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Abstract. In this paper, we develop a general framework integrating algorithmic and higher randomness

theories. We clarify the relationship of the notions of triviality and uniform-lowness in algorithmic random-
ness theory and null-additivity in set theory by effectivizing combinatorial characterizations of transitive
additivity in set theory of the real line. For instance, we show that the following three conditions are

equivalent for an infinite binary sequence A: (1) A is low for Kurtz randomness with respect to uniform
relativization; (2) {A} is effectively E-additive; (3) A△Z is Kurtz random whenever Z is Kurtz random.
Additionally, we study levels of uniformity associated with lowness for randomness and additivity numbers
over various levels of algorithmic/higher randomness theories. We also clarify the relationship between

the Kučera-Gács Theorem and strong measure zero sets of reals over Spector pointclasses, and we show
an abstract version of the Kučera-Gács Theorem stating that for every Spector pointclass Γ, every real is
Γ-weak-truth-reducible to a Γ-Martin-Löf random real.

1. Introduction

1.1. Historical Background. In the history of the development of computability theory and set theory,
they are influenced by each other, and thus these two theories share many common notions and techniques.
For instance, the forcing method is one of the most important techniques common to both of these theories,
and it involves another important common notion, so-called randomness. One way of formalizing randomness
is to define it as genericity with respect to (idealized forcing [3, 38, 78] obtained from) the σ-ideal of Lebesgue
null sets, that is, a point x avoiding all Lebegue null sets whose Borel codes are contained in a ground model
V, or equivalently, the singleton {x} is not Lebesgue null over V. Here, in our paper, V can be chosen as
a model of ZFC set theory, a Turing ideal (i.e., an ω-model of RCA, see [70]), or an admissible set (i.e., a
model of KP, see [4]).

Generally, (quasi-)genericity is defined not only for the σ-ideal of Lebesgue null sets, but also for any
ideal I (on a Polish space) such as σ-ideals of meager sets, sets of Hausdorff dimension zero, etc. Here, a
point x is quasi-generic with respect to an ideal I if the singleton {x} is not covered by a I-negligible set
coded in a ground model. In computability theory, it is known that the Hausdorff dimension of the singleton
{x} (in an outer model) over the ground model consisting of all computable sets corresponds to the growing
rate of the prefix-free Kolmogorov complexity (see [24, Section 13]). We also have similar Kolmogorov
complexity characterizations of the hierarchy of Hausdorff outer measures and packing outer measures with
respect to gauge functions (see also [62]). Intuitively, this suggests that the level of non-randomness of an
individual point coincides with the level of capturability of an individual point by effectively-negligible sets
in a measure-theoretic sense. In fact, these results produce the relationship between computational lowness
and traceability.

The technical notion called traceability (also called slalom; see [13, 63, 64]) is also shared by set theorists
and computability theorists. Indeed, the notion of traceability in computability theory was first introduced,
inspired by Raisonnier’s proof in set theory, by Terwijn and Zambella [74] to characterize lowness for Schnorr
randomness (see [24, 57]). Another important notion in the theory of algorithmic randomness is K-triviality,
introduced by Chaitin [18] as opposite of incompressibility, and has been studied by Solovay [71] and others
(see [57]). One of the most surprising achievements in this field is the equivalence between K-triviality
and lowness for Martin-Löf randomness (see [56, 35]). Later, it is also shown that Schnorr triviality [23] is
equivalent to the truth-table version of lowness for Schnorr randomness [28]. The first, to define lowness, uses
the usual oracle (Turing) relativization, and the second uses uniform relativization (Miyabe [52], Miyabe-Rute
[51]).
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In this context, the notion of lowness comparing two randomness notions is also important. For any
randomness notions R and S, a set A is low for (R,S) (written as A ∈ Low(R,S), see [27, 45]) if every R-
random set is S-random relative to A. With this background, Kihara-Miyabe [44] have studied two levels of
lowness notions Low(R,S) and Low⋆(R,S) inspired by the cardinal characteristics add(I,J ) and add⋆(I,J )
in set theory, and characterize them via variants of traceability and complexity. Here, A ∈ Low⋆(R,S) if
every R-random set is S-random uniformly relative to A.

In set theory, given σ-ideals I and J on 2ω, we say that a set X ⊆ 2ω is (I,J )-additive (written as
X ∈ Add⋆(I,J )) if X + I ∈ J whenever I ∈ I, where X + I = {A△B : A ∈ X and B ∈ I} (see also
Definition 2.36). The following four transitive additivity notions are known to have slalom (traceability)
characterizations:

• X ⊆ 2ω is strong measure zero if (E ,N )-additive.
• X ⊆ 2ω is meager-additive if (M,M)-additive.
• X ⊆ 2ω is E-additive if (E , E)-additive.
• X ⊆ 2ω is null-additive if (N ,N )-additive.

Here, M, N , and E are the σ-ideals generated by meager sets, null sets, and closed null sets, respectively.
The following implications are known (see [3]):

strongly measure zero ⇒ meager-additive ⇔ E-additive ⇒ null-additive

This is a uniform version of the additivity number add(I,J ). We say that a set X ⊆ 2ω is small for (I,J )
(written as X ∈ Add(I,J )) if

∪
x∈X Nx ∈ J for every X-indexed family {Nx}x∈X ⊆ I. Obviously, every

(I,J )-small set is (I,J )-additive. Although (I,J )-smallness only depends on the cardinality, it will turn
out to be useful when we introduce uniformity levels between Add⋆(I,J ) and Add(I,J ). For instance,
Rec law [61] introduced the notion of add(N )-smallness as a continuous-uniform version of smallness for

add(N ). Moreover, Bartoszyński-Judah [2] introduced the notion of an RJ set and an SRJ set as Borel-
uniform smallness for cardinal characteristics cov(J ) and add(J ), respectively. More generally, Pawlikowski-
Rec law [60] introduced continuous and Borel-uniform smallness for any element of Cichoń’s diagram (see
also [12, 68]).

Computability theoretic aspects of cardinal characteristics in Cichoń’s diagram have been studied by Rup-
precht [63, 64] and Brendle et al. [13]. As an earlier use of transitive additivity notions in computability the-
ory, Higuchi-Kihara [32] pointed out the importance of the effectivization of strong measure zero Add⋆(E ,N )
in the study of the Muchnik degree structure (indeed, diminutiveness, smallness, and very smallness in the
sense of Binns [7, 8] are regarded as effectivizations of strong measure zero, the property (T ′) [58, 79], and
null-additivity, respectively). Later, Kihara-Miyabe [44] used the notion of effective strong measure zero to
give a traceability characterization of the notion of Low⋆(SR,WR). Other results on transitive additivity in
algorithmic randomness theory can also be found in [21].

There are also various works on randomness at intermediate levels between computability theory and set
theory. See [48, 39, 66, 73] for hyperarithmetical randomness, and [57, Chapter 9] for lowness and traceability
in the context of higher randomness theory. Carl and Schlicht [17] also studied measure-theoretic aspects
of infinite time register machine computability and infinite time Turing machine computability. In such
a higher randomness theory, we have various uniformity levels other than uniform and non-uniform. For
instance, Bienvenu-Greenberg-Monin [5] pointed out the importance of continuous-uniform relativization to
study lowness for Π1

1-Martin-Löf randomness.
It is straightforward to see that for a real x, its singleton {x} is small for N over a ground model V

(i.e., {x} ∈ Add(N )V) if and only if x is low for randomness-tests over V (see also Proposition 3.9 for more
details). We will also see that the uniform lowness notions Low⋆(R,S) are related to the effectivizations
of transitive additivity notions Add⋆(I,J ). Then, it is natural to study intermediate uniformity levels of
lowness and additivity. These observations lead us to the general framework unifying various developments
on lowness for I-randomness tests w.r.t. F-uniform relativization over V (or simply say (I;F ,V)-lowness),
where I is a σ-ideal and F is a level of uniformity (e.g., continuity, Borel measurability, etc.)

The reader may feel that our framework is quite involved, but we believe that this is an important task
under the current situation of the theory of higher (infinitary) computability and randomness. In recent
years, the basic computability/randomness theory for each special model of infinitary computation has
been repeatedly reproduced in an ad-hoc manner. This is the reason why we wish to emphasize a general
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framework of generalized recursion theory which integrates various kinds of infinitary computations, even
though we think that our main results are still meaningful in the algorithmic (i.e., finite-time) randomness
theory.

1.2. Summary. Our goal of this paper is to shed light on set-theoretic structures buried in algorithmic
randomness theory. In Section 2, we propose a general framework integrating algorithmic randomness the-
ory and various kinds of higher randomness theories. In Section 3, we point out several equivalences among
notions from algorithmic randomness theory and those from set theory. In Section 4, we effectivize combi-
natorial characterizations of transitive additivity in set theory of the real line, and clarify the relationship
among the notions of triviality and uniform lowness in algorithmic randomness theory and null-additivity in
set theory. For instance, our results imply the following equivalences in algorithmic randomness theory.

Theorem 1.1. We have the following equivalences, where symbols A and Z range over subsets of ω.

(i) A is low for Schnorr randomness with respect to uniform relativization (i.e., A ∈ Low⋆(SR)) if and
only if {A} is Schnorr null-additive, that is, {A}+N := {A△Z : Z ∈ N} is Schnorr null whenever
N ⊆ 2ω is Schnorr null.

(ii) A is low for (Martin-Löf,Schnorr)-randomness with respect to uniform relativization (i.e., A ∈
Low⋆(MLR, SR)) if and only if A is (Martin-Löf,Schnorr)-randomness preserving, that is, A△Z is
Schnorr random whenever Z is ML random.

(iii) A is low for (Martin-Löf,Kurtz)-randomness with respect to uniform relativization (i.e., A ∈ Low⋆(MLR,WR))
if and only if A is (Martin-Löf,Kurtz)-randomness preserving, that is, A△Z is Kurtz random when-
ever Z is ML random.

(iv) A is low for Kurtz randomness with respect to uniform relativization (i.e., A ∈ Low⋆(WR)) if and
only if A is Kurtz randomness preserving, that is, A△Z is Kurtz random whenever Z is Kurtz
random.

(v) A is low for weak 1-genericity with respect to uniform relativization (i.e., A ∈ Low⋆(W1G)) if and
only if A is weak-1-genericity preserving, that is, A△Z is weakly 1-generic whenever Z is weakly
1-generic.

More generally, we show similar results in higher randomness theory, infinite time Turing machine ran-
domness theory, etc; e.g., lowness for ∆1

1 randomness with respect to uniform relativization is equivalent
to ∆1

1-null-additivity. Additionally, in Section 5, we study levels of uniformity associated with lowness for
randomness and additivity numbers, where the notions of uniform lowness and transitive additivity lie at the
strongest uniformity level. As a corollary, we generalize the equivalence of lowness and traceability to any
uniformity level in various kinds of higher randomness theories (e.g., infinite time Turing/register machine
randomness theory). In Section 6, we reveal the relationship between the Kučera-Gács Theorem and strong
measure zero sets of reals over certain models. We show in Theorem 6.3 that for any Spector pointclass Γ, a
Γ-semicoded closed set P is ∆-strong measure zero if and only if every real is wtt(Γ)-reducible to an element
of P . As a corollary, we show an abstract version of Kučera-Gács Theorem 6.1 stating that every real is
wtt(Γ)-reducible to a Γ-Martin-Löf random real. Finally, in Section 6.2, we see basic properties of higher
versions of K-triviality and Schnorr triviality.

2. Preliminaries

We refer to [24, 57] for the background in algorithmic randomness and to the textbooks [4, 25, 34, 67] for
generalized recursion theory (computability theory beyond hyperarithmetic).

2.1. Codes and Models.

2.1.1. Oω-Represented Sets. Most mathematical objects which we focus on will be coded by ωω or Pω. For
instance, in set theory, we frequently identify a Borel set in an underlying space with a so-called Borel code
(Example 2.3; see also [10, 38]). The notion of Borel coding is very useful in our study since we want to treat
effectivization/relativization of null sets and meager sets in a unified way. Indeed, in algorithmic randomness
theory, a Martin-Löf null set can be identified with a null set which has a nice c.e. Pω-name w.r.t. Borel
coding in a certain sense. If I is a Borel σ-ideal, we think of Borel coding as a multi-representation [75] of
I in a manner that every Borel code of an I-negligible set N ∈ I is also a name of any smaller set M ⊆ N .
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For instance, if N is included in a Lebesgue null set which has a c.e. Borel code, we shall say that a set N
is c.e. null even when N itself has no exact c.e. description.

In this paper, we often use a (non-identical) Pω-coding of subsets of ω. To avoid confusion, our coding
space will be denoted by Oω instead of Pω (the intended meaning behind the notation Oω is that our coding
space Pω is not only the power set of ω itself, but also topologized as the hyperspace of open subsets of ω).

Definition 2.1. A set X is Oω-represented (or simply, represented) if there is a (possibly, multi-valued)
partial surjection ρ :⊆ Oω → X. For an x ∈ X, any element of ρ−1{x} is called a ρ-semicode or a ρ-name
of x. For a class E, we say that x ∈ X is E-semicoded (w.r.t. ρ) if x has a ρ-semicode px ∈ E∩Oω. For any
represented set X = (X, ρ), we write XE for the collection of all E-semicoded elements of X .

The set E represents our ground model. If the reader is only interested in computability theory and
algorithmic randomness theory, we may fix our model E as the set Ece consisting of all c.e. subsets of ω. For
other instances, we may use EΠ1

1
:= Π1

1∩Oω, the set of all Π1
1 subsets of ω, as the universe of hyperarithmetic

theory, EITTM := Σ1(Lλ)∩Oω, the set of all infinite-time-Turing-machine (ITTM) semicomputable subsets
of ω, as the universe of ITTM computability theory (see [77, 76]).

Example 2.2 (Cantor Space). Cantor space 2ω is the set of infinite binary sequences equipped with the
canonical product topology. A basic open set on 2ω is a cylinder [σ] = {x ∈ 2ω : σ ≺ x} for a finite binary
string σ ∈ 2<ω. Then 2ω is represented by ρ2ω :⊆ Oω → 2ω such that

ρ2ω (p) = x ⇐⇒ p = {⌈σ⌉ ∈ ω : x ∈ [σ]},

where ⌈ · ⌉ : 2<ω → ω is a fixed computable bijection. Baire space ωω also has a similar representation ρωω .
Under the representation ρ2ω (ρωω , resp.), for a point x ∈ 2ω (x ∈ ωω, resp.), Ece-semicodability is

equivalent to computability, EΠ1
1
-semicodability is equivalent to hyperarithmetical definability, and EITTM-

semicodability is equivalent to ITTM computability.

Example 2.3 (Borel Codes). For a fixed countable basis {Bn}n∈ω of an underlying space X (e.g., Baire
space ωω) one can consider a Oω-representation of the class of all Borel sets (or all Σ0

α sets for a fixed rank
α < ω1) in X . Formally, we introduce codings (representations) σ0

n : Oω → Σ0
n(X ) and π0

n : Oω → Π0
n(X )

in the following inductive way:

σ0
1(p) =

∪
n∈p

Bn, π0
n(p) = X \ σ0

n(p), σ0
n(p) =

∪
k

π0
n(p[k]).

Here, the k-th section p[k] is defined by {m : ⟨k,m⟩ ∈ p}. One can easily extend this representation
to ordinal ranks by using a naming system of ordinals such as a tree-representation system of countable
ordinals or Kleene’s system O of ordinal notations. Moreover, (standard) Borel codings are defined by
σtt
α = σ0

α ◦ rng ◦ ρωω and πtt
α = π0

α ◦ rng ◦ ρωω , where rng(q) = {q(n) : n ∈ ω} for q ∈ ωω.
If A ⊆ X is Σ0

α (Π0
α, resp.), we call each element of (σ0

α)−1{A} ((π0
α)−1{A}, resp.) a Borel semicode

of A, and each element of (σtt
α )−1{A} ((πtt

α )−1{A}, resp.) a Borel code of A. We sometimes say Σ0
α-code,

Σ0
α-semicode, etc. for such codes.

