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Abstract. The main theme of this paper is computational power when a machine is allowed to access random

sets. The computability depends on the randomness notions and we compare them by Muchnik and Medvedev

degrees. The central question is whether, given an random oracle, one can compute a more random set. The
main result is that, for each Turing functional, there exists a Schnorr random set whose output is not computably

random.

1. Introduction

In mathematical logic or theoretical computer science, a function f :⊆ ω → ω is computable if the function
f is computable by a Turing machine. Computability on natural numbers is formalized by a few ways, that
have been proved to be equivalent. By the Church-Turing thesis, we believe that this is the correct definition
of computability. The definition naturally extends to a function f :⊆ 2ω → 2ω.

When one is writing a code in a programming language, one may use a random generator and may say that
a function is computable even if the function uses a random generator. We formalize computational power of
functions f on Cantor space when the functions are allowed to access random sets. In computational complexity
theory, there are some such classes such as BPP and RP. In this paper, we focus on computability theory.

One old answer is the following. Suppose a set X is Turing computable with an oracle in a class of random
sets. The set of random sets (for any reasonable randomness notion) has measure 1. Thus, {Y ∈ 2ω : Y ≥T X}
has measure 1. A classical theorem says that, if a set X ∈ 2ω is not computable, then {Y ∈ 2ω : Y ≥T X}
has Lebesgue measure 0 [6]. Hence, X should be an computable, which means that it is already computable
without a random oracle. This is the case with only one solution.

When multiple solutions are allowed, the results are very different. The computability with random access can
be formalized as mass problems. Each element X ∈ 2ω can be seen as a candidate of solutions and we identify
the set of solutions and a problem. Consider two problems P,Q ⊆ 2ω. If each solution f ∈ Q can compute
a solution g ∈ P , then we can say that constructing a solution of P is not more difficult than constructing a
solution of Q. The induced degree of P will represent computational power when allowed to access an element of
P . When the computation is uniform, we say that P is Medvedev (or strongly) reducible to Q and it is denoted
by P ≤s Q. When the computation can be nonuniform, P is Muchnik (or weakly) reducible to Q and denoted
by P ≤w Q. For a formal definition, see Definition 2.1.

Many randomness notions have been studied in the theory of algorithmic randomness. Each randomness
notion is a subset of Cantor space, so we can directly study its degree. If a randomness notion P is weaker than
Q (P ⊇ Q), then it straightforwardly implies P ≤s Q and P ≤w Q. In other words, for any P,Q ⊆ 2ω, we have

P ⊇ Q⇒ P ≤s Q⇒ P ≤w Q.

So, the real problem is whether each reduction is strict. In other words, we ask whether one can compute a
more random set from a given random set.

The following is (a part of) well-known hierarchy of randomness notions:

WR ⊋ SR ⊋ CR ⊋ MLR ⊋ DiffR
⊋ W2R ⊋
⊋ DemR ⊋ 2R.

The abbriviations of randomness notions above will be explained in the next section. The following is the
structure of Muchnik and Medvedev degrees, and the summary of this paper:

WR <w SR ≡w CR <w MLR ≡w DiffR
<w W2R <w

<w DemR <w
2R,(1)

SR <s CR, MLR <s DiffR.(2)

The main result is SR <s CR and will be proved in Theorem 3.10.
A related work can be found in Simpson [22], which mainly studied the Muchnik degrees of Π0

1-class and the
relation with the Muchnik degree of the class of all ML-random sets. A similar question can be asked in the
context of Weihrauch degrees [3].
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The rest of the paper is devoted to the proofs of these results.

2. Preliminaries

2.1. Computability theory. We fix some notations. We denote the set of finite binary strings by 2<ω, and
the set of infinite binary sequences by 2ω. We often identify an infinite sequence X ∈ 2ω with a set of natural
number Y ⊆ ω by X(n) = 1 ⇐⇒ n ∈ Y . The jump of a sequence A is denoted by A′ and is defined by
A′ = {n ∈ ω : ΦA

n (n) ↓}, there Φn is the n-th Turing machine.
For computability theory, see some textbooks such as [5, 23].
We define Muchnik and Medvedev reducibility on 2ω because we are interested in only randomness notions.

Definition 2.1 (Muchnik [16], Medvedev [12]). Let P,Q ⊆ 2ω.

(i) We say that P is Muchnik reducible (or weakly reducible) to Q, denoted by P ≤w Q, if, for every f ∈ Q,
there is an element g ≤T f in P .

