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Abstract. Loosely speaking, when A is “more random” than B and B is
“random”, then A should be random. The theory of algorithmic randomness

has some formulations of “random” sets and “more random” sets. In this

paper, we study which pairs (R, r) of randomness notions R and reducibilities
r have the follwing property: if A is r-reducible to B and A is R-random,

then B should be R-random. The answer depends on the notions R and

r. The implications hold for most pairs, but not for some. We also give
characterizations of n-randomness via complexity.

1. Introduction

1.1. Degree of randomness. The theory of algorithmic randomness focused on
many randomness notions such as ML-randomness, 2-randomness, Schnorr ran-
domness, Kurtz randomness. Most of the notions are linearly ordered in the sense
that one randomness notion implies another randomness notion. For instance, 2-
randomness implies ML-random, which in turn implies Schnorr randomness, which
also implies Kurtz randomness. Here, we say that 2-randomness is stronger than
ML-randomness and so on, and we call this order the randomness hierarchy. This
fact can be used as a measure of how random a set is.

Another way of measuring randomness is reducibility. The Levin-Schnorr theo-
rem says that a set A ∈ 2ω is ML-random if and only if K(A � n) > n−O(1) where
K is the prefix-free Kolmogorov complexity. With this in mind, we say that A is
K-reducible to B, denoted by A ≤K B, if K(A � n) < K(B � n) + O(1), whose
intuitive meaning is that B is more random than A. K-reducibility has been well
studied, while similar reducibilities also have been studied.

We expect that, if A is random and B is more random than A, then B should be
random. ML-randomness with K-reducibility satisfies this property by the Levin-
Schnorr theorem. Furthermore, Miller and Yu [18] showed that, if A is n-random
and A ≤K B, then B is n-random. This does not hold for K-reducibility and
Schnorr randomness in the sense that, even if A ≤K B and A is Schnorr random, B
may not be Schnorr random (Proposition 2.2). Thus, the measure byK-reducibility
and the one induced by the randomness hierarchy are not completely coherent.

We say that a reducibility ≤r of randomness is coherent with a randomness
notion R if the following holds: if A ≤r B and A is R-random, then B is R-
random (Definition 2.1). Now, we ask which pairs of reducibilities and randomness
notions are coherent. The reducibilities we consider in this paper areK-reducibility,
C-reducibility, Schnorr reducibility, and decidable prefix-free machine reducibility
and total-machine reducibility, and the randomness notions are ML-randomness,
Schnorr randomness, Kurtz randomness and n-randomness.
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The answers for some pairs are immediate from known results. We also have some
pairs that can be solved by easy or known arguments: Proposition 2.2, Theorem 2.4,
Theorem 2.6 and Proposition 2.8. As a by-product of this project, 2-randomness
can be characterized by computable measure machines (Theorem 3.4), whose proof
requires an extension of the Counting theorem, which will be developed in Sec-
tion 3. The main result of this paper is incoherence of Schnorr reducibility with
some randomness notions (Theorem 3.6), whose proof uses the method separating
Schnorr randomness and computable randomness.

1.2. n-randomness via complexity. Characterization of randomness notions via
complexity has been a central topic in the theory of algorithmic randomness. The
first achievement is the Levin-Schnorr theorem, which characterizes ML-randomness
via K. Miller and Yu [18] have given a characterization of ML-randomness via C.
Miller [16] also gave characterizations of 2-randomness via C and K. A natural
question is whether there exist characterizations of 3-randomness via complexity.

Roughly speaking, a set is ML-random if and only if the complexities of its initial
segments of the set are large. A set is 2-random if and only if the complexities are
infinitely often maximal up to a constant, in other words, the set of the lengths such
that the complexities are maximal is infinite. A theorem we will prove in this paper
(Corollary 4.5) says that, a set is n-random if and only if the set of the lengths such
that the complexities are maximal is complex according to n. We obtain this result
as a by-product in the project of the main question.

1.3. Overview of paper. In Section 2 we define the notion of coherence, and then
review some results relating to K and C reducibilities and look at some immediate
corollaries. We also investigate coherence of decidable prefix-free machine reducibil-
ity and total-machine reducibility with randomness notions. In Section 3 we focus
on Schnorr reducibility and see incoherence with stronger randomness notions. In
Section 4 we show characterizations of n-randomness via complexity. In Section 5
we investigate the notion of dm-triviality.

2. Basic results

We generally follow the notations in Downey and Hirschfeldt [11] and Nies [21].
We also refer a survey [1] by Barmpalias on randomness reducibilities.

The central notion of this paper is coherence of a reducibility with a randomness
notion defined as follows.

Definition 2.1. We say that a reducibility ≤r is coherent with a randomness
notion R if the following statement holds: For all sets A and B, if A ≤r B and
A ∈ R, then B ∈ R.

The intended reducibilities ≤r are K-reducibility, C-reducibility, Schnorr re-
ducibility, and so on. The relation ≤r can be any reducibility that is interpreted as
a “more random” relation. Then, the coherence of a pair (R, r) means that the fol-
lowing natural reasoning holds: if A is more random than B and B is random, then
A should be random. If a reducibility is coherent with many randomness notions,
then the reducibility can be seen as a refinement of the randomness hierarchy.

2.1. Randomness notions. The randomness notions we consider in this paper
are ML-randomness, Schnorr randomness, Kurtz randomness and n-randomness.

We consider Cantor space 2ω with the product topology equipped with the uni-
form measure µ. A ML-test is a sequence {Un}n∈ω of uniformly c.e. open sets with
µ(Un) ≤ 2−n. A set A ∈ 2ω is ML-random if A passes every ML-test {Un}n∈ω,
that is, A 6∈

⋂
n Un. A Schnorr test is a ML-test such that µ(Un) is uniformly

computable. A set A is Schnorr random if A passes every Schnorr test. A set A
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is Kurtz random if A ∈ U for every c.e. open set U with measure 1. A set A is
called n-random if ML-random relative to 0(n−1). A martingale is a non-negative
function M : 2<ω → R such that 2M(σ) = M(σ0) +M(σ1) for every σ ∈ 2<ω. A
set A is called computably random if lim supnM(A � n) <∞ for every computable
martingale, where A � n is the initial segment of A with length n. Then, we have
the following proper implications:

(n+ 1)-random ⇒n-random ⇒ ML-random

⇒computably random ⇒ Schnorr random ⇒ Kurtz random

where n ≥ 2.