Example 2.4. A set S ⊆ X is usually called c.e. open or lightface Σ0
1 if S ∈ (Σ0

1(X ), σ0
1)Ece ; that is,

S = σ0
1(p) for some c.e. set p ⊆ ω. Every c.e. open set S always has a c.e. Borel code, that is, S = σtt

1 (p)
for some c.e. set p ∈ Oω. A set S ⊆ X is usually called co-c.e. closed or lightface Π0

1 if S ∈ (Π0
1(X ), π0

1)Ece ;
that is, S = π0

1(p) for some c.e. set p ⊆ ω. In other words, it is the complement of a c.e. open set.
Another important effectivization of an open set and a closed set are a Π1

1-open set and a Σ1
1-closed set,

respectively (see also [57, Section 9]). Here, a set S ⊆ X is Π1
1-open if S ∈ (Σ0

1(X ), σ0
1)

E
Π1
1 ; that is, S = σ0

1(p)

for some Π1
1 set p ⊆ ω, and a set S ⊆ X is Σ1

1-closed if S ∈ (Π0
1(X ), π0

1)
E

Π1
1 ; that is, S = π0

1(p) for some
Π1

1 set p ⊆ ω. In other words, it is the complement of a Π1
1-open set. In general, a Π1

1-open set may not
have a Π1

1-code w.r.t. Borel coding, that is, there is a Π1
1 set p ∈ Oω such that σ0

1(p) ̸= σtt
1 (q) for any Π1

1 set
q ∈ Oω.

Example 2.5. We often use the symbol OX to denote the represented space (Σ0
1(X ), σ0

1), the hyperspace
of open subsets of X . For instance, the topology on the space Oω is generated by open sets of the form
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BOω
e = {x ∈ Oω : De ⊆ x} ∈ OOω, where (De)e∈ω is a computable enumeration of all finite subsets of ω,

and then OOω is represented as follows:

ρOOω(p) = U ⇐⇒ U =
∪
e∈p

{x ∈ Oω : De ⊆ x}.

The notion of computability and relativization in represented spaces can be thought of as a special case
of the usual model-theoretic relativization. Clearly, however, we do not require the whole structure of E to
define the notion of E-relativization XE, since the definition of XE refers only Oω (i.e., semicodes) contained
in E. Thus, the Oω-encodability is useful for avoiding any set-theoretic and model-theoretic arguments.

Remark 2.6. The general theory of Oω-encodability (representability) has been extensively studied in
computable analysis under the name of represented space (see [75, 11]). In computable analysis, we often use
ωω-representations rather than Oω-representations. It makes no difference when we work only on ω-normed
pointclasses; e.g., a c.e. Oω-representation (e.g., a c.e. set generating an open set) is usually identified with
a computable ωω-representation (e.g., a computable sequence generating an open set), by interchanging a
c.e. set W = {f(s)}s∈ω ∈ Oω and its enumeration procedure λs.f(s) ∈ ωω. However, for a Spector pointclass
Γ such as coanalytic sets (Π1

1), a Γ-semicode in Oω-representation (e.g., a Π1
1 set generating an open set)

may require a ∆-code in ωκ-representation (e.g., an ωCK
1 -computable sequence generating an open set) for

κ > ω.
Indeed, as a code of a topological space, an Oω-representation is more straightforward than an ωω-

representation. For instance, it is known that every T0 space X having a countable cs-network N = (Ni)i∈ω
(see [49, 30]) has an (admissible) representation ρX :⊆ Oω → X where ρ(p) = x iff x ∈

∩
i∈pNi and

{Ni : i ∈ p} is a cs-network of X at x (see [69]). The class of admissibly represented spaces (with sequentially
continuous maps) forms a Cartesian closed category, and is much larger than the class of second-countable
T0 spaces.

2.1.2. Coding of Function Spaces. Here we review definitions of representations of functions spaces (see also
[69, 75]).

Definition 2.7. We say that a function f : Oω → Oω is computable if f is an enumeration operator. Recall
that an enumeration operator f is identified with a computable set Ψf ∈ Oω of axioms, that is, n ∈ f(A)
iff there is ⟨e, n⟩ ∈ Ψf such that De ⊆ A, where De is the e-th finite subset of ω. It is continuous if it is
computable relative to an oracle, or equivalently, it has an axiom. Then, the space C(Oω,Oω) of continuous
functions is represented by Ψf 7→ f .

Definition 2.8. Let X = (X, ρX) and Y = (Y, ρY ) be represented sets. Then, a partial function f :⊆ X → Y
is continuously realized (computably realized, resp.) if there exists a continuous (computable, resp.) function

f̃ : Oω → Oω such that for any ρX -name px of x ∈ dom(f), f̃(px) outputs a ρY -name of f(x). Each axiom

Ψf of a realizer f̃ of f is also considered as a name of f . Thus, the space C(⊆X ,Y) of all partial continuously
realized function from X into Y is represented by the (multi-valued) partial map Ψf 7→ f .

For a given function space F(⊆X ,Y), we sometimes write Ftt(X ,Y) to emphasize that it denotes the
space of all f ∈ F(⊆X ,Y) with dom(f) = X . Another important example of a subspace of a function space
C(⊆X ,Y) is the space of uniformly continuous functions defined as follows:

Example 2.9. Let X = (X, dX) and Y = (Y, dY ) be metric spaces represented by ρX and ρY , respectively
(see Weihrauch [75]). We say that δ ∈ ωω is a modulus of continuity of a function f : X → Y if dX(x, y) <
2−δ(n) implies dY (f(x), f(y)) < 2−n for every x, y ∈ X and n ∈ ω. The represented space Cuf(X ,Y) of
uniformly continuous functions from X into Y as follows.

ρuf(⟨p, q⟩) = ρC(p), where ρC is the induced representation of C(X ,Y),

dom(ρuf) = {⟨p, q⟩ : ρωω (q) is a modulus of continuity of ρC(p)}.

Lemma 2.10. The inclusion map Ctt(2ω, ωω) ↪→ Cuf(2ω, ωω) is computable, that is, there is a computable
function mapping each ρC-semicode of a function to a ρuf-semicode of the same function.

Proof. It is well known that there is a computable version of the statement that every continuous function
with a compact domain is uniformly continuous. □
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Definition 2.11. Suppose that F is a represented function space, and that x and y are reals. Then, we
say that y is F-reducible to x over E (written as y ≤E

F x) if there is a partial function f ∈ FE such that
x ∈ dom(f) and f(x) = y.

Remark 2.12. We use notations ≤T(E), ≤wtt(E), and ≤tt(E) instead of ≤E
C ,≤E

Cuf
, and ≤E

Ctt
. For instance,

if Ece := Σ0
1 ∩ Oω then the reducibility notions ≤T(Ece), ≤wtt(Ece) and ≤tt(Ece) are equivalent to Turing

reducibility, weak-truth-table reducibility and truth-table reducibility, respectively.

One can also introduce a represented space of Lipscitz continuous functions to study strong weak truth-
table reducibility (also known as computable Lipschitz reducibility). See Downey-Hirschfeldt-LaForte [22].

2.1.3. Pointclasses and Measurability. In our paper, a represented function space F will play a role as a
level of uniformity. Usually, our level of uniformity F is chosen as a subclass of partial functions (that are
universally measurable, in most cases) which are not necessarily continuous; e.g., measurable w.r.t. Borel
sets, C-sets and R-sets (see [14, 15, 16]). The relationship between several generalized computability notions
and classical measure theoretic notions such as C-sets and R-sets has been analyzed by many researchers
(see for instance, [1, 9, 33, 34, 47]).

Generally, we have a well-developed theory on Γ-measurability for a pointclass Γ (see Moschovakis [55]).
Here, a pointclass is an operation Γ such that ΓX ⊂ PX for any computable metric space X ([29, 55]). For
instance, ∆i

α, Σiα and Πi
α are pointclasses. We often identify a pointclass Γ with the union of all ΓX where X

ranges over all computable metric spaces. Recall that a function f : X → Y is Γ-measurable if f−1[U ] ∈ ΓX
for each open set U ∈ OY. To define this notion, we only need a pointclass Γ defined on X , and openness
on Y. The purpose of this paper is not to establish a new framework of pointclasses on general represented
spaces; therefore, we still keep the restriction that pointclasses Γ are defined only on computable metric
spaces.

We will see that by using an ω-parametrization of a (lightface) pointclass Γ, the boldface pointclass Γ
and the associated function space FΓ can be viewed as Oω-represented spaces.

Definition 2.13 (see Moschovakis [55]). Let Z be a set. A pointclass Γ is Z-parametrized if for any separable
metric space X , there is a surjection ρΓX : Z → ΓX such that

{(x, y) ∈ Z × X : y ∈ ρΓX (x)} ∈ Γ.

If a pointclass Γ is ω-parametrized, the corresponding boldface pointclass Γ is defined as follows:

A ∈ ΓX ⇐⇒ (∃B ∈ Γ(ωω ×X ))(∃p ∈ ωω) A = {x ∈ X : (p, x) ∈ B}.

Then, ΓX is ωω-represented by ρ̃ΓX : ⟨e, p⟩ 7→ A, where e ∈ ω is a ρΓ(ωω×X )-name of B. Then, an
Oω-representation of ΓX is given by ρ̂ΓX = ρ̃ΓX ◦ ρωω .

In this paper, the codomain Y of a Γ-measurable function is allowed to be a non-admissibly represented
space such as the space Π0

2(2ω) of Gδ subsets of Cantor space (represented by Borel coding). However, if Y
is non-admissible, the space OY is ill-behaved. Instead of using OY , we consider a Γ-measurable realizer.
Recall that if underlying spaces are second-countable and Γ is well-behaved, then f : X → Y is Γ-measurable
if and only if f−1 : OY → ΓX sending U 7→ f−1[U ] has a continuous realizer (see [10, 42]).

Definition 2.14. Let Γ be a ω-parametrized pointclass, and X be a separable metric space. Then, a function
f : X → Oω is Γ-measurable if the function f−1 : OOω → ΓX sending U 7→ f−1[U ] has a continuous realizer.
If Γ is sufficiently well-behaved (e.g., Γ is a Kleene-or-Spector pointclass), f : X → Oω is Γ-measurable if
and only if the following set Gf belongs to the pointclass Γ(X × ω):

Gf := {(x, n) ∈ X × ω : n ∈ f(x)}.

Thus, the space FΓ(X ,Oω) of all Γ-measurable functions from X into Oω is represented by a map sending
each Γ-code of Gf to f . Generally, for a represented space Y = (Y, ρY ), a function f : X → Y is Γ-measurable

if f has a Γ-measurable realizer in the sense that f = ρY ◦ f̂ for some Γ-measurable function f̂ : X → Oω.
The space FΓ(X ,Y) of all Γ-measurable functions from X into Y is represented by a map sending each
Γ-code of Gf̂ to f .
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Given a pointclass Γ, a set p ∈ Oω belongs to Γ if p ∈ Γω. We use all Γ-names EΓ := Γω ⊆ Oω
as our ground model, and FΓ as an associated level of uniformity. If we work on computability theory
(hyperarithmetic theory, resp.), we may choose the pointclass Σ0

1 (Π1
1, resp.), which generates the ground

model Ece := Σ0
1 ∩ Oω (EΠ1

1
:= Π1

1 ∩ Oω, resp.) and the space C of partial continuous functions (the space

FΠ1
1

of partial Π1
1-measurable functions, resp.) In either case, our ground model E is exactly of the form

Σ1(M) ∩ Oω, the collection of all Σ1-definable subsets of ω over a model M of Kripke-Platek set theory.
However, a model M |= KP itself does not involve a function space. Our ground model E should involve a
(represented) function space F to define the corresponding reducibility notion. This is the reason why we
need a pointclass rather than a model of KP.

Definition 2.15. If Γ is an ω-parametrized pointclass, we write x ≤Γ y for x ≤EΓ

FΓ
y (see Definition 2.11).

Example 2.16. Reducibilities ≤Σ0
1

and ≤Π1
1

(restricted to Cantor space, Baire space or Euclidean n-space

for n ∈ ω) are Turing reducibility ≤T and hyperarithmetical reducibility ≤h while ≤T(E
Π1
1
):=≤

E
Π1
1

C is higher-

Turing reducibility ([5]).

2.1.4. Kleene Pointclasses and Spector Pointclasses. A well-behaved level of uniformity FΓ is usually defined
as Γ-measurability for a Spector pointclass Γ (see [54, 55, 41, 40]); e.g., Γ = Π1

1 (lightface coanalytic sets),
Γ = 2env(E1) (the 2-envelop, all semi-computable pointsets, of Tugué’s type 2 functional E1), Γ = all
pointsets semi-computable by infinite time Turing machines (see [76]), etc. By Moschovakis’ companion
theorem ([54, Theorem 9E.1]; see also [31]), every Spector pointclass Γ involves a transitive model MΓ of
Kripke-Platek set theory KP such that the MΓ Σ1-projects to ω and Σ1(MΓ)-definable set A ∈ Oω are
exactly Γ subsets of ω. For instance, the companion of the Spector pointclass Π1

1 is LωCK
1

.

We say that Γ is a Kleene-or-Spector pointclass if it is a relativized Kleene Σ-pointclass (i.e., Σ0
α(z)

for some α < ωCK,z
1 ) or a Spector pointclass. In particular, Γ admits an ω-parametrization, Γ-norm, and

uniformization (see [55]). The notion of a Kleene-or-Spector pointclass is useful for developing algorithmic
randomness theory, hyperarithmetical randomness theory, infinite-time-Turing-machine (ITTM) randomness
theory, etc. in a unified manner. We say that a set E ⊆ Oω is principal KS (or a topped KS-model)
if E = EΓ for a Kleene-or-Spector pointclass Γ. However, generalized recursion theory is not restricted
to principal KS models; e.g., arithmetical definability, infinite-time-register-machine (ITRM) computability,
and constructibility (in the sense of Gödel’s L). We introduce the following notion to capture such generalized
computability notions:

Definition 2.17. A KS base of Γ is a collection (Γu)u∈Λ of Kleene-or-Spector pointclasses such that

(i) ΓuX ⊆ ΓX for all u ∈ Λ.
(ii) (Localization) for all A ∈ ΓX there is u ∈ Λ such that A ∈ ΓuX .

(iii) (Amalgamation) for all u, v ∈ Λ there is w ∈ Λ such that Γu ∪ Γv ⊆ Γw.

A pointclass Γ is locally KS if it has a KS base. A set E ⊆ Oω is locally KS if E = EΓ for a locally KS
pointclass. If Γ has an Oω-indexed KS base (Γu)u∈Oω, then we may define the represented space FΓ (whose
representation depends on the choice of such a base) as follows: ⟨u, q⟩ names f iff q is a name of f in the
represented space FΓu .

Example 2.18. The pointclass ∆0
<ω has a KS base (Σ0

n)n<ω, which generates the universe of arithmetical
sets and arithmetical reducibility. The pointclass ∆1

1 has a KS base (Σ0
α)α<ωCK

1
. The pointclass corresponding

to ITRM semi-computability has a KS base (⅁(Σ0
1)n)n<ω, where (Σ0

1)n is the n-th level of the difference
hierarchy of ∆0

2.

It is well known that basic computability theoretic results hold for Kleene-or-Spector pointclasses (see [25,
55]). Based on the same idea, one can develop computability theory for a locally KS-set in a straightforward
manner. For instance, it is very easy to show characterizations of E-Martin-Löf/Schnorr randomness via
complexity, martingale, etc. for any locally KS-set E.

2.2. Ideals and Randomness.
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2.2.1. Coding of Ideals. A representation (a coding) of an ideal (usually associated with a forcing notion, in
the context of idealized forcing [78]) is often used to define the notion of randomness (and genericity) over
a model M |= ZFC. We are mostly interested in three Borel σ-ideals N , M, and E generated by Lebesgue
null sets, meager sets, and closed null sets. In set theory, these ideals are naively represented by Borel codes,
or more accurately, Gδ-codes (for N ) and Fσ-codes (for M and E). However, in algorithmic randomness
theory, we require more delicate handling of representations of the ideal N of Lebesgue null sets (see [44]
and Definition 2.22). Thus, each ideal may have various different representations.