(ii) We say that P is Medvedev reducible (or strongly reducible) to Q, denoted by P ≤s Q, if there is a
Turing functional Φ such that Φf ∈ P for every f ∈ Q.

A rough idea is that P ≤w Q if each solution in Q can Turing compute a solution in P , but the reduction need
not be uniform. In contrast P ≤s Q if one Turing reduction Φ can compute a solution in P from a solution in
Q uniformly. The reductions ≤w and ≤s are pre-orders. We write P ≡w Q to mean P ≤w Q and Q ≤w P , and
P ≡s Q similarly. Muchnik degrees and Medvedev degrees are equivalent classes derived from the equivalent
relations ≡w and ≡s, respectively.

2.2. The theory of algorithmic randomness. We review some definitions or characterizations from the
theory of algorithmic randomness. For more details, see monographs [18, 7].

Cantor space is the space 2ω equipped with the topology generated by the cylinder sets [σ] = {X ∈ 2ω :
σ ≺ X} for σ ∈ 2<ω, where ≺ is the prefix relation.

We define X ⊕ Y = {2n : n ∈ X} ∪ {2n+ 1 : n ∈ Y }. We usually consider the fair-coin measure λ on 2ω.
An open set V is c.e. if V =

∪
σ∈S [σ] for a computable set S. A Martin-Löf test (ML-test) is a sequence

{Un}n∈ω of uniformly c.e. open sets such that λ(Un) ≤ 2−n for all n. A sequence X ∈ 2ω is ML-random if
X ̸∈

∩
n Un for each ML-test. The class of ML-random sequences is denoted by MLR. Note that MLR is a

subset of 2ω. We compare this class with other randomness notions in Muchnik degrees and Medvedev degrees.
We denote the classes of Kurtz random sets, Schnorr random sets, computably random sets, difference random

sets, weakly 2-random sets, Demuth random sets, and 2-random sets by WR, SR, CR, DiffR, W2R, DemR, and
2R, respectively. In the proof we need only their characterizations or some properties.

The randomness notion depends on the measure λ. If one replaces λ with a computable measure ν in the
definition of ML-randomness, then we can define ML-randomness with respect to ν, or ν-ML-randomness. Other
randomness notions with respect to a computable measure can be defined similarly.

3. Proofs

3.1. Separations in Muchnik degrees. Here, we show equivalences and separations of randomness notions
in Muchnik degrees. In the proof we make use of some notions in Turing degrees.

We start from the proof of CR <w MLR. The proof is probably simplest and it is appropriate to explain
the intuition from this. We look for a Turing degree a that contains a computably random set but no Turing
degree below a contains a ML-random set. We use the notion of highness to prove that the degree contains a
computably random set, and the one of minimality to prove that the degrees do not contain any ML-random
set.

A Turing degree a > 0 is minimal if no degree b satisfies 0 < b < a. We say that a Turing degree a is
ML-random if it contains a ML-random set.

Lemma 3.1. No ML-random degree is minimal.

Proof. Assume, for a contradiction, that Z = X⊕Y is a ML-random set with minimal degree. Van Lambalgen’s
theorem [24] (see Corollary 6.9.3 in [7]) says that A⊕B is ML-random if and only if A is ML-random and B are
A-ML-random. Thus, X is ML-random relative to Y . In particular, X is not computable. Since 0 <T X ≤T Z,
we have X ≡T Z. Similarly, Y ≡T Z. Hence, X ≡T Y , which contradicts the fact that X is ML-random
relative to Y . □

A sequence X ∈ 2ω is called high if ∅′′ ≤T X ′. If X ≡T Y and X is high, then Y is also high because
X ′ ≡T Y ′. A degree a is called high if a contains a high sequence, or equivalently if all sequences in a are high.
Highness is an important property in the study of computable randomness. In particular, Nies, Stephan and
Terwijn [19] showed that every high degree contains a computably random set.

The last piece is finding a high minimal degree, whose existence is known in computability theory.
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Theorem 3.2.
CR <w MLR

Proof. We begin by showing that CR ≤w MLR. Every ML-random set is computably random, so every ML-
random set computes a computably random set. In fact CR ≤s MLR. Let Id be the Turing functional such
that Id(X) = X for all X ∈ 2ω. Then, ΦX is computably random for every ML-random sequence X. Thus,
CR ≤S MLR.