2.2. The reducibilities ≤K and ≤C . In many cases, coherence of a reducibility
with a randomness notion is derived from a characterization of the randomness
notion via complexity.

Let C denote the plain Kolmogorov complexity andK the prefix-free Kolmogorov
complexity. The Levin-Schnorr theorem says that a set X is ML-random if and only
if K(X � n) > n−O(1). The theorem roughly says that the complexities of initial
segments of a random set are large. Then, it is natural to measure randomness of a
set by the complexities of initial segments of the set. A set A is K-reducible to B,
denoted by A ≤K B, if K(A � n) ≤ K(B � n) + O(1). Similarly, A is C-reducible
to B, denoted by A ≤C B, if C(A � n) ≤ C(B � n) + O(1). Trivially, we have the
following observation: The reducibility ≤K is coherent with ML-randomness.

Our interest is coherence for other pairs. We also have some other character-
izations that imply coherence of K and C-reducibilities. The characterization of
ML-randomness by C by Miller and Yu [18] immediately implies the coherence of
C-reducibility with ML-randomness. The following are equivalent for X ∈ 2ω:

(i) X is ML-random.
(ii) C(X � n) > n−K(n)−O(1) for all n.
(iii) C(X � n) > n−G(n)−O(1) for all n, where

G(n) =

{
Ks+1(t) if n = 2〈s,t〉 and Ks+1(t) 6= Ks(t)

n otherwise.
(1)

Miller [16] and Nies, Stephan, and Terwijn [22] showed that a set X is 2-random
if and only if C(X � n) > n − O(1) for infinitely many n. Miller [17] also showed
that a set X is 2-random if and only if K(X � n) > n+K(n)−O(1) for infinitely
many n. Then, the reducibilities ≤K and ≤C are coherent with 2-randomness.

So far we have seen that the reducibilities ≤K and ≤C are coherent with ML-
randomness and 2-randomness. In contrast, the reducibilities ≤K and ≤C are not
coherent with weaker randomness notions.

Proposition 2.2. The reducibilities ≤K and ≤C are not coherent with computable
randomness, Schnorr randomness, or Kurtz randomness.

Proof. There exists a computably random set X such that, for every computable
order h, we have K(X � n | n) ≤ h(n) +O(1) (see Nies [21, Theorem 7.4.11]). Let
A be the witness and B be a ML-random set. Then, A ≤K B ⊕ ∅ because

K(B ⊕ ∅ � n) ≥ K(B � bn/2c)−O(1) >
n

2
−O(1)

and
K(A � n) ≤ K(A � n|n) +K(n) +O(1) ≤ n

3
+O(1).

However, A is computably random, Schnorr random and Kurtz random while B⊕∅
is not computably random, Schnorr random or Kurtz random.
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The same holds for ≤C because C(x) ≤ K(x) +O(1) ≤ C(x) + 2 log(|x|) +O(1)
for all x ∈ 2<ω (see [11, Corollary 2.4.2] etc.). �

Thus, although the reducibilities ≤K and ≤C can be seen as measures of ran-
domness, they are not refinements of the randomness hierarchy.

2.3. Decidable prefix-free machine reducibility. We will see coherence of
other reducibilities with the randomness hierarchy. We ask which reducibilities
are coherent with all (or many) randomness notions and can be seen as refinements
of the randomness hierarchy. The first reducibility we should look at would be
decidable prefix-free machine reducibility because we know that decidable prefix-
free machines characterize many randomness notions. We say that a machine M is
decidable if its domain dom(M) is decidable.

The following is due to Bienvenu and Merkle [6]. A set X is ML-random if
and only if KM (X � n) > n − O(1) for every decidable prefix-free machine M .
Furthermore, there exists a decidable prefix-free machine N such that X is ML-
random if and only if KN (X � n) > n − O(1). A set X is Schnorr random if and
only if, for every decidable prefix-free machine M and every computable order h,
KM (X � n) > n− h(n)− O(1). A set X is Kurtz random if and only if, for every
decidable prefix-free machine M and every computable order h, KM (X � n) >
n− h(n)−O(1) for infinitely many n.

Definition 2.3. We say that A ≤dm B if, for every decidable prefix-free machine
M , there exists a decidable prefix-free machine N such that KN (A � n) ≤ KM (B �
n) +O(1).

This is a decidable-prefix-free-machine version of Schnorr reducibility of Defini-
tion 2.7. A similar notion can be found in [19, Definition 3.1].

An immediate corollary is that the reducibility≤dm is coherent with ML-randomness,
Schnorr randomness, Kurtz randomness. Furthermore, we also have the following.

Theorem 2.4. The reducibility ≤dm is coherent with 2-randomness.

Proof. We use a result from [3] that in fact has studied a similar topic. A computable

upper bound of K is a total computable function K̂ : 2<ω → N ∪ {+∞} such that

K(σ) ≤ K̂(σ)+O(1) for all σ ∈ 2<ω. Let K be the class of computable upper bounds
of K. (This terminology is from [3, Definition 2.3.1].) Then, there exists K∗ ∈ K
such that, X ∈ 2ω is 2-random if and only if (∀K̂ ∈ K)K̂(X � n) ≥ n+K∗(n)−O(1)
for infinitely many n ([3, Theorem 2.3.24]).

Although computable upper bounds of K are not exactly the same as com-
plexities with respect to decidable prefix-free machines, they behave similarly for
random sets in the following sense. For a decidable prefix-free machine M such
that KM (σ) <∞ for every σ ∈ 2<ω (that is, M is surjective as a function), KM (σ)
is a computable upper bound because K(σ) ≤ KM (σ) + O(1) by the minimality

of K and σ 7→ KM (σ) is computable. Conversely, let K̃ be a computable upper
bound of K and X be a ML-random set (actually the effective Hausdorff dimension
dim(X) > 1 is sufficient). Bienvenu [3, Proposition 2.3.15] showed that, for every

K̂ ∈ K and every computable order h, there exists a surjective prefix-free decidable
machine M such that KM (σ) ≤ max(h(|σ|), K̂(σ)) + O(1). By considering the
function h(n) = o(n), we have

KM (X � n) ≤ max(h(n), K̃(X � n)) +O(1) = K̃(X � n) +O(1).