As mentioned before, it is natural to choose multi-valued maps to represent ideals. Given a representation
γ :⊆ Oω → X, we define the multi-representation ⊆γ :⊆ Oω → X by declaring that ⊆γ(x) names y iff
y ⊆ γ(x). The σ-ideal N can be represented by (restrictions of) ⊆π0

2 or ⊆πtt
2 , and M and E by ⊆σ0

2 and
⊆σtt

2 in the following manner:

Definition 2.19 (Induced Representation of Ideals). Suppose that a pointclass Γωω is represented by

γ :⊆ Oω → Γωω, and a σ-ideal J ⊆ P(ωω) is endowed with its generator Ĵ ⊂ Γ. Then, one can

automatically obtain the induced multi-representation γ ⇂ Ĵ :⊆ ωω → J by restricting γ as follows:

(γ ⇂ Ĵ )(p) = ⊆
∪
k∈ω

γ(p[k]), dom(γ ⇂ Ĵ ) = {p : γ(p[k]) ∈ Ĵ for all k ∈ ω}.

Here, ⊆∪
k γ(p[k]) is an abbreviation of ⊆δ, where δ : p 7→

∪
k γ(p[k]).

Example 2.20. The σ-ideals N , M and E are σ-generated by Lebesgue null Gδ sets N̂ , nowhere dense
closed sets M̂ and Lebesgue null closed sets Ê , respectively.

Example 2.21. Recall that XE is the set of all E-semicoded elements of a represented set X . If X is
multi-represented, then a name p may code many elements of X . For instance, if p is a c.e. semi-code of a
Gδ set π0

2(p), then p codes all subsets of the Π0
2 sets π0

2(p) w.r.t. the multi-representation ⊆π0
2 . Therefore,

(N , π0
2 ⇂N )Ece is exactly the set of all sets A such that A ⊆ B for some lightface Π0

2 null set B. Similarly,

(E , π0
1 ⇂M)

E
Π1
1 is exactly the set of all sets A such that A ⊆ B for some Σ1

1-closed null set B.

Definition 2.22 (see also [44]). Let λ be the Lebesgue measure on 2ω. We define two representations
ρMLR and ρSR of the ideal N , and a representation ρWR of the ideal E , where recall that E is the σ-ideal
generated by all closed null sets. The Martin-Löf representation (or ML-representation) ρMLR :⊆ Oω → N ,
the Schnorr representation ρSR :⊆ Oω → N , and the Kurtz representation ρWR :⊆ Oω → E are defined as
follows:

ρMLR(p) = ⊆π0
2(p) = ⊆

∩
n

σ0
1(p[n]), dom(ρMLR) = {p : λ(σ0

1(p[n])) ≤ 2−n for all n ∈ ω}.

ρSR(p) = ⊆π0
2(p) = ⊆

∩
n

σ0
1(p[n]), dom(ρSR) = {p : λ(σ0

1(p[n])) = 2−n for all n ∈ ω}.

ρWR(p) = ⊆σ0
2(p) = ⊆

∪
n

π0
1(p), dom(ρWR) = {p : λ(π0

1(p[n])) = 0 for all n ∈ ω}.

We use NMLR, NSR and EWR to denote (N , ρMLR), (N , ρSR) and (E , ρWR), respectively.

Example 2.23. An element in (NMLR)Ece , (NSR)Ece , and (NWR)Ece can be identified with a Martin-Löf test,

a Schnorr test, and a Kurtz test, respectively. An element in (NMLR)
E

Π1
1 is also known as a Π1

1-Martin-Löf
test. Note that ρSR is essentially equivalent to the representation of N introduced by Pawlikowski-Rec law
[60]. The Kurtz representation ρWR is equal to the induced representation π0

1 ⇂ Ê (in the sense of Example
2.19) of E .

Definition 2.24. The weak-1-genericity representation ρW1G :⊆ Oω → M and the Cohen forcing represen-
tation ρ1G :⊆ Oω → M are defined as follows:

ρW1G(p) = ⊆σ0
2(p) = ⊆

∪
n

π0
1(p[n]), dom(ρW1G) = {p : π0

1(p[n]) is nowhere dense for all n ∈ ω}.

ρ1G(p) = ⊆
∪
n

∂(σ0
1(p[n])), where ∂U is the boundary of U .
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Remark 2.25. The weakly-1-generic representation ρW1G is equivalent to the induced representation (in
the sense of Definition 2.19) of M.

2.2.2. Genericity and Randomness. The notion of a represented ideal automatically involves the notion of
quasi-genericity.

Definition 2.26. Suppose that J is a (multi-)represented Borel ideal in an underlying topological space X .
A point z ∈ X is said to be J -quasigeneric (or J -random) over E if z avoids all E-semicoded J -negligble

sets, that is, {z} ̸∈ J E. In this case, we write z ∈ RNDE
J .

Example 2.27 (Genericity w.r.t. Induced Representations). As computability-theoretic examples, weak
2-randomness is (N , π0

2 ⇂N )-quasigenericity over Ece, Kurtz randomness is (E , π0
1 ⇂ E)-quasigenericity over

Ece, weak 1-genericity is (M, π0
1 ⇂ M)-quasigenericity over Ece, and Σ1

1-Kurtz randomness is (E , π0
1 ⇂ E)-

quasigenericity over EΠ1
1
.

As set-theoretic examples, Cohen (quasi-)genericity over M |= ZF in the sense of set theory is (M, πtt
1 ⇂M)-

quasigenericity over Oω ∩M, and randomness over M |= ZF is (N , πtt
2 ⇂N )-quasigenericity over Oω ∩M.

Here, in set theoretic context, we normally use Borel codes such as πtt
2 rather than Borel semi-codes such as

π0
2 (in the sense of Example 2.3), though there is no difference between them under full separation. However,

generally, they define different quasigenericity. For instance, (N , πtt
2 ⇂N )-quasigenericity over EΠ1

1
is exactly

randomness over LωCK
1

(i.e., ∆1
1-randomness), whereas (N , π0

2 ⇂N )-quasigenericity over EΠ1
1

is higher weak

2-randomness [5].

Example 2.28 (Genericity in Computability Theory). Martin-Löf randomness is equivalent to (N , ρMLR)-
quasigenericity over Ece. Schnorr randomness is equivalent to (N , ρSR)-quasigenericity over Ece. Moreover,
1-genericity is equivalent to (M, ρ1G)-genericity over Ece.

The notion of relative randomness is one of the main concepts in algorithmic randomness theory. This
notion is generalized as follows:

Definition 2.29. We say that a point z is J -quasigeneric (or J -random) F-uniformly relative to y over E

(denoted by z ∈ RNDF,E
J (y)) if z avoids all J -negligible sets J ≤E

F y, that is,

J ∈ FE(⊂2ω,J ) and y ∈ dom(J) =⇒ z ̸∈ J(y).

Each map J ∈ FE(⊂2ω,J ) is called an F-uniform J -test over E. For instance, a map in CEce(⊂2ω,NMLR)

is usually referred as an oracle Martin-Löf test, and a map in CEce
tt (⊂2ω,NSR) is referred as a truth-table

Schnorr test or a uniform Schnorr test (see [28, 43, 44, 51]).

2.3. Lowness for Randomness. Lowness for tests and randomness is an important notion in algorithmic
randomness theory (see [24, 27, 57]). Now we generalize the notion of lowness for (uniform) tests.

Definition 2.30. A real z ∈ 2ω is low for F-uniform (I,J )-tests over E (or (I,J ;F ,E)-lowtest) if every
J -negligible set J ≤E

F z is also I-negligible over E, i.e.,

J ∈ FE(⊂2ω,J ) =⇒ J(z) ∈ IE.

In the theory of algorithmic randomness, there are many kinds of results of the form that lowness for
randomness tests is equivalent to lowness for randomness. To introduce the notion of uniform lowness for
randomness, we define the uniform genericity notion as a relativization of the usual genericity RNDE

J in
Definition 2.26.

Definition 2.31. We say that a real z ∈ 2ω is low for (I,J ) w.r.t. F-uniform relativization over E (or
(I,J ;F ,E)-low) if every I-quasigeneric real over E is J -quasigeneric F-uniformly relative to A ∈ 2ω over

E, that is, RNDE
I ⊆ RNDF,E

J (A) holds.

If Γ is a (Kleene-or-Spector) pointclass, then one may say lowness for (I,J )-randomness over EΓ (lowness
for (I,J )-tests over EΓ, resp.) instead of (I,J ;FΓ,EΓ)-lowness ((I,J ;FΓ,EΓ)-lowtest-ness, resp.)
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Remark 2.32. Note that a real z ∈ 2ω is low for (I,J ) w.r.t. F-uniform relativization over E if and only
if the following holds:

J ∈ FE(⊂2ω,J ) =⇒ J(z) ⊆
∪

IE.

Therefore, (I,J ;F ,E)-lowtest-ness implies (I,J ;F ,E)-lowness.

Example 2.33. (NMLR,NMLR; C,Ece)-lowness is usually referred as lowness for Martin-Löf randomness,
and (NSR,NSR;FΠ1

1
,EΠ1

1
)-lowness is referred as lowness for Π1

1-Schnorr randomness.

2.3.1. Transitive Additivity. We now present an example of use of uniform relativization in set theory. Recall
that add(I,J ) is the smallest cardinal such that the union of an A-indexed collection of I-negligible sets
is still J -negligible whenever the cardinality of A is less than add(I,J ) (see [3]). We may say that A
is F-uniformly (I,J )-small if the union of an A-indexed F-uniform collection of I-negligible sets is still
J -negligible. More generally, we consider the following notion:

Definition 2.34. Suppose that F is a (represented) collection of partial functions, and I and J are ideals
endowed with multi-representations. We say that a set A ⊆ ωω is F-uniformly (I,J )-small over E (written

as A ∈ AddF,E(I,J )) if

N ∈ FE(⊂ω
ω, I) =⇒ N [A] :=

∪
{N(x) : x ∈ A ∩ dom(N)} ∈ J E.

If I = J , we write A ∈ AddF,E(I). If F is the collection of all partial functions on Oω, then we write

A ∈ AddE(I,J ). If E = V ∩ Oω, we write A ∈ AddF (I,J ).

Remark 2.35. Suppose that C and B are collections of all partial continuous and Borel functions, re-
spectively. The notions AddB(J ) and AddC(J ) can be equivalent to the notions Add†(J ) and Add‡(J )
introduced by Pawlikowski-Rec law [60], respectively, by carefully choosing a representation of J .

Now we introduce the strongest uniformity level of (I,J )-smallness known as transitive additivity.

Definition 2.36 (see also [3]). Let I and J be represented ideals. We say that X ⊆ 2ω is (I,J )-additive

over E (written as X ∈ Add⋆,E(I,J )) if N ∈ I implies X + N ∈ J , where recall that X + N is the set of

symmetric differences A△B of all pairs (A,B) ∈ X ×N . We also use the notation Add⋆,E(I) if I = J .

2.4. Traceability and Slalom. The notion of traceability is a standard and useful tool to characterize
lowness for randomness [24, 57]. This notion is also used to characterize transitive additivity notions [3].

Definition 2.37 (see [24, 57]). A trace (also known as a slalom in set theory) is a sequence T = ⟨Tn⟩n∈ω of
finite subsets of ω with |Tn| ≤ 2n for every n ∈ ω. For Q ⊆ Pω, we say that T Q-often traces V ⊆ ωω if

(∀h ∈ V ) {n ∈ ω : h(n) ∈ Tn} ∈ Q.

We simply say that T traces V (T i.o. traces V , resp.) if Q is the set of all cofinite sets Qcof (all infinite sets
Qinf , resp.) We also say that for a given g ∈ ωω, T g-o. traces V if Q = Qg := {X ⊆ ω : X∩[g(k), g(k+1)) ̸= ∅,
for almost all k}.

One can also introduce E-relativized versions of a c.e. trace and a computable trace by defining represen-
tations of sets T of slaloms as follows:

Definition 2.38 (Representation of Traces). Let T be the set of all traces. One can automatically obtain a
representation τsemi :⊆ Oω → T by thinking of T as a subspace of Oω, where each ⟨Tn⟩n∈ω ∈ T is identified
with {⟨n, k⟩ : k ∈ Tn} ∈ Oω. We also consider the following representation τtt :⊆ Oω → T :

τtt(⟨p, q⟩) = τsemi(p) = ⟨p[n]⟩n∈ω, dom(τtt) = {⟨p, q⟩ : ⟨p[n]⟩n∈ω ∈ T , and q(n) = |p[n]|}.

Then, the represented spaces (T , τsemi), and (T , τtt) are abbreviated as Tsemi, and Ttt, respectively.

Example 2.39. Every Ece-point in the space Tsemi is called a c.e. trace. Every Ece-point in the space Ttt
is called a computable trace.
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Definition 2.40. Suppose that F and G are represented function spaces, Q̃ is a collection of quantifiers,
i.e., Q̃ ⊆ PPω, and S is a represented space of slaloms. We say that the F-degree of a set V ⊆ 2ω is Q̃-often
S-traceable over E (or V is (S, Q̃;F ,E)-traceable) if

(∀f ∈ FE(V, ωω))(∃T ∈ SE)(∃Q ∈ Q̃) T Q-traces f [V ].

We also say that the F-degree of a set V ⊆ 2ω is Q̃-often S-traceable G-uniformly relative to x ∈ 2ω over E
(or V is (S, Q̃;F ,G,E)-traceable relative to x) if

(∀f ∈ FE(V, ωω))(∃g ∈ GE(⊂2ω,S))(∃Q ∈ Q̃) g(x) Q-traces f [V ].

Example 2.41. The following are examples of traceability notions in algorithmic randomness theory (see
[24, 37, 44, 57]).

(i) (Tsemi, {Qinf}; C,Ece)-traceability is equal to c.e. i.o. traceablity.
(ii) (Tsemi, {Qcof}; Ctt,Ece)-traceability is equal to c.e. tt-traceablity.

(iii) (Ttt, {Qcof};FΠ1
1
,EΠ1

1
)-traceability is equal to ∆1

1-traceablity.

(iv) (Ttt, {Qg : g ∈ (ωω)Ece}; Ctt,Ece)-traceability is equal to computably c.o. tt-traceability.

Remark 2.42. Note that if Q̃ is either {Qcof}, {Qinf} or {Qg : g ∈ (ωω)E}, it is easy to see that the bound

|Tn| ≤ 2n in the definition of Q̃-often traceability can be replaced with |Tn| ≤ p(n) for any unbounded
nondecreasing p ∈ (ωω)E (see [24, 57]).

2.5. Kolmogorov Complexity. It has been shown in the algorithmic randomness theory that most lowness
notions are characterized in terms of Kolmogorov complexity [24, 57, 44]. One can introduce E-relativized
versions of Komogorov complexity by defining representations on the space C(⊂2<ω, 2<ω) of machines as
follows:

Definition 2.43 (Machine). The space of prefix-free machines is a subspace Cpf(⊆2<ω, 2<ω) of the function
space C(⊆2<ω, 2<ω) consisting of functions φ :⊆ 2<ω → 2<ω such that dom(φ) is prefix-free. Note that
C(⊆2<ω, 2<ω) has the induced representation by Definitions 2.11 and 2.14 via an effective representation of
the discrete space 2<ω ≃ ω. The representation ρsemi of Cpf(⊆2<ω, 2<ω) is obtained by restricting its range
to prefix-free functions. In other words,

ρsemi(p) = φ ⇐⇒ p = Graph(φ), where dom(ρsemi) = {p : ρsemi(p) ∈ Cpf(2<ω, 2<ω)}.

Moreover, we also consider the following representation ρttλ :⊆ Oω → Cpf(2<ω, 2<ω):

ρttλ(⟨p, q⟩) = ρsemi(p), where dom(ρttλ) = {⟨p, q⟩ : ρsemi(p) ∈ Cpf(2<ω, 2<ω), and ρR(q) = Ωρsemi(p)}.

Here, the halting probability Ωφ of a machine is defined as Ωφ = λ([[dom(φ)]]) =
∑
σ∈dom(φ) 2−|σ|, where

λ is the Lebesgue measure on 2ω. Then, the represented spaces (Cpf(2<ω, 2<ω), ρe) and (Cpf(2<ω, 2<ω), ρttλ)
are abbreviated as Csemi(2

<ω) and Cttλ(2<ω), respectively.

Example 2.44. Every Ece-point in the space Csemi(2
<ω) is exactly a partial computable prefix-free machine.

Every Ece-point in the space Cttλ(2<ω) is called a computable measure machine, that is, its halting probability
is computable (see [24, Section 7.1.3]).

The prefix-free Kolmogorov complexity Kφ with respect to a machine φ is defined by Kφ(σ) = min{|τ | :
φ(τ) = σ}. We define E-relativized versions of K-triviality, Schnorr triviality, and K-reducibility as follows.

Definition 2.45. Let r ∈ {semi, ttλ}. A set A ⊆ ω is Kr-reducible to B ⊆ ω over E (written as A ≤E
Kr

B)
if

(∀φ ∈ CM
r (2<ω))(∃ψ ∈ CM

r (2<ω)) Kψ(A↾n) ≤ Kφ(B ↾n) +O(1).

We write A ≡MKr
B if A ≤MKr

B and B ≤MKr
A. We also simply replace Kr with K if r = semi. A set A ⊆ N

is said to be Kr-trivial over E if A ≤E
Kr

∅.

Example 2.46. If a set A ⊆ ω is Ksemi-trivial over Ece, it is usually called K-trivial. If A ⊆ ω is Kttλ-trivial
over Ece, it is usually called Schnorr trivial.
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Definition 2.47. We say that a set A ⊆ ω is Q̃-often Kr-compressible over E if

(∀g ∈ (ωω)E)(φ ∈ Cr(2<ω))(∃Q ∈ Q̃) {n ∈ ω : Kφ(A↾g(n)) ≤ n} ∈ Q.

We also say that a set A ⊆ ω is Q̃-often Kr-autocompressible over E if

(∀g ≤E
C A)(φ ∈ Cr(2<ω))(∃Q ∈ Q̃) {n ∈ ω : Kφ(A↾g(n)) ≤ n} ∈ Q.

Example 2.48. The following are examples of complexity properties in algorithmic randomness theory (see
[24, 37, 44]).

(i) A is complex iff A is not {Qinf}-often Ksemi-compressible over Ece.
(ii) A is autocomplex iff A is not {Qinf}-often Ksemi-autocompressible over Ece.

(iii) A is anticomplex iff A is {Qcof}-often Ksemi-compressible over Ece.
(iv) A is totally complex iff A is not {Qinf}-often Kttλ-compressible over Ece.

It is known that (Ts, Q̃; Ctt,Ece)-traceability is equivalent to Q̃-often Kr-compressibility over Ece, where

s = semi iff r = semi; and s = tt iff r = ttλ (see [24, 37, 44]). It is also known that (Ts, Q̃; C,Ece)-traceability

is equivalent to Q̃-often Kr-autocompressibility over Ece. One can easily generalize the first equivalence.

Proposition 2.49 (see [37]). Suppose that s = r = semi, or s = tt and r = ttλ. Then, (Ts, Q̃; Ctt,E)-

traceability is equivalent to Q̃-often Kr-compressibility over E. □

3. Basic Equivalences

3.1. Additivity, Lowness and Preservation. We first show that (I,J )-additivity is equivalent to (I,J )-
randomness preserving for any well-behaved pair (I,J ). Inspired by Rute’s terminology [65], we say that a
measure-preserving map T satisfies randomness-preservation w.r.t. (I,J ) if T (x) is J -random whenever x is
I-random, and that T satisfies no-randomness-from-nothing w.r.t. (I,J ) if T (x) is not J -random whenever
x is not I-random. Now, we consider the measure-preserving map TA : 2ω → 2ω defined by Z 7→ A△Z.
Note that, since A△Z△Z = A, one can easily see that TA satisfies randomness-preservation w.r.t. (I,J ) if
and only if TA satisfies no-randomness-from-nothing w.r.t. (J , I).

Definition 3.1. A set A ⊆ ω is (I,J )-randomness preserving over E if TA satisfies randomness-preservation
w.r.t. (I,J ) over E, that is, A△Z is J -random whenever Z ⊆ ω is I-random.

We now compare the notion of transitive additivity and randomness preservation. Consider the following
sets G−

0 , G
−
1 of pairs of ideals.

G−
0 = {(EWR, EWR), (MW1G,MW1G)}, G−

1 = {(NMLR,NSR), (NMLR, EWR)}.
We say that (I,J ) is a good−i -pair of σ-ideals if (I,J ) ∈

∪
j≤iG

−
j . We will see the following:

Theorem 3.2. Suppose that E is a countable locally KS set, and (I,J ) is a good−0 -pair of σ-ideals. Then,
a set A ⊆ ω is (J , I)-additive over E if and only if A is (I,J )-randomness preserving over E. If E is
principal KS, then (I,J ) may be chosen as a good−1 -pair of σ-ideals.

Lemma 3.3. If a set A ⊆ ω is (J , I)-additive over E, then A is (I,J )-randomness preserving over E.

Proof. Assume that A ⊆ N is (J , I)-additive over E. It suffices to show that TA satisfies no-randomness-
from-nothing w.r.t. (J , I) over E. Let Z ⊆ ω be a set such that {Z} ∈ J E. Then {A}+{Z} = {A△Z} ∈ IE

by (J , I)-additivity of A over E. □
Recall that a universal J E-test is a greatest element in J E. For instance, (N , ρMLR)Ece has a greatest

element called a universal Martin-Löf test. The ideal (M, ρ1G)Ece also has a greatest element.

Lemma 3.4. Assume that J E has a universal test. If a set A ⊆ ω is (J , I)-randomness preserving over
E, then A is (I,J )-additive over E.

Proof. Let U ∈ J E be a universal test. Clearly, if a real is not contained in a universal J E-test, then it
must be a J -generic over E. Suppose that A is not (I,J )-additive over E. Then, there is N ∈ I such that
{A} + N ̸∈ J . Hence, {A} + N ̸⊆ U . Fix Z ∈ {A} + N \ U . Then, Z is J -generic over E since Z ̸∈ U .
Moreover, A△Z ∈ N ∈ I since Z ∈ {A} +N . Hence, Z is not I-generic over E. □
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We have another condition ensuring that the above property holds. Call H ⊆ 2ω infinitely often (i.o.)
homogeneous if for infinitely many n and for any σ, τ ∈ 2n, if H ∩ [σ] and H ∩ [τ ] are nonempty, then these
sets are equivalent above level n. Such an n is called a homogeneity level for H. We say that a subclass IE

of an ideal I is M-like if it is generated in E by a class P ⊆ (Π0
1(2ω), π0

1)E of E-semicoded closed sets (see
Definition 2.3) such that every N ∈ P is included in an i.o. homogeneous set N∗ ∈ P.

Example 3.5. (M, ρW1G) and (E , ρWR) are M-like (see also Section 4.4).

Let I be a class of subsets of 2ω. The class I is said to be closed under finite duplication provided N ∈ I
implies dup|σ|(N ∩ [σ]) ∈ I for every string σ. Here,

dup|σ|(N ∩ [σ]) = {τ⌢g : τ ∈ 2|σ| and σ⌢g ∈ N}.

Lemma 3.6. Assume that I is M-like, and J is a countable class generated by closed sets that are closed
under finite duplication. If a set A ⊆ ω is (J , I)-randomness preserving over E, then A is (I,J )-additive
over E.

Lemma 3.7. Let I be a countable class generated by closed sets that are closed under finite duplication.
For every i.o. homogeneous closed set H ⊆ 2ω, if H is not covered by any N ∈ I, then H is not covered by∪
I. □

Proof of Lemma 3.6. Suppose for the sake of contradiction that A is not (I,J )-additive. Then, there is
N ∈ I such that {A} + N ̸∈ J . Note that we may assume that N is i.o. homogeneous, since I is M-like.
It is easy to see that {A} + N is also i.o. homogeneous. Then, by Lemma 3.7, {A} + N is not covered by∪
J . Fix Z ∈ {A} +N \

∪
J . Then, Z is J -generic over E since Z ̸∈

∪
J . Moreover, A△Z ∈ N ∈ I since

Z ∈ {A} +N . Hence, Z is not I-generic over E. □
Proof of Theorem 3.2. We need countability of E to use Lemma 3.6. If E is principal, E = EΓ for an ω-
parametrized pointclass Γ. Therefore, there is a universal E-Martin-Löf test. Hence, we can use Lemma
3.4. □

As a consequence, for instance, Martin-Löf null-additivity is equivalent to Martin-Löf random-preservation,
Kurtz null-additivity is equivalent to Kurtz random-preservation, etc.

Remark 3.8. Given a property P for a subset of ω, a set A ⊆ ω is said to be hereditary P if B satisfies P
for every B ⊆ A. It is not hard to show the existence of a hereditary Schnorr random preserving set (see
[28]). Let C and D be collections of subsets of ω. A set A ⊆ ω is called universally indifferent w.r.t. (C,D) if
Z△B ∈ D for any Z ∈ C and B ⊆ A (see [20, 26]). A set A ⊆ ω is hereditary (I,J )-randomness preserving

over E if and only if it is universally indifferent w.r.t. (RNDE
I ,RND

E
J ). However, it is known that there

is no set universally indifferent w.r.t. Martin-Löf randomness (see [26]). Therefore, there is no hereditary
Martin-Löf null-additive set.

3.2. Lowness versus Additivity. We next see that the notion of lowtest-ness is essentially equivalent to
the notion of smallness in the context of additivity numbers (see Definition 2.34). Later, we will also see
that lowtest-ness w.r.t. uniform relativization (i.e., Ctt-relativization) is essentially equivalent to transitive
additivity (see Definition 2.36).

Proposition 3.9. Let I and J be ideals, F be any represented function space, E be any set. Then,
(I,J ;F ,E)-lowtest-ness is equal to (J , I;F ,E)-smallness.

Proof. Note that {z} ∈ AddF
E(J , I) if and only if J(z) ∈ IE for every FE-function J : A→ J . Clearly, this

condition is equivalent to F-uniform lowness for (I,J )-tests over E. □
We then discuss the relationship between (I,J ;F ,E)-lowness and (I,J ;F ,E)-lowtest-ness. Consider the

following sets G0, G1, G2 of pairs of ideals.

G0 = {(NSR,NSR), (EWR, EWR), (MW1G,MW1G)},
G1 = {(NMLR,NSR), (NMLR, EWR)}, G2 = {(NSR,NWR)}.

We say that (I,J ) is a goodi-pair of σ-ideals if (I,J ) ∈
∪
j≤iGj . We also say that a represented function

space F is E-good if it is closed under taking composition, and the inclusion map Ctt ↪→ F is E-semicoded.
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Theorem 3.10. Suppose that E is a countable locally KS set, F is an E-good function space, and (I,J )
is a good0-pair of σ-ideals. Then, (I,J ;F ,E)-lowness is equal to (I,J ;F ,E)-lowtest-ness. If E is principal
KS, then (I,J ) may be chosen as a good1-pair of σ-ideals.

Proof (Sketch). It is easy to see that (I,J ;F ,E)-lowtest-ness implies (I,J ;F ,E)-lowness. If I,J ∈ {NMLR,NSR},
then one can adopt the argument by Bienvenu-Miller [6, Section 4.3]. Here, we need countability of E to
ensure that there are only countably many tests. Then, we can use [6, Lemma 12] to show the equivalence
between lowness and lowtest-ness for NSR w.r.t. F-uniformization over E. Moreover, we need principality
of E to ensure the existence of a universal Martin-Löf test, which is used to show [6, Theorem 8]. If I
has a universal test, then it is easy to show the equivalence between lowness and lowtest-ness for (I,J )
w.r.t. F-uniformization over E. If I,J ∈ {EWR,MW1G}, since I and J are M-like, use Lemma 3.7. □

One can also see the relationship between the low-for-randomness (LR) degrees (see [57]) and some
cardinal characteristics (see [3]).

Proposition 3.11. The cardinal characteristic add(N ) is equal to the least cardinality of X ⊆ 2ω whose
LR-degrees is unbounded in the whole LR-degrees. The cardinal characteristic cof(N ) is equal to the least
cardinality of X ⊆ 2ω whose LR-degrees is cofinal in the whole LR-degrees.

Proof. Note that if ρ is a representation of N , then the existence of a collection {Nx}x∈X of null sets with
|X| = κ such that

∪
x∈X Nx is not null is equivalent to the existence of a collection Y of cardinality κ

such that
∪
y∈Y ρ(y) ̸⊆ ρ(z) for any z ∈ dom(ρ). Fix a total representation ρ such that ρ(z) is a universal

Martin-Löf test relative to z. Then,
∪
y∈Y ρ(y) ̸⊆ ρ(z) for any z ∈ 2ω implies that for every z ∈ 2ω, there

is r ∈
∪
y∈Y ρ(y) such that r ̸∈ ρ(z), which means that r is not Martin-Löf random relative to y for some

y ∈ Y , but r is Martin-Löf random relative to z. In other words, for every z ∈ 2ω, there is y ∈ Y such that
y is not LR-reducible to z.

For the second assertion, the existence of a collection {Nx}x∈X of null sets with |X| = κ such that every
null set is covered by Nx for some x ∈ X is equivalent to the existence of a collection Y of cardinality κ such
that for every z ∈ dom(ρ), there is y ∈ Y such that ρ(z) ⊆ ρ(y). Then, ρ(z) ⊆ ρ(y) is clearly equivalent to
z ≤LR y. □
3.3. Traceability and Smallness. In this subsection, we show a technical lemma converting tt-traceability
into “⋆-traceability” which can be viewed as a certain kind of measure-theoretic smallness.

A sequence I of finite intervals In ⊆ ω generates the total continuous function cI : 2ω → ωω such that
cI(x)(n) = x↾In, where the finite string x↾In is identified with a natural number via a fixed effective bijecton.
Let ω↑ω denote the set of all increasing functions. Every u ∈ ω↑ω generates sequences I[u] := ([0, u(n)])n∈ω
and J [u] := ((u(n−1), u(n)])n∈ω, where u(−1) = −1. Let C⋆tt denote the space of total continuous functions
of the form cI[u] for some u ∈ ω↑ω, where each function cI[u] is represented by a name of u ∈ ω↑ω. Then we

sometimes use the term Q̃-often S-⋆-traceability over M for (S, Q̃; C⋆tt,M)-traceability.

Lemma 3.12. Suppose that E is a locally KS set, and G is an E-good function space (see Section 3.2).

Then, a set V ⊆ 2ω is (Ttt, Q̃; C⋆tt,G,E)-traceable relative to x if and only if it is (Ttt, Q̃; Ctt,G,E)-traceable
relative to x.

Proof. One direction is easy since A 7→ A↾u is contained in CE
tt for every u ∈ E. For another direction,

suppose that V ⊆ 2ω is Ctt-traceable G-uniformly in x over E, and fix f ∈ CE
tt. Then, by Lemma 2.10, one

can effectively find a modulus of continuity u ∈ E of f , that is, f(z)(n) is determined by z ↾u(n) for every
n ∈ ω. For every trace T , we consider

F (T ) = {f(σ)(n) : σ ∈ T (n) & |σ| = u(n)}.
Then, F (T ) is also a trace. Moreover, it is not hard to see that T 7→ F (T ) is contained in CE

tt(Tsemi, Tsemi)
and CE

tt(Ttt, Ttt). Therefore, for any CE
tt-uniform (semi-)⋆-trace g, the function h = F ◦ g is also a CE

tt-uniform
⋆-trace. Moreover, if g traces V↾u, then h clearly traces f [V ]. □
Remark 3.13. The notion of ⋆-traceability (i.o. ⋆-traceability, resp.) over E is equivalent to being measure
zero with respect to h-dimensional packing outer measure (Hausforff outer measure, resp.) for any gauge
function h ∈ E (see also [44, 62, 79]). By Proposition 2.49 and Lemma 3.12, every ⋆-traceability notion is
characterized by using the Kolmogorov complexity (see also [37, 44]).
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Note that we can replace the above ⋆-traceability notions by the following piecewise traceability notions.
We say that x ∈ 2ω Q-often I-traces V ⊆ 2ω if the slalom ({cI(x)(n)})n∈ω Q-often traces V . If I is of the
form I[u] (J [u], resp.) for some u ∈ ω↑ω, then we say that x Q-often u-traces (Q-often piecewise u-traces,
resp.) V .

Lemma 3.14. Suppose that E is a locally KS set. For any order u, an E-coded real Q-often u-traces X if
and only if for any order u, an E-coded real Q-often piecewise u-traces X.

Proof. If φ u-traces X, then clearly it piecewise u-traces X. Let u be a given order. Inductively define
another order v. Put v(0) = u(0) and assume that v(n) has been defined to be u(kn) for some kn ∈ ω. Then,
put v(n+ 1) = u(kn + 2v(n)). Assume that piecewise φ v-traces X. Let {σns }s<2v(n) be a list of all strings of

length v(n). Then for each n ∈ ω and s < 2v(n), define ψ(0) = φ(0) and ψ(kn+s) = σns
⌢φ(n+ 1)↾u(kn+s).