Suppose, for a contradiction, that MLR ≤w CR. Let a be a high minimal Turing degree, whose existence is
shown in [4]. Then, there exists a computably random set X ∈ a. Thus, there should be Y ∈ MLR such that
Y ≤T X. Since the Turing degree of X is minimal and Y can not be computable, we have X ≡T Y and the
Turing degree of Y is minimal, which contradicts the fact Y ∈ MLR. □

Notice that MLR <w CR implies that MLR and CR are distinct. If MLR = CR, they have the same Muchnik
and Medvedev degrees. In contrast, different sets can have the same Muchnik or Medvedev degree as we will
see MLR ≡w DiffR later. Thus, the fact that MLR and CR are different is not enough to show MLR <w CR.
Some proof ideas are already implicit in proofs of the strict inclusions of the randomness notions. One can see
this paper as a list of proofs of the strict inclusions only by degree properties, not by construction of a particular
set.

Next, we show WR <w SR. Van Lambalgen’s theorem for Schnorr randomness with the usual Turing
relativization does not hold and we need uniform (or truth-table) relativization [15]. Instead, we use the fact
that every non-high Schnorr random set is ML-random, which is shown in Nies, Stephan and Terwijn [19]. Then
we can make a similar argument by minimal degrees.

Another notion we need is hyperimmunity. A Turing degree a is hyperimmune if a computes a function
f : ω → ω that is not dominated by a computable function. Every hyperimmune contains a Kurtz random set
that is not Schnorr random ([7, Corollary 8.11.10]).

Now it suffices to show the existence of a degree that is minimal, non-high, and hyperimmune.

Theorem 3.3.
WR <w SR

Proof. Since WR ⊇ SR, we have WR ≤w SR. Assume, for a contradiction, that SR ≤w WR.
Let a be a minimal (Turing) degree below 0′, whose existence was shown in Sacks [21]. Note that a is not

high because no minimal degree below 0′ can be high ([4]). Furthermore, since every nonzero degree 0′ is
hyperimmune ([14]), a is hyperimmune. Let X ∈ a such that X ∈ WR \ SR. This is possible because every
hyperimmune degree contains a Kurtz random set that is not Schnorr random.

Since SR ≤w WR, there exists a Schnorr random set Y ≤T X ∈ WR. Since a is minimal and Y can not be
computable, Y ∈ a and Y is not high. Since Y is non-high Schnorr random, Y is already ML-random, and with
minimal degree. This is a contradiction. □

Next we show DiffR <w W2R. Both notions have characterizations by a degree property in ML-randomness,
which is suitable for our purpose. A set X is difference random if and only if X is ML-random and X is
Turing incomplete [9]. A set X is weakly 2-random if and only if X is ML-random and the degree of X forms a
minimal pair with 0′ [8]. We say that two incomputable sets A,B form a minimal pair if every set Z ≤T A,B
is computable. We again make use of van Lambalgen’s theorem for ML-randomness.

Theorem 3.4.
DiffR <w W2R

Proof. Let Ω be a halting probability. Recall that Ω is ML-random and Ω ≡T ∅′. Let Ω0 ⊕ Ω1 = Ω.
We claim that Ω0 is difference random Turing below 0′. First of all, by van Lambalgen’s theorem, Ω0 is

ML-random. Notice that Ω0 is incomplete, otherwise Ω1 ≤T Ω ≡T ∅′ ≤T Ω0 and this contradicts the fact that
Ω1 is ML-random relative to Ω0 by van Lambalgen’s theorem. Hence, Ω0 is difference random. Furthermore,
Ω0 ≤T Ω ≡T ∅′.

Now, suppose that W2R ≤w DiffR. Then, there exists X ∈ W2R such that X ≤T Ω0 ≤T ∅′, but X cannot be
a minimal pair with 0′, because X ≤T X and X ≤T ∅′ is not computable and X itself is a counterexample. □

Next, we show W2R <w 2R. If a is not hyperimmune, the degree a is called hyperimmune-free. Clearly, if
A ≤T B and B has a hyperimmune-free degree, then A has a hyperimmune-free degree.

Theorem 3.5.
W2R <w 2R

Proof. We use the following facts:

• There exists a ML-random set of hyperimmune-free degree ([7, Theorem 8.1.3]).
• If A has hyperimmune-free degree, then A is Kurtz random if and only if A is weakly 2-random (Yu
[7, Theorem 8.11.12]).
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• Every 2-random degree is hyperimmune (Kautz [11], see [7, Theorem 8.21.2]).