Suppose that A ≤dm B and B is not 2-random. If B is not ML-random, then
A is not ML-random because ≤dm is coherent with ML-random, and thus A is
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not 2-random. Then, we can assume that B is ML-random. Then, there exists a
computable upper bound K̂ such that

lim
n
(n+K∗(n)− K̂(B � n)) = ∞.

Since B is ML-random, there exists a prefix-free decidable machine M such that

KM (B � n) ≤ K̂(B � n) +O(1).

By A ≤dm B, there exists a decidable prefix-free machine N such that

KN (A � n) ≤ KM (B � n) +O(1).

Combined with these, we have

lim
n
(n+K∗(n)−KN (A � n)) = ∞.

Since KN is a computable upper bound, this implies that A is not 2-random. �

2.4. Total-machine reducibility. Next, we see coherence of total-machine re-
ducibility. The total-machine reducibility is defined in Miyabe [20] as a Schnorr-
randomness version of C.

Definition 2.5. We say that A ≤tm B if, for every total machine M , there exists
a total machine N such that CN (A � n) ≤ CM (B � n) +O(1).

Bienvenu and Merkle [6] showed that a set X is Kurtz random if and only if,
for every total machine M and every computable order h, we have CM (X � n) >
n− h(n)−O(1) for infinitely many n. Then, the reducibility ≤tm is coherent with
Kurtz randomness.

Next, we see coherence with 2-randomness. As a slight extension, we have a char-
acterization of 2-randomness by the time-bounded complexity Cg(σ) = min{|τ | :
U(τ) = σ in g(|σ|) steps} where U is the fixed universal machine. Notice that
σ 7→ Cg(σ) is computable if g is computable. There exists a computable order g
such that X is 2-random if and only if Cg(X � n) > n − O(1) for infinitely many
n (see [21, before Lemma 3.6.14]). Since every time-bounded plain machine is a
decidable machine and can be seen as a total machine, we have the following: X
is 2-random if and only if, for every total machine M , CM (X � n) > n − O(1) for
infinitely many n. Thus, the reducibility ≤tm is coherent with 2-randomness.

Next we see coherence with Schnorr randomness. Miyabe [20, Theorem 3] showed
that the following are equivalent for a set X ∈ 2ω:

(i) X is Schnorr random.
(ii) For every total machine N and every computable order g, we have CN (X �

g(n)) ≥ g(n)− n−O(1).
(iii) For every computable measure machine M and every total machine N , we

have CN (X � n) ≥ n−KM (n)−O(1).

Then, the reducibility ≤tm is coherent with Schnorr randomness.

Finally, we see coherence with ML-randomness by giving a characterization of
ML-randomness via total machines.

Theorem 2.6. The following are equivalent:

(i) A set X is ML-random.
(ii) For every total machine M , we have CM (X � n) > n−K(n)−O(1).

Furthermore, there exists a total machine L such that CL(X � n) > n−G(n)−
O(1) is equivalent to (i) where G is defined in (1).
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Proof. The direction (i)⇒(ii) follows from the characterization of ML-randomness
by C. Since K(n) ≤ G(n) for all n ∈ ω, it suffices to construct a total machine L
such that CL(X � n) > n−G(n)−O(1) implies (i).

We generally follow the argument of the characterization of ML-randomness by
C (Theorem 6.7.2 in [11]), so we refer there for some details.

The goal is to construct a decidable machine L such that, ifX is not ML-random,
then the complexity CL(X � n) for some n is largely below n − G(n). Since G(n)
can be small only when n = 2〈s,t〉, we construct L that compress strings with
such length n when X � t is compressible. In Miller-Yu’s proof, the condition of
compressibility is K(σ) ≤ t − k, which is not a decidable relation. In our case we
use the decidable relation of Ks(σ) ≤ t− k.

At first we pick up compressible strings. By the Counting Theorem, there exists
a constant c ∈ ω such that for all t and k we have

|{σ ∈ 2t : K(σ) ≤ t− k}| ≤ 2t−K(t)−k+c.

A rough idea of the construction of L is as follows. The machine L produces
the strings with length n = 2〈s,t〉 that are extensions of compressible strings with
length t. The length of its input string is between n

2 +c+1 and n+c both included.
Furthermore, if we want to compress ρ ∈ 2n with length k, the output string ρ will
be produced by an input string with length n−Ks+1(t)− k + c.

We give the construction of L in detail. We do the following construction for
every s, t, k ∈ ω. Let n = 2〈s,t〉 and m = n−Ks+1(t)− k + c. The value n will be
the length of the output strings σ and m will be the length of the input strings. If
m ≥ n

2 + c+ 1, then for each σ ∈ 2n such that Ks+1(σ � t) ≤ t− k, we try to pick
a string τ ∈ 2m and define L(τ) = σ. Notice that L can be decidable.

We claim that ifKs+1(t) = K(t), then there are enough strings of lengthm for all
such strings σ. This is because the number of σ ∈ 2n for which Ks+1(σ � t) ≤ t− k
is at most

2n−t|{ρ ∈ 2t : K(ρ) ≤ t− k}| ≤ 2n−t2t−K(t)−k+c = 2n−K(t)−k+c = 2m.

Suppose that X is not ML-random. Then, for every k, there exists t such that
K(X � t) ≤ t− k and K(t) ≤ 2t−1 − k − 1. Let s be the least such that Ks+1(t) =
K(t) and Ks+1(X � t) ≤ t− k. Let n = 2〈s,t〉 and m = n−Ks+1(t)− k + c. Then,

m ≥ n− (2t−1 − k − 1)− k + c ≥ n− 2〈s,t〉−1 + c+ 1 ≥ n

2
+ c+ 1.