If φ piecewise v-traces X, then ψ u-traces X. □

3.4. Triviality and Complexity Preservation. Note that Schnorr triviality implies computable tt-traceability
[28], and it implies uniform lowness for computable measure machine [52]. Clearly, uniform lowness for com-
putable measure machine implies that A△Z ≡Sch Z for every Z ⊆ N, and it implies Schnorr-triviality.
Consequently, a set A ⊆ ω preserves Kolmogorov complexity w.r.t. computable measure machines if and only
if A is Schnorr trivial. Generally, we say that a set A ⊆ ω is Kr-complexity preserving over E if A△Z ≡E

Kr
Z

for every Z ⊆ ω.

Theorem 3.15. Let E ⊆ Pω be a locally KS set. The following are pairwise equivalent for a set A ⊆ N.
(i) A is Kttλ-trivial over E.

(ii) A is Kttλ-complexity preserving over E.
(iii) The singleton {A} is Ttt-⋆-traceable over E.

Proof. (ii)⇒(i): By the definition of Kttλ-complexity preserving, we have A = A△∅ ≡E
Kttλ

∅. This is
equivalent to that A is Kttλ-trivial over E.

(i)⇒(iii): Assume that A is Kttλ-trivial over E. Let (Ea)a∈Λ be a KS base of E. Recall that Ea is an
e-ideal, i.e., it is downward closed under enumeration reducibility ≤e and join ⊕, for every a ∈ Λ, since any
Σ-pointclass Γa includes the pointclass Σ0

1 by the definition (see Moschovakis [55]). Let u ∈ ωω be any order
coded in E, say Ea-coded. We define a machine φ ∈ Cttλ(2<ω) by φ(1n0) = u(n) for every n. Clearly φ is Ea-
coded since Ea is an e-ideal. By Kttλ-triviality of A over E, there exists an E-coded (say, Eb-coded) machine
ψ ∈ CE

ttλ such that Kψ(A ↾ u(n)) ≤ Kφ(u(n)) + O(1) ≤ n + O(1). Now, Tn = {σ ∈ 2<ω : Kψ(σ) < 2n} is
computable relative to a code of ψ (which has an information on its halting probability Ωψ) uniformly in n.
Moreover, A ↾u(n) ∈ Tn and |Tn| < 22n. Then, (Tn)n∈ω ∈ Ttt is Eb-coded since Eb is an e-ideal. Since u is
arbitrary, {A} is Ttt-⋆-traceable over E.

(iii)⇒(ii): Let φ ∈ CE
ttλ(2<ω) be an E-coded (say, Ea-coded) machine. By definition, the following sets

S0, S1 ∈ Pω is in Γa (via a trivial effective identifications among ω, 2<ω, Q, etc.):

S0 := {(σ, τ) ∈ 2<ω × 2<ω : φ(σ) = τ}, S1 := {(q, r) ∈ Q× ω : |Ωφ − q| < 2−r}.

Given a finite set F ⊆ S0 we denote ΩF =
∑

(σ,τ)∈F 2−|σ|. For any n, there are a finite set F ⊆ S0

and (q, r) ∈ S1 such that r > 2n + 2 and |ΩF − q| < 2−r. By uniformization, we have an Ea-coded
sequence ⟨φn⟩n∈ω of finite functions approximating (the graph of) φ such that Ωφ − Ωφs < 2−2n−1. Put
u(n) = max{|σ| : σ ∈ dom(φn)}. Clearly, u is Ea-coded. Since {A} is Ttt-⋆-traceable over E, there exists
an Eb-coded sequence {Tn}n∈ω of sets Tn ⊆ 2u(n) such that |Tn| ≤ 2n and A ↾ u(n) ∈ Tn. Let Ec be an
amalgamation of Ea and Eb. Then, the weight of the request set

L =
∪
n

{⟨σ△τ ↾ |σ|,Kφn(σ)⟩ : σ ∈ dom(φn+1) \ dom(φn) and τ ∈ Tn}.

is less than
∑
n 2−2n−1 ·|Tn| ≤ 1, and its exact value is computable in (φn)n∈ω⊕(Tn)n∈ω, and hence Ec-coded.

Moreover, L itself is Ec-decidable. Hence, by the standard KC set argument, we have an L-computable (in

particular, Ec-coded) machine ψ ∈ CEc

ttλ such that Kψ(σ△A↾ |σ|) = Kφ(σ) for every σ ∈ dom(φ) \ dom(φ0).
Since dom(φ0) is finite, we have A△Z ≤E

K Z for every Z ⊆ N. Moreover, for every Y ⊆ N, by putting
Z = A△Y , we also have Y = A△(A△Y ) ≤E

K A△Y . □
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4. Transitive Additivity versus Uniform Relativization

4.1. Additivity, Triviality and Uniform Tests. The purpose of this section is to show the equivalence
between transitive additivity and lowness for randomness w.r.t. Ctt-relativization. By combining with Lem-
mata 3.4, 3.6 and 3.7, our results in this section imply Theorem 1.1 in introduction.

For (v) and (vi) of Theorem 1.1, it is known that add(M) = add(E), and moreover, a set X ⊆ 2ω is
meager-additive if and only if it is E-additive [3]. The former equivalence is effectivized as the equivalence
between lowness for weak 1-genericity and lowness for Kurtz randomness (see Stephan-Yu [72]). We can also
effectivize the equivalence of meager-additivity and E-additivity, which implies that all properties in items (4)
and (5) of Theorem 1.1 are equivalent. However, it seems difficult to characterize Martin-Löf null-additivity
by using traceability. See also Problem 7.2.

Fact 4.1 (see [44]). Suppose E = Ece and (I,J ) is a good2-pair (see Section 3.2). A set A ⊆ ω is

(I,J ; Ctt,E)-lowtest if and only if A is (S, Q̃; Ctt,E)-traceable, where

S =

{
Tsemi if I = NMLR,

Ttt if I ∈ {NSR, EWR},
Q̃ =


{Qcof} if J = NSR,

{Qinf} if I ̸= J = EWR,

{Qg : g ∈ E} if I = J = EWR.

For a locally KS set E and a pair (I,J ), by Proposition 3.9, (I,J ; Ctt,E)-lowness is equivalent to

(I,J ; Ctt,E)-smallness and hence, implies (I,J ;E)-additivity. We also see by Lemma 3.12, (S, Q̃; C⋆tt,E)-

traceability is equivalent to (S, Q̃; Ctt,E)-traceability. We will show that

• (I,J ;E)-additivity implies (S, Q̃; C⋆tt,E)-traceability,

• (S, Q̃; Ctt,E)-traceability implies (I,J ; Ctt,E)-lowtest-ness.

Combining this with previous observations, we will see the following:

Theorem 4.2. Suppose that E is any locally KS set, and (I,J ,S, Q̃) is any quadruple from Fact 4.1. Then,
the following are equivalent for a set A ⊆ ω:

(i) A is (I,J ; Ctt,E)-lowtest.
(ii) A is (J , I)-additive over E.

(iii) A is (S, Q̃; C⋆tt,E)-traceable.

4.2. Null-Additivity. In this subsection, we show Theorem 4.2 when I = J = N endowed with cer-
tain representations. Franklin-Stephan [28] showed that a set A ⊆ ω is tt-low for Schnorr randomness
(that is, (NSR,NSR; Ctt,Ece)-low) if and only if it is computably tt-traceable (that is, (Ttt, {Qcof}; Ctt,Ece)-
traceable). By Lemma 3.12, this is equivalent to computable ⋆-traceability (i.e., (Ttt, {Qcof}; C⋆tt,Ece)-
traceable). The second author [53] generalized the above result in the context of uniform-low-for-Schnorr-
randomness (ULSch) reducibility. We say that A ⊆ ω is uniform-low-for-Schnorr-randomness reducible to
B ⊆ ω over E if a real is Schnorr random uniformly relative to A over E whenever it is Schnorr random
uniformly relative to B over E. We show the following implication by a straightforward modification of the
standard method (see [24]).

Lemma 4.3. Let A and B be subsets of ω. If A is Ttt-⋆-traceable uniformly in B over E, then A is
uniform-low-for-Schnorr-randomness reducible to B over E.

Proof. Assume that A is Tr-⋆-traceable uniformly in B over E. Note that every uniform Schnorr test

N : 2ω → N can be thought of as Z 7→ (N
Z↾u(n,m)
n,m )n,m∈ω such that

N(Z) =
∩
n

∪
m

NZ↾u(n,m)
n,m and λ(NZ↾u(n,m)

n,m ) ∈ [2−n(1 − 2−m−1), 2−n].

By uniform Tr-⋆-traceability, there is an E-coded total continuous map T : 2ω → Tr, Z 7→ (TZn )n∈ω, such
that TZ⟨n,m⟩ ⊆ 2u(2n,2m), |TZ⟨n,m⟩| ≤ 2n2m and A↾u(2n, 2m) ∈ TB⟨n,m⟩. Define Nn(Z) =

∪
m

∪
σ∈TZ

⟨n,m⟩
Nσ

2n,2m.
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Then,

λ(Nn(Z)) ≤ λ

 ∪
σ∈TZ

⟨n,0⟩

Nσ
2n,0

+
∞∑
m=1

λ

 ∪
σ∈TZ

⟨n,m⟩

Nσ
2n,2m \Nσ

2n,2m−2


≤ 2n2−2n +

∞∑
m=1

(2n2m)(2−2n2−2m) = 2−n + 2−n
∞∑
m=1

2−m = 2−n+1.

Hence, Z 7→
∩
nNn(Z) is a uniform Schnorr (Martin-Löf, resp.) test over E if T ∈ Ttt (T ∈ Tsemi, resp.).

Therefore, N(A) ⊆
∩
nNn(B) is Schnorr null uniformly relative to B over E. □

Shelah (see Bartoszyński-Judah [2, 3]) showed that a set X ⊆ 2ω is ⋆-traceable (i.e., (T , {Qcof}; C⋆tt,V)-
traceable) if and only if it is null-additive (i.e., transitive (N ,N )-additive over V). The notion of (I,J )-
additivity over E is introduced in Definition 2.36. Now we say that a set V ⊆ 2ω is (I,J ;F ,E)-additive
relative to B if

(∀N ∈ IE)(∃J ∈ FE(⊂2ω,J )) V +N ⊆ J(B).

We say that V is E-Schnorr null-additive F-uniformly in B if V is (NSR,NSR;F ,E)-additive relative to
B. We effectivize Bartoszyński-Judah’s proof of Shelah’s theorem to show the following result (see [3]).

Lemma 4.4. Let E be a locally KS set. Suppose that V ⊆ 2ω is E-Schnorr null-additive uniformly in B.
Then, V ⊆ 2ω is Ttt-⋆-traceable over E uniformly in B, i.e., (Ttt; C⋆tt, Ctt,M)-traceable relative to B.

Proof. Let (Ea)a∈Λ is a KS-base of E. We first assume that we have already constructed a Ea-Schnorr
null set N =

∩
m

∪
nNm,n, where {Nm,n}m,n is an Ea-coded sequence of clopen sets with measures are

Ea-coded as a sequence of reals, and Nm,n ⊆ Nm,n+1. By our assumption, we have a uniform Eb-Schnorr
test J : 2ω → NSR mapping Z 7→

∩
n J

Z
n such that V +N ⊆

∩
n J

B
n .

Claim. Without loss of generality, if WZ = JZt for a sufficiently large t, we may assume that {σ : [σ] ⊆WZ}
is Eb-decidable uniformly in Z, λ(WZ) < 1/4, and λ(WZ |σ) < 1 whenever [σ] ̸⊆WZ .

By putting WZ = JZt for a sufficiently large t, we may assume that λ(WZ) < 1/8 for every Z ⊆ ω.
Then, the total continuous map W : Z 7→ WZ can be identified with W = {(σ, τ) : σ ≺ Z, [τ ] ⊆ WZ}.
By compactness, for any n, there is a finite subset Cn of W such that λ(WZ \ CZn ) < 2−n for all Z. By
uniformization, one can find such an Eb-coded sequence (Cn)n∈ω. Let {σk}k∈ω be an effective enumeration
of all binary strings. For every k, compute whether λ(Cτk+5|σk) ≥ 1 − 2−(k+5). If so, enumerate σk into Uτ .

Since λ(WZ |σk) ≥ 1 − 2−(k+4),

λ(UZ) ≤ λ(WZ) +
∑
k

2−|σk|2−(k+4) < 1/4.

Clearly, UZ ⊆ WZ and this construction is uniformly Eb-coded. Thus, the claim is verified by replacing
WZ with UZ .

For every σ with [σ] ̸⊆WZ , consider the following:

V Zσ,m[n] = {x ∈ 2ω : (x+Nm,n) ∩ [σ] ⊆WZ ↾h(m,n)},

where h(m,n) is the least level such that the clopen set Nm,n is determined, and WZ ↾ h =
∪
{[τ ] :

|τ | ≤ h and [τ ] ⊆ WZ}. Clearly, h(m,n) is computable from the canonical index of Nm,n uniformly in
m,n ∈ ω, and hence h is Ea-coded. Now, each V Zσ,m[n] is a clopen set determined at level h(m,n). Therefore,

(V Zσ,m[n])σ,m,n can be thought of as a sequence of (a canonical index of) a finite set of finite strings of
length h(m,n). Let Ec be an amalgamation of Ea and Eb. Then, the Eb-decidability of W implies that
Z 7→ (V Zσ,m[n])σ,m,n is an Ec-coded total continuous map.

Claim. V ⊆
∪
σ,m

∩
n V

B
σ,m[n].

Indeed, if a Gδ set N =
∩
nNn is included in an open set W , there is σ ̸∈W and m such that Nm∩[σ] ⊆W .

Otherwise, put σ0 = ∅, and for every m and σm ̸∈ W , choose σm+1 such that σm ⊆ σm+1 ∈ Nm \W under
the induction hypothesis Nm∩ [σm] ̸⊆W . Then limm σm ∈

∩
mNm \W contradicts our assumption N ⊆W .

As a consequence, A ∈ V implies A ∈
∩
n V

B
σ,m[n] for some σ,m, since {A} +N is Gδ and WB is open.
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Claim. Given h(m) ∈ ω, one can effectively find a clopen set Em of measure 2−m such that for any distinct
σ, τ ∈ 2h(m), Em + σ and Em + τ are measure independent.

Let Em ⊆ 2[h(m),h(m+1)) be the set of all strings of the form ρσkτ , where |ρ| = h(m), σk is the k-th string
of length h(m), and τ [Ik] = 0m for the k-th interval Ik of length m in [h(m), h(m+ 1)). Then the measure
of Em is clearly 2−m.

Now we define a E-Schnorr test. Let h ∈ ωω be an arbitrary E-coded (say, Ea-coded) and then (Em)m∈ω is
an Ea-coded sequence of clopen sets as above. Define Nn =

∪
m>nEm, and then it is an open set of measure

2−m, and hence, N =
∩
nNn is Ea-Schnorr null. Put Nm,n =

∪
m≤k≤nEk. Then V Zσ,m[n] is constructed

from this Ea-Schnorr null set as above.

Claim. If λ(WZ |σ) < 1/2 and |σ| ≤ 2h(n), then V Zσ,m[n]↾h(n) has at most 2n elements.

Now put WZ+
σ = V Zσ,m[n] +Nm,n. Then, WZ+

σ ∩ [σ] ⊆WZ ↾h(n+ 1) ⊆WZ . For every ρ ∈ V Zσ,m[n]↾h(n),

the measure of ρ+Nm,n is at least 2−n, and by their probabilistically independence, we have

1

2
> λ(WZ |σ) ≥ λ(WZ+

σ |σ) = 1 −
∏

τ∈V Z
σ,m[n]

λ(τ + (2ω \Nm)) ≥ 1 −
(

1 − 1

2n

)|V Z
σ,m[n]↾h(n)|

.

Meanwhile, for k = 2n and m ≥ k − 1, we have(
1 − 1

k

)m
≤
(

1 − 1

k

)k−1

=

((
1 +

1

k − 1

)k−1
)−1

≤ 1

2
.

Hence, |V Zσ,m[n]↾h(n)+| < 2n − 1.