The above two facts imply that there exists a weakly 2-random set of hyperimmnue-free degree, which can
not compute a hyperimmune set, nor a 2-random set. □

Finally, we see the relation with Demuth randomness.

Theorem 3.6.
DiffR <w DemR <w 2R

Furthermore, W2R and DemR are incomparable in Muchnik degrees.

Proof. There exists a weakly 2-random set X that of hyperimmune-free degree. Any set Y ≤T X is of
hyperimmune-free degree, while no Demuth random set is of hyperimmune-free degree ([7, p.316]). Thus,
DemR ̸≤w W2R.

There exists a Demuth random set Z in ∆0
2 ([7, Theorem 7.6.3]). Any set W ≤T Z cannot be a minimal pair

with 0′. Thus, W2R ̸≤w DemR.
Thus, W2R and DemR are incomparable in Muchnik degrees, which implies DiffR <w DemR <w 2R. □

3.2. ML-randomness and difference randomness. We have seen the separations of the adjacent random-
ness notions in Muchnik degrees. From now on we show the equivalence between MLR and DiffR in Muchnik
degrees. The equivalence MLR ≡w DiffR means that one can compute a difference random set from every
ML-random set. The proof is given by constructing a reduction.

Theorem 3.7.
MLR ≡w DiffR

Proof. Let X = Y ⊕ Z be a ML-random set.
We claim that at least one of Y or Z should be difference random. Suppose that Y is not difference random.

By van Lambalgen’s theorem, Y is ML-random, so Y is Turing above 0′. Again, by van Lambalgen’s theorem,
Z is ML-random relative to Y . Thus, Z is 0′-ML-random, thus 2-random and difference random.

Note that Y, Z ≤T X. Then X can compute a difference random set, which is Y or Z. □

In this proof, we do not know which of Y or Z is difference random, so the reduction is not uniform. In fact,
we can not do this uniformly.

Theorem 3.8.
MLR <s DiffR

The task is as follows. For every Turing functional Φ, we need to construct a ML-random set X such that
Φ(X) is not difference random.

The key notion in the proof is the push-forward measure. Let (X1, A1) and (X2, A2) be two measurable
spaces where A1 and A2 are σ-algebra on X1 and X2, respectively. Given a measurable map f : X1 → X2 and
a measure ν on X1, the push-forward m measure of ν by f is defined to be

m(B) = ν(f−1(B)) for B ∈ A2.

If two measurable functions are equal almost everywhere, then they induce the same push-forward measure.
In the following proof, we consider the push-forward measure µ of the uniform measure λ by the Turing

functional Φ. Roughly speaking, if the measure µ is very different from λ, then we can find such X because
randomness does not preserve by Φ. If the measure µ is close to λ in some sense, then we can construct such
X because some properties do preserve by Φ. This strategy is also used in the proof of SR <s CR. In this case,
more concretely, if the measure µ has an atom, then the atom is a counterexample. If the measure is continuous,
then the classes of the random sets with respect to µ and λ are not so different in the sense of Turing degree,
so we can find a counterexample again. Given a measure ν on a space X, an element x ∈ X is an atom if
ν({x}) > 0. In this case we say that ν has an atom. If the measure does not have an atom, then the measure
is called continuous.

A measure ν on 2ω is computable if the function σ 7→ ν(σ) is computable, or equivalently ν(σ) is computable
uniformly in σ. It is known that every atom for a computable measure is computable [7, Lemma 6.12.7]. Any
computable points can not be random in any sense. Moreover, the inverse image of the atom should have a
random point because its measure is positive. For two continuous computable measures, their random points
have 1-1 correspondence in some sense. In particular, Levin-Kautz theorem ([25, 11] and [7, Theorem 6.12.9(iii)])
says that, if ν is a continuous computable measure and a > 0 then a contains a λ-ML-random set iff a contains
a ν-ML-random set. Here, λ is the uniform measure.

The last theorem we use in the proof is a no-randomness-from-nothing result, which is a converse of the
randomness conservation theorem.

The randomness conservation theorem is the following. Let ν be a computable computable measure on 2ω.
Let Φ :⊆ 2ω → 2ω be a Turing functional defined ν-almost-everywhere. if X ∈ 2ω is ν-ML-random, then Φ(X)
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is ML-random with respect to the push-forward measure of ν by Φ The push-forward measure is computable
in this case. For a proof, see [2, Theorem 3.2] etc.

