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Motvation



Main Question

B Could we construct a more random set
from a given random set?

B How to formalize? Why important?



Computable

B [.ogicians ... computable by a 'luring machine

B Mathematicians ... a formula can be simplified
el as 249, 2x | 4%, sotmie Integration, ete.

B Statisticians and data scientists ... computable
with random access



With random access

B Which sets are computable with random access?

B An old answer: computable sets



Old answer

Theorem (De Leeuwe, Moore, Shannon, Shapiro (1956),
Sacks). If A is not computable, then the class

{X c2¥% : A<t X}
has measure 0.
So, if a set is computable with random access, then the
set should be computable. The story is over, in this case.

One variant is the case of poly-time computability, which
is the famous question of BPP = P?



It there many answers,

B Problem: Construct some non-computable set.
B Without random access: Impossible.

B With random access: Possible.

B How ditficult 15 it to compute a set 1n a given class?



Definition. Let P,() C 2“. We say that P is Muchnik
reducible to (), denoted by P <, @, if, for every f € Q,
there exists g € P such that g <r f.

Loosely speaking, any element in () can compute some
element in P.



Definition. Let P,() C 2. We say that P is Medvedev
reducible to (), denoted by P < (), if there exists a Turing
functional ® such that ®/ € P for every f € Q.

The difference is uniformity.



non-uniform uniform
: Weihrauch
functional | reverse math
degree
Muchnik Medvedev
class
degree degree




Theorem (Simpson 2004).
2o a WNIER @ X

where

e MLR s the class of all ML-random sets,

e PA 1s the class of consistent complete extensions of
Peano arithmetic.

The class of random sets seems natural examples in Much-
nik degrees.



Theorem (from algorithmic randomness).

WR < SR < ER MLR

and

MLR < DiffiR

Lvery arrow 1s strict.



Theorem (Muchnik degrees).
WR < SR CR < MLR

and

e
NG

DemR

MLR




B We ask whether each arrow 1s strict. 'This can be
interpreted as we ask whether we can construct a
more random set from a given random set.

B [n particular, we look at how uniformaity plays a
role 1n this setting.



Proot



Theorem.
CR <, MLR

Proof. Suppose MLR <,, CR for a contradiction.
There exists a high minimal degree a by Cooper '73.
Then, there exists a computably random set X € a, be-

cause every high degree contains a computably random set

by Nies, Stephan, and Terwijn ’05.

By the assumption there exists a ML-random set ¥ <p
X. Since a is minimal and Y can not be computable, we
have Y =1 X. Thus, the Turing degree of Y is minimal.

However, any ML-random degree can not be minimal by
van Lambalgen’s theorem.




Theorem.

SR =, CR

Proof. Every Schnorr random set can compute a computably
random set, because

(i) if the Schnorr random set is not high, then it is
already ML-random,

(ii) if the Schnorr random set is high, then it computes
a computably random set.

Rather non-uniform proof!



Theorem.
MLR =,, DiffR

Proof. Every ML-random set can compute a difference ran-

dom. Let X @Y be a ML-random set.

(i) If X > @/, then Y is 2-random, thus difference

random.
(ii) If X 27 (', then X is difference random.

Again, non-uniform proof.



Theorem.
MLR <, DiftR

Theorem.

SR <. CR



X € 2% is not computably random if (and only if)
M (X | n) = oo for some computable martingale M.

X € 2% is not Schnorr random if and only if
M(X | f(n)) > n for infinitely many n for some computable
order f and some computable martingale M.

The difference between CR and SR is the rate of diver-
gence.



CR £, SR means that, for every Turing functional @,
there exists A € SR such that &4 ¢ CR.
When & = id, it means that there exists A € SR such

that A € CR.
In fact we extend the method of separating SR and CR.



B Construct a random set A

B Forcing A(n_k)=0 1n sparse positions
=> too sparse not to be Schnorr random

B Number of candidates ot n_k 1s small
=> so small that some computable martingale
succeeds (very slowly)
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B Construct A in SR and B=Phi(A) not in CR
B Forcing B(n_k)=0 1n some positions
B Number of candidates of n_k should be small

B However, measure of inverse image may be too
small (may be empty) and some computable
martingale may succeed in Schnorr sense even 1t
n_k 1s very sparse



j’orc}o\ =
3—0



B [nduced measure 1s “close to” uniform measure
=> T'’he same method can be applied

B Induced measure 1s “far from” uniform measure

=> "T'’he another method will be applied



Let & :C 2% — 2% be a.e. computable function. Then,
the induced measure u is defined by

plo) = A1X €2¥ : ®(X) € [g]}).
The measure p is computable.
The dividing condition is

Case 1 CR(u) € CR(M)
Case 2 CR(u) € CR()



Case 2: CR(u) € CR(M)

Proof. There exists Y € CR(u) \ CR(\).
By the no-randomness-from-nothing result for computable
randomness by Rute, there exists X € CR(A) such that
R
Then, X € SR and &(X) ¢ CR.







Case 1: CR(u) € CR(\)

Lemma. Let u,v be computable measures. Then, we have
CR(¢) € CR(v) = MLR(p) € MLR(v) = v < p.

Here, < means absolute continuity.



Case 1: CR(u) € CR(\)

Lemma. Let ® :C 2% — 2% be an a.e. computable function.
Let i be the measure induced from ® and \. Assume that
A < v. Then, for each o € 2<%, we have

1
et N E o] & o) — (O — 5)\(0).

n— oo

Proof. By the Radon-Nikodym theorem and Lévy’s zero-one
law.







Summary

B We studied randomness notions in Muchnik
degrees and Medvedev degrees. '1'hey are related
to reverse maths and Weihrauch degrees.

B We found two problems that 1s possible non-
uniformly but impossible uniformly.

B Interesting interaction between analysis and
computability:



