ≤ m− k + |τ2|
=|η1η2| − k + |τ2| = |η1τ2|+ |η2| − k = η2 + |η2| − k

=Z ↾ n+ n− k.

⊓⊔

Corollary 3 If X ≤Sch Y , then X ≤vLS Y .

6.3 Total machine reducibility implies vLS-reducibility

Miller and Yu [16] also showed that C-reducibility implies vL-reducibility.
The key theorem is the following. Let Z be a ML-random set. Then, X ⊕ Z
is ML-random if and only if C(X ↾ n) ≥ n − KZ(n) − O(1) if and only if
C(X ↾ n) +K(Z ↾ n) ≥ 2n−O(1).

As we have seen in Section 3.2, total machines play the role of plain ma-
chines for Schnorr randomness. Thus, a Schnorr-randomness version of C-
reducibility can be defined as follows.

Definition 6 Let X,Y ∈ 2ω be sets. We write X ≤tm Y if for every total
machine M there exists a total machine N such that

CN (X ↾ n) ≤ CM (Y ↾ n) +O(1).

The key theorem is the following.

Theorem 11 Let Z be a Schnorr random set. The following are equivalent.

(i) X ⊕ Z is Schnorr random.
(ii) CN (X ↾ n) ≥ n−KMZ (n)−O(1) for every uniformly computable measure

machine M and every total machine N .
(iii) CN (X ↾ n) + KM (X ↾ n) ≥ 2n − O(1) for every computable measure

machine M and every total machine N .

Note that the statement (ii) has a form similar to the statement (iii) of
Theorem 3.

Corollary 4 If X ≤tm Y , then X ≤vLS Y .

We begin from proving the following simple fact.

Lemma 9 There exists a total machine L such that

CL(X ↾ (X ↾ n)) ≤ (X ↾ n)− n+ 1 (4)

for every X ∈ 2ω.
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The proof idea is as follows. For X ∈ 2ω, let σ = X ↾ n and στ = X ↾ (X ↾
n) = X ↾ σ. Note that the length of τ is σ − |σ|. If n can be determined by
the length of τ , then σ is determined by τ . Note that, for σ ∈ 2n,

2n − 1− n ≤ σ − |σ| ≤ 2n+1 − 2− n.

Notice that
2n+1 − 2− n = 2n+1 − 1− (n+ 1).

Then only in this case we can not determine the length of σ. To avoid this, we
use the last bit.

Proof Let an = 2n+1 − 2− n. Then, a0 = 0, a1 = 1, a2 = 4 and so on.
The machine L behaves as follows. Suppose that L receives τi as an input

where τ ∈ 2<ω and i ∈ {0, 1}. If |τ | = an for some n ∈ ω, then L outputs
0n+1τ if i = 0 and 1nτ if i = 1. Otherwise, let n be such that an−1 < |τ | < an,
and σ ∈ 2n be such that σ = |τ |+ n. Then L outputs στ . Notice that such an
σ always exists and is unique because 2n − 1 < |τ |+ n < 2n+1 − 2. Clearly, L
is a total machine.

Finally, we claim (4). Let σ′ = X ↾ n and σ′τ ′ = X ↾ (X ↾ n). Note
that |τ ′| = X ↾ n − n = σ′ − |σ′|. If |τ ′| = 2n+1 − 2 − n for some n, then
σ′ ∈ {1n, 0n+1}. Then, σ′τ ′ ∈ {L(τ ′0), L(τ ′1)}. Hence, CL(X ↾ (X ↾ n)) =
CL(σ

′τ ′) ≤ |τ ′|+ 1 = X ↾ n− n+ 1. ⊓⊔

Proof (of Theorem 11) (i)⇒(ii). Suppose that X⊕Z is Schnorr random. Then,
X is Schnorr random uniformly relative to Z. Let M be a uniformly com-
putable measure machine and N be a total machine. Note that N can be seen
as an oracle total machine By the uniform relativization of Theorem 3, we
have

CN (X ↾ n) = CNZ (X ↾ n) ≥ n−KMZ (n)−O(1).

(ii)⇒(iii). Assume (ii). Let M be a computable measure machine and N be
a total machine. Recall that Z is Schnorr random. By Proposition 4, for the
computable measure machineM , there exists a uniformly computable measure
machine L such that

KM (Z ↾ n) ≥ n+KLZ (n)−O(1).

Hence,

CN (X ↾ n) ≥ n−KLZ (n)−O(1) ≥ 2n−KM (Z ↾ n)−O(1).

(iii)⇒(i). Assume (iii). Let M be a computable measure machine and L be the
total machine in Lemma 4. Then,

KM (Z ↾ (X ↾ n)) ≥2(X ↾ n)− CL(X ↾ n)−O(1)

≥2(X ↾ n)− (X ↾ n) + n−O(1)

=(X ↾ n) + n−O(1).

Hence, X ⊕ Z is Schnorr random by Theorem 10. ⊓⊔
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