Consider the following trace:

TZn =
∪

{V Zσ,m[n]↾h(n) : ⟨σ,m⟩ ≤ n, |V Zσ,m[n]↾h(n)| ≤ 2n}

Clearly |TZn | ≤ n2n, and if A ∈ V then A ↾h(n) ∈ TBn for almost all n since every σ with [σ] ̸⊆ WZ can
be extended to σ+ with λ(WZ |σ+) < 1/2. Moreover, Z 7→ TZn ∈ Ttt is an Ec-coded total continuous map,
since Z 7→ V Zσ,m[n] is an Ec-coded total continuous map as discussed above. □

To show Theorem 4.2 for I = NMLR and NSR, we just modify the proof of Lemma 4.4. We say that V is
(Schnorr,Martin-Löf)-null-additive over E if it is (NSR,NMLR)-additive over E.

The set [ω]<ω of all finite subsets of ω is ω-represented (via the canonical index); therefore, we can identify
P[ω]<ω with Oω. A set A ⊆ P[ω]<ω is hereditary if A ⊆ B ∈ A implies A ∈ A. We say that a pointclass Γ
satisfies the shuttering property if the following condition holds: Given V ⊆ X × ω in Γ and a hereditary set
A ⊆ P[ω]<ω where A ∈ Γ, there exists a Γ set V ∗ ⊆ V such that V ∗

x ∈ A, and that Vx ∈ A implies V ∗
x = Vx.

Here, Vx = {(x, n) : (x, n) ∈ V }.

Lemma 4.5. Any Kleene-or-Spector pointclass satisfies the shuttering property.

Proof. If Γ is a Kleene pointclass, it is clear. Suppose that Γ is a Spector pointclass. Let φ be a Γ-norm
on V (see Moschovakis [55]). Consider V ∗ defined as the set of all (x, n) ∈ V satisfying that for any finite
set D ⊆ ω with |D| ̸∈ A there is m ∈ D such that either (x,m) ≡φΓ (x, n) and n < m or (x,m) ̸≤φ

Γ̌
(x, n).

Clearly, V ∗ is in ∀ωΓ, and satisfies the desired condition. □

Lemma 4.6. Let E be a locally KS set. If V is (Schnorr, Martin-Löf)-null-additive over E, then V ⊆ 2ω

is Tsemi-⋆-traceable over E.

Proof. In the proof of Lemma 4.4, we can satisfy all claims except for the Eb-decidability in the first claim.
For instance, to satisfy λ(WZ |σ) < 1 whenever [σ] ̸⊆ WZ , we enumerate all σk such that there is a clopen
set C ⊆W such that λ(C|σk) ≥ 1 − 2−k−4. Then, by Lemma 4.5, replace Vσ,m[n]↾h(n) with V ∗

σ,m[n]↾h(n),
the set of the first 2n elements (w.r.t. a Γ-norm) satisfying (x+Nn,m) ∩ [σ] ⊆W ↾h(m,n). It is not hard to
verify that the same strategy works. □
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Lemmata 4.3, 4.4 and 4.6 clearly imply Theorem 1.1 (1) and (2). Furthermore, generally, null-additivity is
equivalent to uniform lowness for Schnorr randomness at the levels of arithmetic, hyperarithmetic (∆1

1), ∆1
2,

infinite time register machine computability, infinite time Turing machine computability, etc. For instance,
ITTM-null additivity is equivalent to lowness for ITTM-Schnorr randomness w.r.t. uniform relativization.

Remark 4.7. It is commonly known that the notion of traceability/slalom has an ℓ1-characterization in the
both areas of algorithmic randomness theory and set theory [3]. Here, ℓ1 consists of summable sequences of
reals. Bienvenu-Miller [6] gave the ℓ1-characterizations of Low(MLR) (which is equivalent to Low⋆(MLR)),
Low(SR) and Low(MLR, SR). We also have the ℓ1-characterizations of Low⋆(SR) and Low⋆(MLR, SR) (see
[44, 53]). It is not hard to see that the same characterizations hold over any principal KS set.

4.3. E-Additivity. Next, we show Theorem 4.2 when I = J = E endowed with the standard Fσ representa-
tion. Kihara-Miyabe [43] showed that a set is uniformly low for Kurtz randomness (i.e., (EWR, EWR; Ctt,Ece)-
low) if and only if it is computably c.o. tt-traceable (i.e., it is (Ttt, {Qg : g ∈ (ωω)Ece}; Ctt,Ece)-traceable).
We say that A ⊆ ω is uniform-low-for-Kurtz-randomness reducible to B ⊆ ω over E if a real is Kurtz random
uniformly relative to A over E whenever it is Kurtz random uniformly relative to B over E. One can easily
show the following implication by a straightforward modification of the standard method (see [24, 43]).

Lemma 4.8. Let A and B be subsets of ω. If A is E-often Ttt-⋆-traceable uniformly in B over E (i.e.,
(Ttt, {Qg : g ∈ (ωω)E}; Ctt, Ctt,Ece)-traceable relative to B), then A is uniform-low-for-Kurtz-randomness
reducible to B over E. □

It is natural to ask whether there is also an additive characterization of uniform lowness for Kurtz random-
ness. We affirmatively answer this question by modifying Pawlikowski’s additive characterization of strong
measure zero [59]. We say that V is E-Kurtz null-additive F-uniformly in B if V is (EWR, EWR;F ,E)-additive
relative to B (see Section 4.2 for the definition).

Lemma 4.9. Suppose that V is E-Kurtz null-additive uniformly relative to B. Then, V is E-often ⋆-traceable
uniformly relative to B over E.

Proof. Let (Ea)a∈Λ is a KS-base of E. We first define a special Ea-Kurtz test D which has some probabilistic
independence property.

Construction of an Ea-Kurtz test D. Given an Ea-coded order g ∈ ωω, inductively define two Ea-coded
orders h and h+ by h(0) = 0, h+(n) = h(n) + g(n), and h(n + 1) = h+(n) + 2g(n). Then let Dk ⊆ 2h(k+1)

be the set of all strings of the form τ⌢σi⌢ρ such that τ ∈ 2h(k), ρ(i) = 0, and σi is the i-th string in

2[h(k),h(k)
+). Then D =

∩
n[[Dn]] is an Ea-Kurtz test, since the λ-measure of

∩
m<n[Dm] and [Dn] are 2−n

and 2−1 respectively.

By our assumption, there is a uniform Eb-Kurtz test E such that V + D =
∪
A∈V (A + D) is covered

by E(B) =
∩
nE

B
n , where λ(EZn ) ≤ 2−n for every Z. Given k, by compactness, there is e(k) such that

λ(EZe(k)) < 2−3 · 2−h(k) for every Z ⊆ N. By uniformization, such an Eb-coded sequence (e(k))k∈ω exists.

Put d(0) = e(0), d(k + 1) = e(k + 1) if EZd(k) ⊆ 2≤h(k) for all Z ⊆ N, and put d(k + 1) = d(k) otherwise.

Note that d is unbounded, by uniformity and compactness.
Now given τ ∈ 2h(k), define EZτ [k] ⊆ 2[h(k),h(k+1)) as follows:

EZτ [k] =
{
σ ∈ 2[h(k),h(k+1)) : (1 − 2−(k+1)) · λ(EZd(k)|τσ) > λ(EZd(k)|τ)

}
.

Then, define V Bτ [k] ⊆ 2[h(k),h(k)
+) as follows:

V Zτ [k] =
{
σ ∈ 2[h(k),h(k)

+) : (∃σ+ ∈ 2[h(k),h(k+1))) σ ⪯ σ+ and σ+ +Dk ⊆ EZτ [k]
}
.

Finally, put V Z [k] =
∪
τ∈2h(k) V Zτ [k]. If Ec is an amalgamation of Ea and Eb, then clearly, Z 7→ V Z is an

Ec-coded total continuous map.

Claim. #V Z [k] ≤ (k + 1) · 2h(k) for every Z ⊆ N.

By definition, V Zτ [k] +Dk ⊆ EZτ [k]. By probabilistic independence of Dk,

λ(V Zτ [k] +Dk) = 1 − 2−|V Z
τ [k]|,
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while by Kolmogorov’s inequality,

λ(EZτ [k]) < 1 − 2−(k+1).

This implies #V Zτ [k] ≤ k + 1. Hence, the desired value is computed by multiplying the above number by
the number of strings τ ∈ 2h(k).

Now, let {l(m)}m∈ω be the list of all k’s such that d(k) ̸= d(k − 1). Clearly, {l(m)}m∈ω is an Eb-coded
(hence, Ec-coded) sequence.

Claim. V ⊆
∩
m

∪l(m+1)−1
k=l(m) V B[k].

Suppose for the sake of contradiction that there is A ∈ V such that A ̸∈
∪l(m+1)−1
k=l(m) V B [k] for some m.

Put s = l(m) and t = l(m+ 1) − 1. By our definition of d, we have

EBd(s) ⊆ 2≤h(t), and λ(EBd(s)|A+ τ) < 2−3 for every τ ∈ 2h(s).

Since V +D ⊆ EBd(s) ⊆ 2≤h(t), we must have

λ(EBd(s)|A+ τ) = 1 for every τ ∈ 2h(t).

However, this is impossible because A ̸∈
∪t
k=s V

B [k] implies that one can construct Z ∈ D fulfilling

(1 − 2−(k+1)) · λ(EBd(s)|A+ Z ↾h(k + 1)) ≤ λ(EBd(s)|A+ Z ↾h(k))

for every k ∈ [s, t), and this implies that

k−1∏
i=k0

(1 − 2−(i+1)) · λ(EBd(s)|A+ Z ↾h(t)) ≤ λ(EBd(s)|A+ Z ↾h(s)) < 2−3.

Thus, we have λ(EBd(s)|A+ Z ↾h(t)) < 1, and this contradicts our assumption A ∈ V . In particular, V is

E-often piecewise traceable uniformly in B over E. □

Lemmata 4.8 and 4.9 clearly imply Theorem 1.1 (5). As a consequence, Kurtz null-additivity (Kurtz
random-preserving) is equivalent to uniform lowness for Kurtz randomness at the levels of computability,
arithmetic, hyperarithmetic (∆1

1), ∆1
2, infinite time register machine computability, infinite time Turing

machine computability, etc. For instance, A is ITRM-Kurtz-randomness preserving iff A is low for ITRM-
Kurtz randomness w.r.t. uniform relativization.

4.4. Meager-Additivity. In this subsection, we show Theorem 4.2 when I = J = M endowed with the
standard Fσ representation. Our proof is the straightforward effectivization of the standard argument. To
show the theorem, we effectivize the well-known characterization of meager sets.

Definition 4.10 (see Bartozyński-Judah [3, Theorem 2.2.4]). For an order u, by Mx
u,s be the set of all reals

which are not piecewise u-traced by a real x ∈ 2ω at all levels above s, that is,

Mx
u,s = {y ∈ 2ω (∀n ≥ s) x↾ [u(n), u(n+ 1)) ̸= y ↾ [u(n), u(n+ 1))}.

Put Mx
u =

∪
sM

x
u,s. Then Mx

u is the set of all reals which are not i.o. piecewise u-traced by x (see Section
3.3).

Lemma 4.11. A set X ⊆ 2ω is meager over E (i.e., X ∈ ME
W1G) if and only if X is included in Mx

u for
some E-coded real x ∈ 2ω and E-coded order u ∈ ωω.

Proof. (⇐): Clearly Mx
u is the union of the E-coded sequence {Mx

u,s}s∈ω of nowhere dense closed sets.
(⇒): If X is meager over E, then it is included in the union of a uniform sequence {Fn}n∈ω of E-semicoded

closed sets. For any n and σ ∈ 2n, there is ρσ such that [σ⌢ρσ] ∩
∪
k≤n Fk = ∅ by nowhere density. Let ρn

be the concatenation of all ρσ for σ ∈ 2n. Thus, for any n there is ρn such that [σ⌢ρσ] ∩
∪
k≤n Fk = ∅ for

all σ ∈ 2n. By uniformization, such a sequence (ρn)n∈ω is E-coded. Then, define x0 to be an empty string,
and xn+1 = x|αn|. It is not hard to see that X ⊆Mx

u , where x = limn xn and u(n) = |xn|. □

We say that V is meager-additive over E if it is (MW1G,MW1G)-additive over E.
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Lemma 4.12. A set X ⊆ 2ω is meager-additive over E if and only if X is E-often piecewise traceable by
an E-coded real.

Proof. By Lemma 4.11, every E-semicoded meager set is contained in a set of the form MC
u for some order

u and E-coded real C. Note that X + MC
u =

∪
A∈XM

A△C
u . Moreover, MA△C

u ⊆ MB
v if and only if

MA
u ⊆MB△C

v . Therefore, X is meager-additive over E if and only if for every E-coded order u, there are an
E-coded order v and an E-coded real B such that

∪
A∈XM

A
u ⊆MB

v , that is, for every A ∈ X, MA
u ⊆MB

v .

The last condition MA
u ⊆ MB

v is equivalent to the condition that almost every interval [v(n), v(n + 1))
contains an interval [u(k), u(k+ 1)) in which A agrees with B. Otherwise, we can construct B∗ which agrees
with B in each such interval [v(n), v(n + 1)) and is contained in MA

u . This implies MA
u ̸⊆ MB

v . Thus, by
using v, we may effectively find an E-coded order g such that B piecewise u-traces A g-often. □

We here refer to MW1G-genericity as Cohen quasigenericity.

Lemma 4.13. Let E be a locally KS set. If A ⊆ ω is E-often traceable over E, then A is low for Cohen
quasigenericity w.r.t. uniform relativization over E.

Proof. Suppose that an E-coded total continuous map Z 7→ MZ ∈ M is given. We simply assume that
MZ is nowhere dense closed set. By compactness, for all n ∈ ω, there are ln, sn ∈ ω and a finite function
ρn : 2sn → 2ln such that for any Z ∈ 2ω and σ ∈ 2n, MZ ∩ [σ⌢ρn(Z ↾sn)] = ∅. By uniformization, we have
such an E-coded sequence (ln, sn, ρn)n∈ω. Then, note that

MZ ⊆ {Z ∈ 2ω : (∀n) Z ↾ [n, n+ ln) ̸= ρn(Z ↾n)}.

Now we define k(0) = 0, k(n + 1) = k(n) + lk(n), and t(n) =
∑n
i=0 i. By E-often traceability, there are

an E-coded slalom (Tn)n∈ω and E-coded order u ∈ ωω such that for all k ∈ ω, A ↾ sk(t(n+1)) ∈ Tn for some
n ∈ [u(k), u(k + 1)), where we may assume that |Tn| ≤ n. Then, we define

Enτ = {Z ∈ 2ω : (∀j ≤ n)

Z ↾ [k(t(n) + j), k(t(n) + j + 1)) ̸= ρk(t(n)+j)(τ ↾sk(t(n)+j))},

and set E =
∩
k

∪
n∈[u(k),u(k+1))

∪
τ∈Tn

Enτ . It is not hard to verify that MA ⊆ E. We can also show nowhere

density of E. □

Lemmata 4.12 and 4.13 clearly imply Theorem 1.1 (6). As a consequence, meager-additivity (Cohen
quasigenericity preserving) is equivalent to uniform lowness for Cohen quasigenericity at the levels of com-
putability, arithmetic, hyperarithmetic (∆1

1), ∆1
2, infinite time register machine computability, infinite time

Turing machine computability, etc. For instance, ∆1
1-meager-additivity is equivalent to lowness for ∆1

1-
Cohen-quasigenericity w.r.t. uniform relativization.

4.5. Strong Measure Zero. In this subsection, we show Theorem 4.2 when I = N and J = E endowed
with suitable representations. Borel’s original definition of strong measure zero is clearly equivalent to i.o. ⋆-
traceability. Pawlikowski [59] showed that X is of strong measure zero (i.o. ⋆-traceable) if and only if X
is (E ,N )-additive, that is, for every closed null set E ∈ E , X + E is null. The notion of strong measure
zero is effectivized by Higuchi-Kihara [32] to characterize Binns’ notion of effective perfect set property.
Kihara-Miyabe [44] gave a dimension-theoretic characterization of Low⋆(SR,WR) by using Pawlikowski’s
characterization of strong measure zero, and indeed, their proof essentially gave the additive characterization
of strong measure zero.