Thus, CL(X � n) ≤ m. Since G(n) = Ks+1(t) = K(t), we have

CL(X � n) ≤ n−K(t)− k + c = n−G(n)− k + c.

Here, k is arbitrary, (iv) does not hold. �

As a corollary, the reducibility ≤tm is coherent with ML-randomness.

2.5. Schnorr reducibility. Schnorr reducibility is induced by computable mea-
sure machines, which characterize Schnorr randomness.

A computable measure machine is a prefix-free machine M such that its mea-
sure µ(Jdom(M)K) is computable. Downey and Griffiths [10] showed that a set X
is Schnorr random if and only if KM (X � n) > n − O(1) for every computable
measure machine. Note that every computable measure machine is a decidable
prefix-free machine and compare the following with the characterization by decid-
able machines.

Definition 2.7 (Downey and Griffiths [10]). We say that A is Schnorr reducible
to B (denoted by A ≤Sch B) if, for every computable measure machine M , there
exists a computable measure machine N such thatKN (A � n) ≤ KM (B � n)+O(1).
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Schnorr reducibility is coherent with Schnorr randomness.

We also have a characterization of Kurtz randomness via computable measure
machines by Downey, Griffiths, and Reid [12], from which coherence with Kurtz
randomness follows. A set A is not Kurtz random if and only if, there is a com-
putable measure machineM and a computable order f such that, for all n, we have
KM (A � f(n)) < f(n)− n.

Proposition 2.8. Schnorr reducibility is coherent with Kurtz randomness.

Proof. Let A,B ∈ 2ω be sets such that A ≤Sch B andB is not Kurtz random. Then,
there is a computable measure machine M and a computable order f such that, for
all n, we have KM (B � f(n)) < f(n)−n. By A ≤Sch B, for this machine M , there
exists a computable measure machine N such that KN (A � m) ≤ KM (B � m) + c.
Hence, KN (A � f(n)) < f(n) − n + c for every n. Finally, let g(n) = f(n + c) for
every n. Then,

KN (A � g(n)) = KN (A � f(n+ c)) < f(n+ c)− (n+ c) + c = g(n)− n

for every n. Hence, A is not Kurtz random. �

3. Incoherence of Schnorr reducibility with randomness notions

First we give a characterization of 2-randomness via computable measure ma-
chines, wishing that it might imply coherence of Schnorr reducibility with 2-randomness.
The key in the proof of the characterization is an extension of the Counting the-
orem. Thereafter, we show the incoherence of Schnorr reducibility with stronger
randomness notions.

3.1. Extended Counting Theorem. The Counting Theorem (see [11, Theorem
3.7.6]) says that

|{σ : |σ| = n ∧K(σ) ≤ n+K(n)− r}| ≤ 2n−r+O(1)

where the constant does not depend on n and r. This is a basic tool in the theory
of algorithmic randomness, and its applications are so widespread that people often
do not refer the Counting theorem in a logical argument. To extend the theorem for
machines that may not be universal, we start from the observation of the connection
to the Coding theorem.

For a prefix-free machine M , let QM (σ) = µ(J{τ : M(τ) ↓= σ}K). We write
Q(σ) for QU (σ) where U is the fixed universal prefix-free machine. For details see
[11, Definition 3.9.3]. The Coding theorem (see [11, Theorem 3.9.4]) says that

K(σ) = − logQ(σ)±O(1).

According to [11, Section 9.4], “One informal interpretation of the Coding Theorem
is that if a string has many long descriptions then it also has a short description.”
The value Q(σ) is, roughly speaking, the probability that M produces the string
σ. We consider the probability that M produces the strings with length n.

Definition 3.1. Let

RM (n) = − logµ(J{τ : |M(τ) ↓ | = n}K).
For convenience, RM (n) = ∞ if µ(J{τ : |M(τ) ↓ | = n}K)=0.

Precisely speaking, RM (n) is a real number, but for convenience we sometimes
see RM (n) as a natural number.

Proposition 3.2. For a universal prefix-free machine U , we have

K(n) = RU (n)±O(1).
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Proof. Notice that RM (n) is an information content measure ([11, Definition 3.7.7])
for every machine M . This is because∑

n

2−RM (n) =
∑
n

µ(J{τ : |M(τ) ↓ | = n}K) = Jdom(M)K ≤ 1.

Furthermore, the relation |M(τ) ↓ | = n is c.e., and so is RM (n) ≤ k. By the
minimality of K, we have K(n) ≤ RU (n) +O(1) ([11, Theorem 3.7.8]).

The converse means, loosely speaking, if K(0n) is small, then RU (n) is small,
which means that there are many or short strings σ producing strings with length
n. Let σn be one of the shortest strings such that U(σn) = 0n. Then,

σn ∈ {τ : |U(τ) ↓ | = n},
and

µ(J{τ : |U(τ) ↓ | = n}) ≥ 2−K(0n).

Hence,

RU (n) ≤ K(0n) ≤ K(n) +O(1).

�

With this observation, we rethink the Counting theorem.

Theorem 3.3 (Extended Counting theorem).

|{σ : |σ| = n ∧KM (σ) ≤ n+RM (n)− r}| ≤ 2n−r.

Notice that K(n) = KU (n) = RU (n)±O(1) and this is an extension.

Proof. Let

Sn,r = {σ : |σ| = n ∧KM (σ) ≤ n+RM (n)− r}.
For each σ ∈ Sn,r, let σ

∗ be one of the shortest strings such that M produces σ.
Then, σ∗ for σ ∈ Sn,r contributes in the enumeration of µ(J{τ : |M(τ) ↓ | = n}K).
Thus,

2−RM (n) = µ(J{τ : |M(τ) ↓ | = n}K) ≥ 2−(n+RM (n)−r)|Sn,r|,
and |Sn,r| ≤ 2n−r. �

3.2. 2-randomness via c.m.m. Using the extended Counting Theorem we pro-
vide a characterization of 2-randomness via computable measure machines.

Theorem 3.4. A sequence X ∈ 2ω is 2-random iff, for every computable measure
machine M ,

KM (X � n) ≥ n+RM (n)−O(1)

for infinitely many n.

In the following, we use the following fact repeatedly: For a sequence {an}n∈ω
of uniformly computable positive reals such that an = O(2−n), the sum

∑
n an is

a computable real. For each k ∈ ω,
∑
n≤k an is computable because this is a finite

sum of computable reals, and the error
∑
n>k an is bounded by O(2−k).

Proof of “if” direction. The key idea in the proof is that RM (n) need not be small.
In fact we construct a computable measure machineM such that RM (n) ≥ n−O(1)
for every n. This is quite large considering Proposition 3.2.

We start from an oracle universal ML-test {UXk }. First we construct an approx-
imation of UXk . For each k,X, we consider a computable sequence V Xk,s of finite

prefix-free sets of strings with length s that generates an approximation of UXk ,
that is, ⋃

s∈ω
{[σ] : σ ∈ V Xk,s} = UXk .
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We can assume that, if σ ∈ Vk,s, then σ0, σ1 ∈ Vk,s+1, that is, the left-hand side
is increasing. Notice that the relation σ ∈ V Xk,s is a decidable relation if X is
computable.

We fix {Zs} of an approximation of ∅′, that is, {Zs} is a computable sequence
of finite subsets of ω such that Zs ↑ ∅′. Then, if X is not 2-random, then for every
k some initial segment of X is in V Zs

k,s for every sufficiently large s.

We construct a computable measure machineMs for each s ≥ 1 from {V Zs

2k,s}k∈ω
by the KC-theorem. We request every σ ∈ V Zs

2k,s for every k ≥ 1 with cost 2−(2|σ|−k).
The cost for each k is∑

σ∈V Zs
2k,s

2−(2|σ|−k) ≤
∑

σ∈V Zs
2k,s

2−|σ|−s+k ≤ 2−s−k,

and is a computable real because V Zs

2k,s is a computable finite set. Thus, the total
cost is ∑

k≥1

∑
σ∈V Zs

2k,s

2−(2|σ|−k) ≤
∑
k≥1

∑
n≥1

2−s−k = 2−s,

and is also a computable real. Since |σ| = s for every σ ∈ V Zs

2k,s and every k, we

have |Ms(τ)| = s for every τ ∈ dom(Ms). Thus, the measure of Ms is equal to
2−RMs (s) and RMs(t) = ∞ for every t 6= s.

Next we define another computable measure machine M . For σ ∈ 2<ω let σ̂

denote the piece-wise iterated string of σ. For instance 1̂01 = 110011 and 0̂11 =
001111. We define M by

M(σ̂01τ) =M|σ|(τ)σ.

The machine M is clearly prefix-free.
Before we prove that the measure ofM is computable, we evaluate RM (n). First

notice that RM (n) = ∞ if n is odd because |M|σ|(τ)| = |σ|. For even n, we have

2−RM (n) =
∑

σ∈2n/2

∑
|Mn/2(τ)|=n/2

2−(n+|τ |+2) ≤
∑

σ∈2n/2

2−n−2 · 2−n/2 = 2−n−2.

Hence, RM (n) ≥ n + 2. Since 2−RM (n) is a computable real, M is a computable
measure machine.

Finally, suppose that X is not 2-random. Then, for every k, we have X ∈ U∅′

2k.

Thus, X � s ∈ V ∅′

2k,s for all sufficiently large s. Since the use of the oracle is bounded,

X � s ∈ V Zs

2k,s for all sufficiently large s. For such s, we have

KM (X � 2s) ≤ 2s+ 2 + 2s− k = 2s+RM (2s)− k.

We also have the inequality for odd n because RM (n) = ∞ for odd n. �

For the other direction, we follow the argument of Theorem 8 in [8] (Theorem
11 in [7]) or Theorem 1 in [2], and combine with the extended counting theorem.

Lemma 3.5 (Conidis [9]). Let ε > 0 be a rational number and let U0, U1, · · · be
a sequence of uniformly c.e. open sets of measure at most ε each. Then for every
rational ε′ > ε there exists a 0′-c.e. open set V of measure at most ε′ that contains
lim infn→∞ Un. Furthermore, the 0′-enumeration algorithm for V can be effectively
given in ε, ε′ and Ui.

Proof of “only if” direction. Suppose that, for all c, we have KM (X � n) < n +
RM (n)− c for all sufficiently large n. Let

Un = {σ ∈ 2n : KM (σ) < n+RM (n)− (c+ d+ 1)}
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where d is a witness constant for the extended counting theorem for M . Since
RM (n) is computable, so is Un. By the extended counting theorem, The measure
of JUnK is at most

2−n · 2n−(c+d+1)+d = 2−c−1

for all n. By Lemma 3.5, there exists 0′-c.e. open set Vc of measure at most 2−c

that contains lim infn→∞ Un, which contains X. Since the construction is uniform
and c is arbitrary, the sequence {Vc} is a 0′-ML-test that covers X. Thus, X is not
2-random. �

3.3. Incoherence of Schnorr reducibility. We have seen a characterization of
2-randomness by computable measure machines. However, this does not imply
coherence of Schnorr reducibility with 2-randomness, mainly because the right hand
side n+RM (n) in the characterization depends on M . In fact, Schnorr reducibility
is not coherent with computable randomness, nor with any randomness notions
stronger than computable randomness.

Recall that a set X ∈ 2ω is called computably random if supnM(X � n) < ∞
for every computable martingale M , and a set X ∈ 2ω is Schnorr random if and
only if, for every computable martingaleM and every computable order f , we have
M(X � f(n)) < n for almost all n ([14]). Thus, the difference between Schnorr
randomness and computable randomness is the rate of divergence of capitals for a
computable martingale.

Theorem 3.6. For every set A ∈ 2ω, there exists B ∈ 2ω such that A ≤Sch B and
B is not computably random.

The goal is, for a given set A ∈ 2ω, to construct a set B ∈ 2ω such that A ≤Sch B
but B is not computably random. The set A may be Schnorr random and B may
be Schnorr random. In fact we use the method of constructing a Schnorr random
set that is not computably random in each high degree in [22].