No-randomness-from-nothing result is the following. Let ν be a computable computable measure on 2ω. Let
Φ :⊆ 2ω → 2ω be a Turing functional defined ν-almost-everywhere. Let µ be the push-forward measure of ν
by Φ. If Y ∈ 2ω is µ-ML-random, then there exists a ν-ML-random set X such that Φ(X) = Y . This result is
really useful in our proof. We do not need to construct X; we only have to find Y with a property.

Proof of 3.8. Since MLR ⊇ DiffR, we have MLR ≤s DiffR. Assume, for a contradiction, that DiffR ≤s MLR.
Then, there exists a Turing functional Φ :⊆ 2ω → 2ω such that Φ(X) is difference random for every ML-random
set X.

Let λ be the fair-coin measure on 2ω. Let µ be the push-forward measure of λ by Φ, that is, µ(B) = λ(Φ−1(B))
for every Borel set B on 2ω. The measure µ is computable because the measures µ([σ]) are uniformly left-c.e.
and

∑
σ∈2n µ([σ]) = 1 for every n.

Suppose that µ has an atom, that is, µ({Y }) > 0 for some Y ∈ 2ω. Then, λ(Φ−1({Y })) > 0. Hence, there
exists a ML-random set X ∈ Φ−1({Y }). Then, Y = Φ(X) and Y is difference random by the assumption. This
contradicts the fact that every atom for a computable measure is computable.

Now suppose that µ is continuous (no atom). Notice that the degree 0′ > 0 contains a ML-random set Ω. By
Levin-Kautz theorem, 0′ contains a µ-ML-random set Y . By no-randomness-from-nothing for ML-randomness,
there exists a λ-ML-random set X such that Y = Φ(X). However, Φ(X) is not difference random because
Y ∈ 0′, which is a contradiction. □
3.3. Schnorr randomness and computable randomness. Now we turn to the relation between Schnorr
randomness and computable randomness. As the relation between ML-randomness and difference randomness,
we will see SR ≡w CR and SR <s CR. The proof of the former is not difficult, but the one of the latter needs
a little work.

We recall some definitions. A martingale is a function d : 2<ω → R+ such that 2d(σ) = d(σ0) + d(σ1) for
every σ ∈ 2<ω. Here, R+ denotes the set of non-negative reals. A set X is not computably random if there
exists a computable martingale d such that supn d(X ↾ n) = ∞. A set X is not Schnorr random if and only if
there is a computable martingale d and a computable function f such that d(A ↾ f(n)) ≥ n for infinitely many
n [10]. Thus, the difference between Schnorr randomness and computable randomness is the rate of divergence
for computable martingales.

In the definition of Schnorr randomness, we can replace d(A ↾ f(n)) ≥ n with d(A ↾ f(n)) ≥ 2n by making
f grow faster. Futhermore, we can assume d has the saving property : for each σ, τ we have

d(στ) ≥ d(σ)− 2.

First we see their equivalence in Muchnik degrees.

Theorem 3.9.
SR ≡w CR

Proof. Let X ∈ SR. If X is high, then there exists a computably random set Y ≡T X, because every high
degree contains a computably random set [19]. If X is not high, X is already ML-random (again by[19]), thus
computably random. □

Note that the proof is not uniform again. The reduction can not be uniform as the following theorem
indicates. This is the main theorem of this paper.

Theorem 3.10.
SR <s CR

The goal is to show the following: for each Turing functional Φ :⊆ 2ω → 2ω, there exists a Schnorr random
set X such that Φ(X) is (undefined or) not computably random. If Φ = id (the identity map), this is equivalent
to saying that there exists a Schnorr random set that is not computably random. In fact, we extend the method
of the construction of X ∈ SR \ CR in [19].

To give a proof idea, let us recall the ”martingale strategy”. The terminology of the martingales in theory of
algorithmic randomness and probability theory comes from this strategy in a coin flipping game. In this game,
the player predicts whether the next coin is a head or a tail. The player bets some money, and the capital
increases the same amount of money if the player is correct and the capital decreases the amount if the player
is incorrect. The martingale strategy is the following strategy. The player first bets 1 dollar (say) to a head
(say again). If incorrect, the player bets the money doubled from the previous bet, again and again. The player
will be correct at some turn, say at n-th turn and increase his capital by

2n − (1 + 2 + 22 + · · ·+ 2n−1) = 1.