Lemma 4.14 (see Kihara-Miyabe [44]). Let E be a locally KS set. Then, (Kurtz, Schnorr)-null additivity
over E implies i.o. Ttt-⋆-traceable over E, and i.o. Ttt-⋆-traceable over E implies lowtest-ness for (Schnorr,
Kurtz)-randomness over E w.r.t. uniform relativization. □

By the same argument, we also have the Martin-Löf random version of the above result.

Lemma 4.15 (see Kihara-Miyabe [44]). Let E be a locally KS set. Then, (Kurtz, Martin-Löf)-null additivity
over E implies i.o. Tsemi-⋆-traceable over E, and i.o. Tsemi-⋆-traceable over E implies lowtest-ness for (Martin-
Löf, Kurtz)-randomness over E w.r.t. uniform relativization. □
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Lemmata 4.14 and 4.15 clearly imply Theorem 1.1 (3) and (4). As a consequence, (E ,N )-additivity
(strong measure zero) is equivalent to uniform lowness for (N , E)-tests at the levels of computability, arith-
metic, hyperarithmetic (∆1

1), ∆1
2, infinite time register machine computability, infinite time Turing machine

computability, constructibility (in the sense of Gödel’s L), etc. For instance, (∆1
2-Kurtz, Σ1

2-Martin-Löf)-null
additivity is equivalent to lowness for (∆1

2-Kurtz, Σ1
2-Martin-Löf)-randomness w.r.t. uniform relativization.

Remark 4.16. Note that the cardinal characteristic cov(M) in Cichoń’s diagram is known to be character-
ized as add(E ,N ) (see [3]). For their uniform versions, the similar equivalence cov⋆(M) = add⋆(E ,N ) holds.
In other words, X ⊆ 2ω is strong measure zero if and only if for every meager set F ⊆ 2ω, X + F ̸= 2ω (see
Bartozyński-Judah [3, Theorem 8.1.16]). One can effective this result in a straightforward manner.

5. Uniform Lowness for Randomness

5.1. Levels of Uniformity. In previous works in algorithmic randomness theory, two uniformity levels of
lowness properties have been investigated, that is, Low (nonuniform) and Low⋆ (uniform). Since computabil-
ity is the lightface version of continuity, the former notion Low is associated with partial continuity, and the
latter notion Low⋆ is associated with (uniform) continuity on an effectively compact domain. Generally, our
inner universe E = EΓ involves its own uniformity level FΓ, which is generally much less uniform than partial
continuity, and hence, one can deal with higher levels of non-uniformity, such as Borel and Π1

1-measurable.
For instance, the natural uniform level for EΠ1

1
is partial Π1

1-measurability; however, Bienvenu-Greenberg-

Monin [5] emphasized continuous-uniformity for Π1
1-Martin-Löf randomness, and characterized it by higher

K-triviality.
There are also known traceability characterization of (I,J ;FΠ1

1
,EΠ1

1
)-lowness (see [19, 46]) in randomness

theory over EΠ1
1
. It is natural to ask whether the similar characterizations hold for other levels of uniformity,

e.g., continuous-uniformity, Borel-uniformity, etc. Generally, for a locally KS set E, we say that a represented
function space G is E-good′ if F is closed under taking composition, and the inclusion map C(⊆ ωω, ωω) ↪→
F(⊆ ωω, ωω) is E-semicoded. In Section 5, we will show the following:

Theorem 5.1. Suppose that E is a locally KS set, F is an E-good′ function space, I = J ∈ {NSR, EWR,MW1G},
and moreover, (S, Q̃) fulfills the condition in Fact 4.1. Then, (I,J ;F ,E)-lowness is equivalent to (S, Q̃;F ,E)-
traceability.

5.2. Total Representations. We first see that the representations ρSR, ρWR, and ρW1G admit total ωω-
representations. Here, we often identify an ωω-representation ρ with an Oω-representation ρ ◦ ρωω . A
multi-representation ρ :⊆ Oω → I is computably reducible to a multi-representation ρ′ :⊆ Oω → I if there
is an enumeration operator h : dom(ρ) → dom(ρ′) such that ρ(p) ⊆ ρ′(h(p)) for every p ∈ dom(ρ). Two
multi-representations are computably equivalent if they are computably reducible to each other.

Lemma 5.2. There are total ωω-representations which are computably equivalent to ρSR, ρWR, and ρW1G.

Proof. Fix a effective sequence ⟨Cnm⟩m,n∈ω, where {Cnm}m∈ω is the set of all clopen sets in 2ω of measure
2−n. Then, we define the total ωω-representations ρ′SR and ρ′WR as follows:

ρ′SR(p) =
∩
n∈ω

∪
k∈ω

[[Cn+k+1
p(⟨n,k⟩)]],

ρ′WR(p) =
∩
n∈ω

[[Cnp(n)]].

Given p ∈ dom(ρSR), for any n, k ∈ ω, there is e ∈ ω such that De ⊆ p[n] and 2−n−k ≤ λ(
∪
i∈De

[σi]) ≤ 2−n,

where σi is the i-th binary string. Thus, ρSR is computably reducible to ρ′SR. One can also easily see that

ρ′SR is computably reducible to ρSR by enumerating all indices of Cn+k+1
p⟨n,k⟩ into the n-th section. By the same

argument, it is easy to see that ρ′WR is equivalent to ρWR. To give a total ωω-representation of ρW1G, we
define u : ωω → ωω by u(p)(0) = p(0) and u(p)(n+ 1) = max{p(n+ 1), u(p)(n) + 1}. Clearly, u(p) is strictly
increasing for every p ∈ ωω. Then, we define the total representation ρ′W1G : 2ω × ωω → M as follows:

ρ′W1G(⟨p, q⟩) = Mp
u(q).
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Here, MA
u is the meager set generated by a real A and a strictly increasing function u defined by Section

4.4. Lemma 4.11 shows the equivalence of ρW1G and ρ′W1G. □

5.3. SRN Sets. Rec law [61] studied some continuous and Borel versions of additivity. Bartoszyński and

Judah [2] introduced the notion of SRM sets and SRN sets. Obviously, the notion SRM is related to

Borel-uniform lowness for Cohen quasigenericity (or equivalent to AddB(M)), and SRN is related to Borel-

uniform lowness for randomness (or equivalent to AddB(N )). Therefore, one can introduce the F-uniform

versions of SRM sets and SRN sets for an arbitrarily given uniformity constraint F . Then, we can easily
effectivize the argument by Bartoszyński-Judah [2], and show that the uniformity level of lowness is strongly
related to the uniformity level of traceability. We first show that (NSR,NSR,F ,E)-lowness is equivalent to
(Ttt, {Qcof},F ,E)-traceability.

Theorem 5.3. A set A ⊆ N is low for E-Schnorr randomness w.r.t. F-uniform relativization if and only if
every g ≤E

F A is Ttt-traceable over E.

Proof. For the “only if” direction, we effectivize the argument in Bartoszyński-Judah [2, Theorem 3.7].
Suppose that A ⊆ N is F-uniformly low for randomness over E. Fix g ≤F A via Φ ∈ FE, and consider

Hg = {x ∈ 2ω : (∃∞n) x↾ [g(n), g(n) + n) = 0⃗}.
Clearly, A 7→ HΦ(A) = Hg is an F-uniform NSR-test over E. Therefore, F-uniform lowness of A, there is

a E-semicoded open set G such that λ(G) < 1/2 and Hg ⊆ G. Now, as in Miller [50, Lemma 5], given an
open set G ⊆ 2ω put Gn =

∪
{[σ] : σ ∈ 2<ω, [σ] ⊆ G}, and choose a rapidly increasing sequence (εn)n∈ω.

Let fG be any function satisfying λ(G \ GfG(n)) < εn for all n ∈ ω. Then we can effectivize a theorem by
Miller [50, Lemma 5] as the statement that if G is an E-semicoded open set of measure less than 1/2 such
that Hg ⊆ G, then g(n) < fG(n) for almost all n ∈ ω. Note that by uniformization, fG can be assumed
to be E-coded whenever λ(G) is E-coded. By modifying fG, we have an E-coded function b ∈ ω such that
g(n) < b(n) for all n ∈ ω. Let zg ∈ 2ω be a real satisfying

zg ↾ [b∗(n− 1), b∗(n)) = 0g(n)10b(n)−g(n)−1,

where b∗(0) = 0 and b∗(n) =
∑
m<n b(m). The map g 7→ zg is effectively extended to an E-coded total

continuous function. In particular, zg ≤E
F A since Ctt is effectively embedded into F . Now it is easy to see

that zg is F-uniformly low for randomness over E since this property is ≤E
F -downward closed. By Lemma

4.3, zg is NSR-null-additive over E. Then, by Lemma 4.4, ⟨zg ↾ [b(n), b(n + 1))⟩n∈ω is Ttt-traceable over E.
Consequently, g is traceable over E.

Conversely, suppose that every g ≤F A is Ttt-traceable over E. Let N(A) ∈ N be an NSR-null set
F-uniformly in A over E, that is, there is p ≤F A such that ρSR(p) = N(A). By Lemma 5.2, we can
continuously find q such that ρ′SR(q) = ρSR(p) = N(A). Then, we have q ≤F A, since the inclusion map
C ↪→ F is E-coded. Since q ≤F A is traceable over E, it is easy to see that q is bounded by a function in
E. Hence, q can be identified with a real zq ∈ 2ω as before. Then, obviously, q is ⋆-traceable over E, and
therefore, q is uniform low for NSR-randomness over E by Lemma 4.3. Clearly, the map ρ′SR : ωω → N is
contained in CE

tt. Hence, N(A) = ρSR(q) is covered by an NSR-null set over E by uniform lowness of q. □

This for instance implies that a real is lowness for ∆1
2-quasirandomness (where a real is ∆1

2-quasirandom
iff it avoids all Lebesue null ∆1

2-coded Borel set) is equivalent to ∆1
2-traceability, a real A is lowness for

∆1
1-Schnorr randomness w.r.t. continuous relativization iff every g ≤hT A is ∆1

1-traceable, where ≤hT is
higher-Turing reducibility (see [5]), etc.

It is known that Π1
1-traceability is equivalent to ∆1

1-traceability (see [57]). Generally, E is generated by
Spector pointclasses, then one can see that Tsemi-traceability is equivalent to Ttt-traceability over E. We
say that E is locally Spector if it is KS-based by a collection (Γu)u∈Λ of Spector pointclasses (see Definition
2.17).

Lemma 5.4. Suppose that E is a locally Spector set, and the composition operation

◦ : FΠ1
1
(⊆ω

ω, ωω) ×F(⊆ω
ω, ωω) → F(⊆ω

ω, ωω)

is partial computable. Then, (Tsemi, Q̃,F ,E)-traceability is equivalent to (Ttt, Q̃,F ,E)-traceability.
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Proof. Suppose that x is (Tsemi, Q̃,F ,E)-traceable. Then for any Φ ∈ FEa , there is (Tn) ∈ T Eb

semi such that
Φ(x)(n) ∈ Tn for all n ∈ ω. Let Ec be a Spector set which is an amalgamation of Ea and Eb, and Γc be a
corresponding Spector pointclass. Now consider a Γc-norm φ on the Γc-semicoded set Z = {(k, n) ∈ ω× ω :
k ∈ Tn}. Given g ∈ ωω, if (g(n), n) ∈ Z for all n, define Ψ(g) ∈ WOω representing (φ(g(n), n))n∈ω. Then
Ψ is partial continuous and Ec-semicoded. One can define the “halting probability” ΩEc as an analogy of

Chaitin’s Ω via the space CEc

semi(2
<ω), and show that ΩEc is Martin-Löf random over Ec and not i.o. Tsemi-

traceable over Ec. Suppose that sup Ψ(g)(n) ≥ γ, where γ is the supremum of all Γ ordinals. Let Le be the
e-th Γc linear order on ω. Then n ̸∈ ΩEc iff for every e and n, either Le is not embedded into Ψ(g, n) or θ(e)
is not embedded into Le, where θ is a Γc-norm on ΩEc . Thus, there is a Θ ∈ FΠ1

1
such that Θ(g) = ΩEc .

Therefore, sup Ψ(Φ(x))(n) < γ, otherwise ΩEc = Θ(Φ(x)) ≤Ec

F Φ(x) ≤Ec

F x is Q̃-often Tsemi-traceable over
Ec ⊇ Ea. Let δ be a ∆-ordinal such that sup Ψ(Φ(x))(n) < δ, and define Tn[δ] = {k ∈ Tn : φ(k, n) < δ}.
Then (Tn[δ])n∈ω is ∆-coded (i.e., Γ-coded in Ttt). □

This for instance implies that lowness for ITTM-Schnorr randomness, lowness for (ITTM-Martin-Löf,
ITTM-Schnorr)-randomness, ITTM-computable traceability, and ITTM-semicomputable traceability are all
equivalent.

5.4. SRM Sets. We next effectivize Bartoszyński-Judah’s characterization [2] of SRM sets.

Theorem 5.5. A set A ⊆ N is F-uniformly low for Cohen quasigenericity over E if and only if every
g ≤F A is E-often E-traceable.

Proof. Suppose that A ⊆ N is F-uniformly low for Cohen quasigenericity over E. Let g ≤E
F A. Suppose

for the sake of the contradiction that g is not E-bounded. However, the unboundedness of g implies that

M 0⃗
g is not meager over E (hence, not contained in E over E), where A 7→ M 0⃗

g is F-uniform. Therefore, g is
bounded by an E-function h. Then, as in Theorem 5.3, g is coded as a real zg ∈ 2ω. Since zg ≤F g ≤F A,
zg is meager-additive over E by Lemma 4.13. Therefore, by Lemma 4.12, zg is E-often E-traceable.

For the converse direction, we can use the similar argument as in Theorem 5.3 since we have the total
representation that is equivalent to ρW1G by Lemma 5.2. □

This for instance implies that lowness for ITRM-Cohen-quasigenericity is equivalent to ITRM-computably-
often ITRM-computable traceability.

We may define the notion of a SRE set by the straightforward way. Then, we can give a new result
concerning SRE sets and the Borel image of E-additive sets.

Theorem 5.6. A set A ⊆ N is F-uniformly low for Kurtz randomness over E if and only if every g ≤F A
is E-often traceable over E.

Proof. For the “only if” direction, similar as the proof of Theorem 5.5. For the converse direction, we can
also use the similar argument as in Theorem 5.3 since we have the total representation that is equivalent to
ρWR by Lemma 5.2. □

This for instance implies that a real A is lowness for ∆1
1-Kurtz randomness w.r.t. continuous relativization

iff every g ≤hT A is ∆1
1-often ∆1

1-traceable.

6. Other Results

6.1. The Kučera-Gács Theorem and Strong Measure Zero. The Kučera-Gács theorem says that
every real is computable in a Martin-Löf random real (see [24, Theorem 8.3.2]). Hjorth-Nies [36] showed a
higher analog of the Kučera-Gács theorem: Every real is wtt(Π1

1)-reducible to a Π1
1-Martin-Löf random real.

In this section, we show the following abstract version of the Kučera-Gács Theorem.

Theorem 6.1 (Generalized Kučera-Gács Theorem). Suppose that Γ is a Kleene-or-Spector pointclass. Then,
every real is wtt(Γ)-reducible to a Γ-Martin-Löf random real.

Binns [8] studied the effective perfect set property, and clarified a mechanism behind the Kučera-Gács
theorem. The first author (see [32]) introduced the notion of effectively strongly measure zero to obscure the
point of Binns’ idea.
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Definition 6.2. Let E be a locally KS set. A set P ⊆ 2ω is E-rapidly perfect if there exists a function
f ∈ ωω ∩ E, for every σ ∈ 2n, if P ∩ [σ] ̸= ∅, there are at least two incomparable strings τ0, τ1 ∈ 2f(n)

extending σ such that P ∩ [τ0] ̸= ∅ and P ∩ [τ1] ̸= ∅.

The following is a generalization of the theorem of Binns [8] and Higuchi-Kihara [32]. Recall that a
closed set P ⊆ 2ω is E-semicoded if there is p ∈ E ∩ O(2<ω) (via an effective bijection between ω and 2<ω)
such that P = 2ω \

∪
σ∈p[σ]. By effective compactness of P , it is equivalent to that the complement of

Ext(P ) := {σ ∈ 2<ω : [σ] ∩ P ̸= ∅} is in E.

Theorem 6.3. Let E be a countable locally KS set. Then, the following are equivalent for an E-semicoded
closed set P ⊆ 2ω.