Loosely speaking, the set B is almost the same as A but we force B(n) = 0
in some positions. The forced positions are too sparse for Schnorr reducibility to
distinguish A and B. The number of candidates of the forced positions is so limited
that some computable martingale succeeds on B.

Proof. We define functions ψ, p and h. The image of h will be the positions where
B(n) = 0 are forced. The value log p(x) − 1 is the number of candidates of the
forced positions.

We define ψ by

ψ(e, x) =

{
〈e, x, s〉+ 1 where s is the least such that Φe(x)[s] ↓,
↑ if Φe(x) ↑ .

Notice that ψ is one-to-one where defined, ψ(e, x) > x for every x ∈ ω, and the
relation n ∈ rngψ is decidable. Furthermore, the numbers e, x such that ψ(e, x) = n
are computable from n.

We define a computable function p : ω → ω by

p(n) =

{
p(x) + 1 if ∃x < n, ∃e < log p(x)− 1, ψ(e, x) = n,

n+ 4 otherwise.

Notice that p(n) is well-defined. The value p(n) will be defined if p(x) is defined.
From given n, the numbers e, x are fixed and computable from n if n is in the range
of ψ. Since x < ψ(e, x) = n, the function p is defined inductively. We also note
that limn p(n) = ∞.

We define a set Hx for each x ∈ ω by

Hx = {ψ(e, x) : ψ(e, x) ↓, e < log p(x)− 1}.
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The set Hx is the candidates of forcing positions at stage x. Notice that |Hx| ≤
p(x)− 1 and the number of the candidates is bounded by p(x)− 1. We assume Φ0

is total and thus Hx is not empty for each x ∈ ω. We also note that the Hx are
pairwise disjoint.

Let h(x) = max(Hx). We claim that h dominates all computable functions, that
is, for every computable function f , we have f(x) ≤ h(x) for all sufficiently large
x. (We do not claim that h is monotone.) Let f be a computable function with an
index e. Then,

f(x) = Φe(x) < ψ(e, x).

Let x0 be such that e < log p(x) − 1 for all x > x0. Such x0 exists because
limn→∞ p(n) = ∞. For all x > x0, we have

ψ(e, x) ≤ max(Hx) = h(x).

Since f is arbitrary, h dominates all computable functions.
Given a set A ∈ 2ω, we define B ∈ 2ω by

B(n) =

{
0 if there exists x < n such that h(x) = n,

A(n) otherwise.

We claim that B is not computably random. We construct a computable mar-
tingale M that succeeds on B. The martingale M uses the so-called martingale
strategy S at each stage. The martingale strategy S with initial capital c bets the
capital 2kc that the next bit is 0 until S wins for the first time where k is the
number of loss.

At stage n, M uses the strategy S at Hn with the initial capital 1
p(n) . Since

|Hn| ≤ log p(n) − 1, the number of failure is at most log p(n) − 1 and the amount
of the decreased capital is at most

log p(n)−1∑
i=1

2i−1

p(n)
=

2log p(n) − 1

p(n)
=
p(n)− 1

p(n)
< 1.

Hence, the capital is never negative. Since Φ(X)(h(n)) = 0 for every n, the strategy
S increases his capital with

2k

p(n)
−
k−1∑
i=1

2i−1

p(n)
=

2k − (2k − 1)

p(n)
=

1

p(n)

where S wins at the k-th time.
The strategy starts at stage 0 with the initial capital 1

p(0) . At stage n, if S

increases his capital at ψ(e, n) ∈ Hn, then the stage n is over. The next stage
number is ψ(e, n). Notice that ψ(e, n) > n for every ψ(e, n) ∈ Hn. Then, the initial
capital at the next stage ψ(e, n) is 1

p(ψ(e,n)) =
1

p(n)+1 . By p(0) = 4, the sup of M is

1 +
1

4
+

1

5
+

1

6
+ · · · = ∞.

Finally, we claim that A ≤Sch B. We denote by X ≤wdm Y that, for each
decidable prefix-free machine M and a computable order g there exists a decidable
prefix-free machine N such that KN (X � n) ≤ KM (Y � n) + g(n) + O(1). Miyabe
[19, Theorem 3.5] showed that, X ≤Sch Y ⇐⇒ X ≤wdm Y for all X,Y . Then, it
suffices to show A ≤wdm B.

Now fix a prefix-free decidable machine M and a computable order g. The goal
is to construct a decidable prefix-free machine N such that KN (A � n) ≤ KM (B �
n) + g(n) +O(1). The sets A � n and B � n are the same except the positions

G(n) = {h(x) : ∃x < n, h(x) ≤ n}.
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Thus, it suffices to encode G(n) into strings less than g(n) +O(1) in length. Since
h grows fast, |G(n)| grows slower than any computable order. It seems possible
but the problem is that G(n) is not computable. Thus, we construct a computable
superset G(n) ⊇ G(n) such that |G(n)| is sufficiently small, and encode all subsets
of G(n).

First we construct an approximation G(n)[t] of G(n). Let

Hx[t] = {ψ(e, x) : Φe(x)[t] ↓, e < log p(x)− 1}.

Then, for each x, we have
⋃
tHx[t] =. Let

h(x)[t] = max(Hx[t]).

Then, for each x, {h(x)[t]}t∈ω is non-decreasing. Let

G(n)[t] = {h(x)[t+ n] : ∃x < n, h(x)[t+ n] ≤ n}.

We claim that G(n)[t] ⊇ G(n) for every t ∈ ω. Suppose that h(x) ∈ G(n)
for some x < n. Then, there exists e < log p(x) − 1 such that h(x) = ψ(e, x) =
〈e, x, s〉 + 1 ≤ n where s is the least such that Φe(x)[s] ↓. In particular we have
s < n. Thus, h(x) ∈ Hx[t+ n]. Since max(Hx[t+ n]) ≤ max(Hx) = h(x), we have
h(x) = h(x)[t+ n] ∈ G(n)[t].

Furthermore, we have G(n)[t] = G(n) for sufficiently large t. This is because,
for sufficiently large t, we have Hx[t] = Hx, h(x)[t] = h(x) and G(n)[t] = G(n).

