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Motvation



Motivation

B Understand the statement that
a sequence A 1s
more random
than another sequence B.



Randomness hierarchy

[ 2-randomness ]

P
[ Martin-1.of randomness ]

[ Schnorr randomness ]

[ Kurtz randomness ]




Kolmogorov complexity

Definition
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where V is the universal plain machine and U is the universal

prefix-free machine. Then,
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and these are the maximal.



Prefix-free Kolmogorov complexity

Theorem (Miller 2009)
A set A € 2¥ is 2-random iff K(A [ n) >n+ K(n) — O(1)

infinitely often.

Theorem (Levin, Schnorr 1973)
A set A € 2¢ is ML-random iff K(A [ n) > n — O(1).

Theorem (Theorem 7.4.11 in Nies’ book)

There is a computably random set A € 2% such that
vV°n K(A | nln) < h(n) for each computable order function
h.



Plain Kolmogorov complexity

Theorem (Nies-Stephan-Terwijn 2005, Miller 2004)
A set A € 2% is 2-random iff C'(A [ n) > n — O(1) infinitely

often.

Theorem (Miller and Yu 2008)
A set A € 2% is ML-random iff C(A [ n) > n— K(n)—0O(1).



‘Two candidates

Definition
A <g B if, there exists a constant d such that, for all n, we

have
K(ATIn)<K(B|n)+d.

Definition

A <o B if, there exists a constant d such that, for all n, we

have

CA ) < C(B p)+d



Problems

B K,C-reducibility are not appropriate for studying weaker
randomness notions (CR, SR, WR).



'Total machines



Why total machines?

B Schnorr version of K 1s computable measure machines.
B Schnorr version of K-reducibility 1s Schnorr reducibility.
B Schnorr version of G 1s total machines.

B Schnorr version of G-reducibility 1s tm-reducibility.



'Total machines

We consider complexity with respect to total machines.

A total machine is a total computable function M : 2<% —

2<«. Complexity with respect to a total machine M is de-

fined by
@ cla) = minfia = Vi — o)

By modifying a total machine, we can assume that Cj;(o) <

2|o|. Then, C'ys is a total computable function.



Theorem (M.) X is Schnorr random iff, for every com-
putable measure machine M and every total machine NV, we

have
Cn(X [n)>n—Ky(n)—0(1).

Theorem (essentially due to Bienvenu and Merkle 2007)
X 1s Kurtz random iff, for every total machine M and every

computable order f, we have
Cu(X [ n)>n—f(n)

infinitely often.



Theorem (Nies, Stephan and Terwijn 2005)
X is 2-random iff

C(X [n)>n—0(1)

infinitely often.

Then, what is Schnorr version of 2-randomness?



?-random wvia total machine

Theorem

X is 2-random iff, for every total machine M, we have
CM(X | TL) =0l O(l)

infinitely often.

Schorr randomness version of 2-randomness i1s also 2-
randomness! I posed this question at CCR 2014 in
Singapore. I gave a direct simple proof of this, but actually

this is a corollary of a known result.



The following observation is made by Stephan at CCR 2014.

The time-bounded Kolmogorov complexity is defined by

C9(0) = min{|7| : U(r)lg(|o])] = o}

Theorem (Nies, Stephan and Terwijn 2005)
For sufficiently fast growing function g, X is 2-random iff
C9(X [ n) >n— O(1) for infinitely often.

Total machines are essentially the same as universal plain
Turing machine with computable time bound C9. This can

be formalized.



In their proof, g(n) = O(n?) is sufficient.

In my proof, the halting time can be bounded by O(n).



Proof idea

For an input o = 7p where |7| < /||, consider

(U(r)"[s])p

where U is the universal prefix-free machine.



Definition

Definition
A <;,, B if, for every total machine M, there exists a total

machine /N such that

CN(A [n) < CM(B [n) —|—O(1).

I would like to claim that this is a natural measure of ran-

domness.



Refinement?

Observation
If X is Schnorr random and X <;,, Y, then Y is Schnorr
random. The same statement holds for Kurtz randomness

and 2-randomness.

Question

Does this property hold for ML-randomness?



Schnorr reducibility



Theorem (M.)
For a c.m.m. M, there exists a c.m.m. IV such that, for every

Schnorr random set X,
Ky(X Tn)>2n+ Ky(n) —O(1)

for infinitely many n.



How fast?

B [he term K_N(n) should be replaced, but with what?

B [t should depend on M, not too fast, not too slow.

® ['he counting theorem should hold.



Qumlo) = p(liT : M(7)l=o0}])
Theorem (Coding theorem)

K(o) = —logQ(o).

Qum(€2") = p([ir = M(7) e 2"}])
Theorem (M.)

K(n) = —logQ(e€ 2").



Extended counting theorem

Theorem (Counting theorem)

B ocl=nAKlo)<ntKn)—r}<2" 71008

Theorem (Extended counting theorem, M.)

{o : |o] = nAKu(0) < n—log(@p(e 2™))—r}| < 27 HOW,



?-randomness and c.m.m.

Theorem (M.)
A sequence X € 2% is 2-random iff, for every computable

measure machine M,
Kp(X ['n) > n—log(Qu(e 2")) — O(1)

for infinitely many n.

Corollary
If X <g., Y and X is 2-random, then Y is 2-random.



Summary



Plain machines

MLR IR
(G)
Prefix-free
machines (K) MLR 2R
Comp. measure WR E
machines
Prefix-free
decidable mach. WR SR MLR
Quick process WR L ]
machines
‘Total machines WR




T'’hank you for your listening.