(i) P is not strong measure zero over E.
(ii) P has an E-rapidly perfect subset.

(iii) There is a partial uniformly continuous function Γ ∈ CE
uf such that Γ[P ∩ dom(Γ)] = 2ω.

(iv) Every real is wtt(E)-reducible to an element of P .

Proof. (1)⇒(2): Higuchi-Kihara [32, Theorem 43] shows that if {ki}i∈N witnesses that P is not of strong
measure zero, then n 7→ kF (n+1) witnesses that a subset of P is rapidly perfect, where F : ω → ω is defined

recursively by F (0) = 0 and F (n + 1) = F (n) + 2kF (n) . Clearly, if such a witness {ki}i∈N is E-coded, so is
n 7→ kF (n+1).

(2)⇒(3): Let Q ⊆ P be an E-rapidly perfect E-semicoded closed set. Then, there is an order h ∈ (ωω)E

such that every extendible σ ∈ Ext(Q) of length h(n) has two extensions of length h(n+ 1) in Ext(Q). We
define a wtt(E)-reduction Γ as follows. For strings τ ∈ 2h(n) and σ ∈ 2n, put (τ, σ) ∈ Γ if and only if for all
i < n, either

σ(i) = 0 & ∀ρ ∈ 2h(i+1) [(ρ ≺ τ ↾h(i) & ρ <left τ ↾h(i+ 1)) → ρ ̸∈ Ext(Q)],

or σ(i) = 1 & ∀ρ ∈ 2h(i+1) [(ρ ≺ τ ↾h(i) & ρ >left τ ↾h(i+ 1)) → ρ ̸∈ Ext(Q)],

where ρ <left τ denotes that ρ is left to τ . Clearly, Γ ∈ P(2<ω × 2<ω) is in E. Since h witnesses rapid
perfectness of Q, this set Γ generates an E-semicoded partial function on 2ω whose modulus h of uniform
continuity is E-coded. It is not hard to see that for every y ∈ 2ω, there exists x ∈ Q such that Γ(x) = y.

(3)⇒(4): Obvious.
(4)⇒(1): Since E is countable, there is a real x which is not i.o. Tsemi-⋆-traceable over E. By our

assumption, there is y ∈ P such that x ≤wtt(E) y. Then, there is a partial E-semicoded uniformly continuous

function Ψ with an E-coded modulus g ∈ (ωω)E, i.e., Ψy↾g(n) ↾n = x↾n. Suppose for the sake of contradiction
that P is strongly measure zero over E. Then, given u ∈ (ωω)E, there exists a partial E-semicoded map
p :⊆ ω → 2<ω such that y ↾ g(u(n)) = p(n) for infinitely many n ∈ ω. Thus, the partial E-semicoded
sequence ⟨Ψp(n) ↾u(n)⟩ hits x↾u(n) infinitely often. Then, x is i.o. Tsemi-⋆-traceable over E. □

Proof of Theorem 6.1. Let Γ be a Kleene-or-Spector pointclass. Since Γ is ω-parametrized, there is an
optimal Γ-machine, and then one can define the Γ-Kolmogorov complexity KΓ. By the standard argument,
it is not hard to see that x is Γ-Martin-Löf random if and only if x is incompressible w.r.t. KΓ, that is,
KΓ(x↾n) ≥ n−O(1). Clearly, the set of 1-incompressible strings, T = {σ : (∀τ ≺ σ) KΓ(τ) ≥ |τ |−1}, forms
an co-EΓ tree. Moreover, the measure of the EΓ-closed set [T ] is at least 1/2 by the prefix-free condition of
our machine. Therefore, by Theorem 6.3, every real is wtt(∆)-reducible to an element x ∈ [T ]. Note that
such an x ∈ [T ] is Γ-Martin-Löf random since KΓ is defined via an optimal machine. □

Consequently, the Kučera-Gács Theorem holds for Π1
1-Martin-Löf randomness, Σ1

2-Martin-Löf random-
ness, ITTM-Martin-Löf randomness, etc. However, the Kučera-Gács Theorem fails for non-principal KS
sets.

Proposition 6.4. The Kučera-Gács Theorem fails for arithmetical randomness.

Proof. If x is arithmetically random, x should be n-random for every n ∈ ω. However, if x is (n+1)-random,
then we have ∅(n) ̸≤T x(n−1) (see [24, Theorem 8.14.1]). Therefore, ∅(ω) is not arithmetically reducible to
an arithmetically random real x. □
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Proposition 6.5. The Kučera-Gács Theorem fails for ITRM-Martin-Löf randomness.

Proof. It suffices to show that if x is ITRM-Martin-Löf random, then ωCK,x
i = ωCK

i for all i ∈ ω. We first
note that if x is ITRM-Martin-Löf random, then x avoids all null ∆1

1(z) sets for n ∈ ω and z ∈ LωCK
ω

∩ 2ω,

where ωCK
α is the α-th ordinal which is admissible or limit of admissibles. Carl-Schlicht [17] showed that

Xi = {x ∈ 2ω : ω
CK,x⊕c(i)
1 = ω

CK,c(i)
1 } is co-null Σ1

1(c(i)) set, where c(i) is the <L-least code of the i-th

admissible ordinal ωCK
i . By relativizing Chong-Nies-Yu’s theorem [19], every ∆1

1(Oc(i))-random real is also
Π1

1(c(i))-random, that is, it avoids all null Π1
1(c(i)) sets, where Oc(i) denotes Kleene’s O relative to c(i). Since

Oc(i) ∈ LωCK
i+2

, any ITRM-Martin-Löf random real should be ∆1
1(Oc(i))-random; hence, Π1

1(c(i))-random.

Therefore, any ITRM-Martin-Löf random is contained in Xi for all i ∈ ω. Hence, we have ωCK,x
i = ωCK

i for
all i ∈ ω (see Carl-Schlicht [17] for the detail). □

6.2. Distribution of Trivial Reals. In this section, we will discuss about triviality (i.e., null-additivity)
in generalized computability theory. Throughout this section, we assume that Γ is a Kleene-or-Spector
pointclass. We say that A ⊆ ω is Γ-trivial if it is Ksemi-trivial over EΓ, and ∆-trivial if it is Kttλ-trivial over
EΓ. For instance, ∆0

1-triviality is equivalent to Σ0
1-triviality is equivalent to K-triviality, and Π1

1-triviality
is known as K-triviality in higher randomness theory. Recall that ∆-triviality is equivalent to ∆-coded-null
additivity (Theorems 3.15 and 4.2).

Proposition 6.6. There are continuum many ∆-trivial reals, whereas there are only countably many Γ-trivial
reals.

Proof. Franklin-Stephan [28] observed that any subset of a dense immune Σ0
1 set is a universally indifferent

for Schnorr randomness. We say that A is ∆-dense-immune if it is infinite, and its principle function pA is
∆-dominant, that is, for every g ∈ ωω ∩ ∆, pA(n) ≥ g(n) for almost all n. It is easy to see that there is a
∆-dense immune co-Γ subset of ω since Γ is ω-parametrized. Now, consider the set of all subsets of such a
∆-dense-simple co-Γ subset of ω (see [28]).

It is easily to verify the latter assertion by a straightforward modification of Chaitin’s counting argument
(see [57, Theorem 5.2.4]). Indeed, every Γ-trivial set is reducible to a universal Γ set. □

Solovay [71] showed that a noncomputable K-trivial Σ0
1 set exists, and Hjorth-Nies [36] showed the anal-

ogous results at the hyperarithmetical level. The straightforward modification of the cost function method
(see [57, Section 5.3]) easily implies the existence of a Γ-trivial Γ set A ̸∈ ∆.

We will see that ∆-triviality and Γ-triviality are incomparable.

Theorem 6.7. Suppose that Γ is a Kleene-or-Spector pointclass.

(i) There exists a Γ set A ⊆ ω that is Γ-trivial, but not ∆-trivial.
(ii) There exists a Γ set A ⊆ ω that is ∆-trivial, but not Γ-trivial.

Lemma 6.8. Γ-triviality is downward closed under wtt(Γ)-reducibility, and ∆-triviality is downward closed
under tt(Γ)-reducibility.

Proof. Suppose that A is Γ-trivial. Let Ψ be a wtt(Γ)-reduction witnessing Ψ(A) = B with modulus u ∈ ∆.

Then, KEΓ

semi(B ↾n) ≤+ KEΓ

semi(A↾u(n)) ≤+ KEΓ

semi(u(n)) ≤+ KEΓ

semi(n). Thus, B is Γ-trivial.
Suppose that A is ∆-trivial. Let Ψ be a tt(Γ)-reduction witnessing Ψ(A) = B with modulus u ∈ ∆. Given

EΓ-semicoded machine φ ∈ Cttλ(2<ω), clearly ψ = {⟨σ,Ψ(τ) ↾ n⟩ : (∃n ∈ ω) τ ∈ 2u(n)} is EΓ-semicoded
w.r.t. the representation ρttλ. Hence, ψ is EΓ-semicoded, and Kψ(B ↾ n) ≤ Kφ(A ↾ u(n)). Therefore, B is
∆-trivial. □

Franklin-Stephan [28, Theorem 5.2] showed that the class of Schnorr trivial sets is not closed under wtt-
reducibility. Recall that Kleene’s recursion theorem holds for any Kleene-or-Spector class (see [25, 55]).
Formally, let {φe}e∈ω be a Γ enumeration of all partial functions with Γ graph. Then, for every h ∈ ωω ∩∆,
there is a fixed point r such that φh(r) = φr. Thus, it is straightforward to show the following analog of
Franklin-Stephan’s theorem.

Lemma 6.9. For every Γ set A ⊆ ω, if A ̸∈ ∆, there exists a Γ set B ⊆ ω such that B ≡wtt(Γ) A and B is
not ∆-trivial. □
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Lemma 6.10. There exists a co-Γ set A ⊆ ω such that A is ∆-dense-immune and A is not Γ-trivial.

Proof. KEΓ

semi(n) ≤ n+ log n+ c ≤ 2n. Approximate the principal function pA. If KEΓ

semi(pA,β ↾n)[β] ≤ 2n for
some stage β < α, make pA(n− 1) bigger. Moreover, make pA(n) bigger than φΓ

e (n) for every e ≤ n, where
φΓ
e is a partial function constructed from the e-th Γ set. Note that if A is Γ-trivial, then by analyzing the

usual proof of the assertion that K-triviality implies lowness for K, we have KEΓ

semi(pA(n)) ≤ KEΓ

semi(n)+O(1).

However, this implies KEΓ

semi(n) > 2n−O(1). Hence, A cannot be Γ-trivial. □

Lemmata 6.8, 6.9 and 6.10 clearly imply Theorem 6.7. This for instance implies that Π1
1-triviality and

∆1
1-triviality are incomparable even for Π1

1 subsets of ω.

7. Question

By Lemma 3.4, A is Martin-Löf null-additive if and only if A△Z is Martin-Löf random whenever Z is
Martin-Löf random. It is natural to ask whether the Schnorr version of this characterization holds.

Problem 7.1. Let A ⊆ N. Suppose that A△Z is Schnorr random whenever Z is Schnorr random. Then,
is A Schnorr null-additive?

If A is low for Martin-Löf randomness, then clearly, A is Martin-Löf null-additive. Hence, K-triviality
implies Martin-Löf null-additivity, since K-triviality is equivalent to lowness for Martin-Löf randomness.
Thus, it is natural to ask if the converse holds.

Problem 7.2. Let A be a subset of N. Suppose that A△Z is Martin-Löf random for every Martin-Löf
random set Z ⊆ N. Then, is A necessary to be K-trivial?1

Recall that K-triviality implies ∆0
2. Hence, only countably many K-trivial sets exist. However, we do not

know even whether the class of the Martin-Löf null-additive sets is countable.

Problem 7.3. Does there exist a Martin-Löf null-additive set which is not computable in ∅′? Or even, do
there exist uncountably many Martin-Löf null-additive sets?2

As mentioned in Section 4.5, by straightforward effectivization of the equivalence add⋆(E ,N ) = cov⋆(M),
we have a covering characterization of Low⋆(SR,WR), that is, A ∈ Low⋆(SR,WR) if and only if 2ω ⊆
{A} +M for every computable meager set M ⊆ 2ω. Now, one can ask whether a covering characterization
of Low⋆(MLR,WR) exists.

Problem 7.4. Do there exist a class of meager sets M∗ ⊆ M and a class of reals C ⊆ 2ω such that for
every A ∈ 2ω, A ∈ Low⋆(MLR,WR) if and only if C ⊆ {A} +M for every M ∈ M∗?

Recall from Theorem 2.49 that Π1
1-⋆-traceability is equal to higher-anticomplexity (i.e., {Qcof}-oftenKsemi-

compressibility over EΠ1
1
). One can also show that (Tsemi, Q̃; C,E)-traceability is equal to Q̃-often Ksemi-

autocompressibility over E, e.g., the higher-Turing degree of a real x is Π1
1-traceable iff x is higher-auto-

anticomplex. It is shown in [44, Theorem 5.3] that a real is computably traceable iff it is totally auto-
anticomplex. However, the standard proof requires a time-trick (in the sense of [5]); therefore, the proof is
applicative only for ω-normed pointclasses.

Problem 7.5. If a real x is higher-totally-auto-anticomplex, then is it true that the higher-Turing de-
gree of x is ∆1

1-traceable? Formally speaking, does {Qcof}-often Kttλ-autocompressibility over EΠ1
1
imply

(Ttt, {Qcof}; C,EΠ1
1
)-traceability?

In algorithmic randomness theory, there are many results stating that lowness for randomness is equal to
lowness for tests. Currently we do not have a complete result on the equivalence of lowness for randomness
and tests at non-algorithmic levels.

Problem 7.6. Can Theorem 3.10 be extended to good2-pairs? Do we really need countability and principality
of E to show Theorem 3.10?

1Kuyper and Miller recently announced that this problem has an affirmative answer.
2An affirmative answer to Problem 7.2 implies negative answers to these problems.
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It is also important to develop separation techniques for uniform lowness properties. For instance, we can
ask the following.

Problem 7.7. Does there exist a real which is low for ∆1
1-randomness w.r.t. continuous relativization, but not

low for ∆1
1-randomness? Formally speaking, does (NSR,NSR; C,EΠ1

1
)-lowness imply (NSR,NSR;FΠ1

1
,EΠ1

1
)-

lowness?

For instance, Sacks forcing generates a ∆1
1-traceable real. Such a well known technique has the continuous

reading of names [78], that is, if a real is h-reducible to a Sacks real γ over LωCK
1

, then it is reducible to γ

via a Π1
1-semi-coded continuous function. To solve Problem 7.7, we need a new proof technique which has

no continuous reading of names. Hence, Problem 7.7 and its variations are quite important to develop proof
techniques in higher recursion theory, and even in set theory.
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[78] Jindřich Zapletal. Forcing Idealized, volume 174 of Cambridge Tracts in Mathematics. Cambridge University Press, Cam-
bridge, 2008.

[79] Ondrej Zindulka. Small sets of reals through the prism of fractal dimensions. preprint.

(T. Kihara) Japan Advanced Institute of Science and Technology, Japan
E-mail address: kihara@jaist.ac.jp

(K. Miyabe) Department of Mathematics, Meiji University, Kawasaki, Japan
E-mail address: research@kenshi.miyabe.name

30


	1. Introduction
	1.1. Historical Background
	1.2. Summary

	2. Preliminaries
	2.1. Codes and Models
	2.2. Ideals and Randomness
	2.3. Lowness for Randomness
	2.4. Traceability and Slalom
	2.5. Kolmogorov Complexity

	3. Basic Equivalences
	3.1. Additivity, Lowness and Preservation
	3.2. Lowness versus Additivity
	3.3. Traceability and Smallness
	3.4. Triviality and Complexity Preservation

	4. Transitive Additivity versus Uniform Relativization
	4.1. Additivity, Triviality and Uniform Tests
	4.2. Null-Additivity
	4.3. E-Additivity
	4.4. Meager-Additivity
	4.5. Strong Measure Zero

	5. Uniform Lowness for Randomness
	5.1. Levels of Uniformity
	5.2. Total Representations
	5.3. SRN Sets
	5.4. SRM Sets

	6. Other Results
	6.1. The Kucera-Gacs Theorem and Strong Measure Zero
	6.2. Distribution of Trivial Reals

	7. Question
	Acknowledgement
	References