Now we define a finite set G(n) of ω as a sufficiently good approximation of
G(n). Let c ∈ ω be a constant such that

|G(n)| ≤ g(n) + c

for every n. Then, there exists a stage s ∈ ω such that

|G(n)[s]| ≤ g(n) + c.

Pick such a stage t and define G(n) by

G(n) = G(n)[t]

for this t. Notice that G(n) is computable uniformly in n.
Next we construct a prefix-free decidable machine N . We define E(σ, τ) ∈ 2|σ|

for |τ | = |G(|σ|) by

E(σ, τ)(n) =

{
τ(k) if n is the k-th minimal element in G(|σ|)
σ(n) otherwise.

Thus, E(σ, τ) is almost the same as σ except the positions of G(|σ|). We define N
by

N(στ) = E(M(σ), τ) if |τ | = |G(|M(σ)|)|.
Since M is a prefix-free decidable machine, so is N .

Finally, we claim that KN (A � n) ≤ KM (B � n) + g(n) +O(1). For every n, let
σ be a shortest string such that M(σ) = B � n. Since A and B are different only at

G(n) ⊆ G(n), there exists a string τ such that |τ | = |G(n)| and E(B � n, τ) = A � n.
Then, N(στ) = A � n. Hence,

KN (A � n) ≤ |σ|+ |τ | = KN (B � n) + |G(n)| ≤ KN (B � n) + g(n) + c.

Hence, we have A ≤wdm B. �

Thus, Schnorr reducibility is not coherent with ML-randomness or 2-randomness.
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4. Coherence with n-randomness

In this section we study coherence with n-randomness. Note that, by Theorem
3.6, Schnorr reducibility is not coherent with n-randomness for every n ≥ 1. We
will see that, except Schnorr reducibility, most reducibilities are coherent with n-
randomness.

4.1. Implication of vL-reducibility. We show that some reducibilities are co-
herent with n-randomness by showing that each reducibility implies vL-reducibility.

First, we see immediate corollaries from known results. We say that X is vL-
reducible to Y , denoted by X ≤vL Y , if for all Z, if X ⊕ Z is ML-random, then
Y ⊕ Z is ML-random. One interesting basic property of vL-reducibility is that, as
is shown in [18], if X ≤vL Y and X is n-random, then Y is n-random. This can
be checked easily by letting Z be a ML-random set Turing equivalent to 0(n−1). If
X is n-random, then Z is ML-random and X is ML-random relative to Z. Thus
X ⊕ Z is ML-random by van Lambalgen’s theorem. Hence Y ⊕ Z is ML-random
and Y is n-random by van Lambalgen’s theorem again.

In what follows, a string σ is identified with the natural number k such that σ
is the k-th string in lexicographical order.

Theorem 4.1 ([18]). X ⊕ Z is ML-random if and only if

K(X � (Z � n)) ≥ (Z � n) + n−O(1).

Thus,K-reducibility implies vL-reducibility, and≤K is coherent with n-randomness
for every n ≥ 2.

Miller and Yu [18] also showed that, for a ML-random set Z, X is Z-ML-random
if and only if

C(X � n) +K(Z � n) ≥ 2n−O(1).

Thus, C-reducibility implies vL-reducibility, and ≤C is coherent with n-randomness
for every n ≥ 2.

To see that ≤dm is coherent with n-randomness, we give a characterization of
ML-randomness by prefix-free decidable machines.

Theorem 4.2. A set X ⊕ Z is ML-random if and only if, for every prefix-free
decidable machine, we have KM (X � (Z � n)) > (Z � n) + n−O(1).

Proof. The “only if” direction follows from Theorem 4.1.
For the other direction, the proof generally goes along with the one of Theorem

10 in [20]. The only difference is that we need to use a prefix-free decidable machine
whose existence was claimed in the characterization of ML-randomness by prefix-
free decidable machines. �

As a corollary, we have ≤dm⇒≤vL. In particular, for every n ≥ 2, ≤dm is
coherent with n-randomness.

The following is the tm-reducibility version.

Theorem 4.3. Let Z be a ML-random set. Then, the following are equivalent.

(i) X is ML-random relative to Z.
(ii) CN (X � n) +K(Z � n) ≥ 2n−O(1) for every total machine N .

Proof. The direction (i)⇒(ii) is immediate from the case of C.
For the other direction, first note that there exists a total machine L such that

CL(X � (X � n)) ≤ (X � n)− n+ 1
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for every X ∈ 2ω (Lemma 9 in [20]). Then,

K(Z � (X � n)) ≥2(X � n)− CL(X � n)−O(1)

≥2(X � n)− (X � n) + n−O(1) = (X � n) + n−O(1).

Thus, X ⊕ Z is ML-random. �

Hence, we have ≤tm⇒≤vL. In particular, for every n ≥ 2, ≤tm is coherent with
n-randomness.

4.2. Characterizations of 2-randomness. We have already seen that Schnorr
reducibility is not coherent with 2-randomness. The following results were found
when the author was trying to show coherence of Schnorr reducibility with 2-
randomness.

Theorem 4.4. The following are equivalent:

(i) X is 2-Z-random.
(ii) C(X � (Z � n)) > Z � n−O(1) for infinitely many n.
(iii) C(X � (Z � n) | (Z � n)) > Z � n−O(1) for infinitely many n.

Proof. (i)⇒(ii). Suppose that lim infn→∞(C(X � (Z � n)) − Z � n) = −∞. Fix k.
Let Un =

⋃
{[σ] : |σ| = Z � n and C(σ) < |σ| − k}. Then, Un is uniformly Z-c.e.

open. Furthermore, the number of σ such that C(σ) < |σ| − k is at most

1 + 2 + 22 + · · ·+ 2|σ|−k−1 = 2|σ|−k − 1,

and thus µ(Un) ≤ 2−k. Thus, by a relativized version of Conidis’ result (Lemma
3.5), we can construct a Z ′-c.e. open set V such that lim infn→∞ Un ⊆ V and
µ(V ) ≤ 2−k+1. Since the construction is uniform in k and X is covered by
lim infn→∞ Un, X is not 2-Z-random.

(ii)⇒(iii). The argument is the same as Claim 2.5.1 in Li and Vitányi [15]. See also
Theorem 6.11.2 in Downey and Hirschfeldt [11].

(iii)⇒(i). Suppose that X is not 2-Z-random. Then, there exists a Z ′-ML-test

{Ud} that covers X. Let Φ be a Turing functional such that {ΦZ′
(d, k)}k is a set

of strings that generates Ud.
We define a conditional machine M as follows. Let σ be the conditional string

and α = (σ0ω)′[σ]. At stage s = 〈d, k〉, if the length of Φα(d, k) is less than σ, then
declare M(τ |σ) = Φσ(d, k) � σ where τ is the lexicographically minimal undeclared
string with length σ − d, if such τ exists.

We claim that, for each d ∈ ω, there exists n such that CM (X � (Z � n)|(Z �
n)) ≤ (Z � n) − d. Fix d and let k0 be such that ΦZ

′
(d, k0) ≺ X where ≺ is the

prefix relation. When the conditional string σ is Z � n and n is large enough, we
have Φα(d, k) = ΦZ

′
(d, k) for every k ≤ k0 and the length Φα(d, k0) is less than

σ. Furthermore, since µ(Ud) ≤ 2−d, the number of ΦZ
′
(d, k) whose length is less

than σ is at most 2σ−d. At stage s0 = 〈d, k0〉, we have Φα(d, k) = ΦZ
′
(d, k) for

every k ≤ k0 and the number of declared strings is at most 2σ−d. Thus, there exists
τ ∈ 2σ−d such that

M(τ |σ) = Φα(d, k0) � σ = ΦZ
′
(d, k0) � σ = X � σ.

Hence, CM (X � σ) ≤ σ − d. �

An interesting corollary of this theorem is the following.
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Corollary 4.5. A set X is 3-random if and only if C(X � (Ω � n)) > Ω � n−O(1)
for infinitely many n. A set X is n-random if and only if C(X � (Z � n)) > Z �
n − O(1) for infinitely many n, where Z is a set Turing equivalent to 0(n−2) and
n ≥ 2.

In the past we did not have any characterization of 3-randomness by complexity
except obvious relativized versions of characterizations of ML-randomness and 2-
randomness. Here, we have one characterization of 3-randomness. Although it uses
Ω, it does not use any oracles.

Theorem 4.4 roughly means that we can measure how random a set X is by
looking at the set of lengths such that the complexities of the strings with the
lengths are maximal up to a constant.

Theorem 4.6. The following are equivalent:

(i) X ⊕ Z is 2-random.
(ii) K(X � (Z � n)) ≥ (Z � n) + n+K(n)−O(1) for infinitely many n.

For the proof, we recall that X⊕̂Z is defined to be

z0x0x1z1x2x3x4x5z2 · · · zn−1x2n−2 · · ·x2n+1−3zn · · ·
for X = x0x1 · · · and Z = z0z1 · · · .

Proof. (i)⇒(ii). Let σ = Z � n. Then

K(X � (Z � n)) = K(X⊕̂Z � (σ + n+ 1)) ≥ σ + n+ 1 +KX⊕Z(σ + n+ 1)

where the second inequality follows from a corollary of Ample Excess Lemma [18].
Notice that

KX⊕Z(σ + n) = KX⊕Z(n)±O(1).

Since X ⊕ Z is 2-random and thus weakly low for K ([17]), we have

KX⊕Z(n) = K(n)

for infinitely many n.

(ii)⇒(i). Notice that

K(X � (Z � n)) ≤ (Z � n) +K(Z � n) +O(1).

Then, we have

K(Z � n) ≥ n+K(n)−O(1)

for infinitely many n. Hence, Z is 2-random.
Let mC(σ) = |σ| − C(σ) and mK(σ) = |σ|+K(|σ|)−K(σ). The the statement

(ii) implies that mK(X � (Z � n)) = O(1) for infinitely many n because K(Z � n) ≤
n+K(n)+O(1). Since mK(σ) ≥ mC(σ)−O(logmC(σ)) ([11, Theorem 4.3.2]), we
have mC(X � (Z � n)) = O(1) for infinitely many n. Hence, C(X � (Z � n)) > Z �
n − O(1) for infinitely many n. Thus, X is 2-Z-random by Theorem 4.4. Finally,
by van Lambalgen’s theorem ([23]), X ⊕ Z is 2-random. �

5. dm-triviality

In this section, with independent interest, we ask the following question.

Question 5.1. If A ≤dm ∅, then should A be computable?

Since ≤dm implies ≤wdm which is equivalent to ≤Sch, dm-triviality implies
Schnorr triviality.

We can also show that dm-triviality implies K-triviality. To see this, we use
Solovay functions.
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Definition 5.2 (Bienvenu and Downey [4]). A function g : ω → ω is a Solovay
function if g is computable and it holds that

(i)
∑
n 2

−g(n) <∞, and
(ii) g(n) ≤ K(n) +O(1) for infinitely many n.

Theorem 5.3 (Bienvenu, Downey, Nies, and Merkle [5]). Let g be a Solovay func-
tion. If K(A � n) ≤ g(n) +O(1), then A is K-trivial.

Theorem 5.4 (Bienvenu, Downey, Nies and Merkle [5]). There exists a Solovay
function that is an order.

Theorem 5.5. If A ≤dm ∅, then A is K-trivial.

Proof. Let g be a Solovay function that is an order. Since g is a Solovay function,
we have

∑
n 2

−g(n) <∞. By the KC-theorem, there exists a machine M such that
KM (0n) = g(n) + c for some constant c. Since g is an order, M is decidable. By
A ≤dm ∅, there exists a decidable prefix-free machine N such that

K(A � n) ≤ KN (A � n) +O(1) ≤ KM (∅ � n) +O(1) = g(n) +O(1).

Since g is a Solovay function, A is K-trivial. �

Thus, the class of dm-trivial reals is a subset of the class of K-trivial reals and
the class of Schnorr trivial reals. Since K-trivial reals and Schnorr trivial reals are
incomparable [13, Corollary 3.14], dm-trivial reals do not coincide with either of
them.
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