We call this strategy martingale strategy. By repeating this martingale strategy, the player will increase the
capital to infinity almost surely.
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The strategy sounds good, but does not work in reality. This is because the player needs infinite amount of
money in hand. If the initial capital is finite and the capital should be non-negative at any turn, the player can
not continue the strategy from some point almost surely.

Suppose we know that a head will appear at least one turn in log(n) turns for some reason. Then, by making
the first bet 1

n , the lost of money is bounded by

log(n)∑
k=1

2k−1

n
=

2log(n) − 1

n
< 1.

The capital will increase 1
n in log(n) turns. By repeating this for n = 1, 2, · · · , the player will increase the

capital to infinity.
The construction of X ∈ SR \ CR makes use of this strategy as follows. Construct a martingale V that

dominates all computable martingales. If V is bounded along a set X, then X should be computably random.
If the rate of divergence of V along a set X is slower than any computable function, then X should be Schnorr
random. We construct a set X so that V does not increase along X except the positions {an} where we set
X(an) = 0. The positions are too sparse so no computable martingale succeeds fast enough in Schnorr sense.
The numbers of candidates of the positions are small enough for some computable martingale to succeed by
iterating the martingale strategy.

In our case, for each almost-everywhere-defined functional Φ, we need to construct a set X ∈ SR such that
Φ(X) ̸∈ CR. We force Φ(X)(an) = 0 in some positions similarly. The difficulty here is that the measure of the
class of such sets X (loosely speaking) may be very small or even 0, and some computable martingale succeeds
on X fast enough.

We divide the case into two. Let µ be the push-forward measure of λ by Φ. The first case is that µ is ”far
from” the fair-coin measure λ and we can construct X ∈ SR such that Φ(X) ̸∈ CR by another reason. The
second case is that µ is ”close to” the fair-coin measure and we can apply the method of id case. The two cases
are separated by the condition CR(µ) ⊆ CR(λ), which was (essentially) suggested by Laurent Bienvenu.

Let me give examples. Consider the map Φ : 2ω → 2ω, X 7→ 0X. In this case, CR(µ) ⊊ CR(λ). Look for a set
Y ∈ (SR\CR)∩ [0]. Then, the set X such that Y = 0X is in SR\CR. Consider the map Φ : 2ω → 2ω, X 7→ 0ω.
In this case, 0ω ∈ CR(µ) \ CR(λ) and CR(µ) ̸⊆ CR(λ). Then, there exists a Schnorr random set X such that
Φ(X) = 0ω.

Proof of Theorem 3.10; CR(µ) ̸⊆ CR(λ) case. Suppose for a contradiction that there exists a Turing reduction
Φ :⊆ 2ω → 2ω such that Φ(X) ∈ CR for every X ∈ SR. Since Φ is defined almost everywhere, the push-forward
measure µ is computable.

Case 1: CR(µ) ̸⊆ CR(λ)
By CR(µ) and CR(λ), we denote the class of sets that are computably random relative to µ and λ respectively.

Then, there exists a set Y ∈ CR(µ) \ CR(λ). By the no-randomness-from-nothing result for computable
randomness by Rute [20], there exists a setX ∈ CR(λ) such that Φ(X) = Y . Thus, X ∈ SR but Φ(X) ̸∈ CR. □

For a proof of the other case, we use some analytical lemmas. Let ν, µ be measures on a measurable space.
We say that µ is absolutely continuous with respect to ν (denoted by µ≪ ν) if µ(A) = 0 for every set such that
ν(A) = 0. If µ≪ ν and ν ≪ µ, then we say that µ and ν are equivalent. Radon-Nikodym theorem says that, if
µ≪ ν, then there is a measurable set f on the space to R such that

µ(A) =

∫
A

f dν

for any measurable set A. The function f is called the Radon-Nikodym derivative and denoted by dµ
dν .

Bienvenu and Merkle [1] observed that, for computable measures µ and ν on 2ω, we have

CR(µ) = CR(ν) ⇒ MLR(µ) = MLR(ν) ⇒ µ and ν are equivalent(3)

where the former implication follows from a theorem in Muchnik, Semenor, and Uspensky [17, Theorem 9.7].
The theorem by Muchnik, Semenor, and Uspensky actually shows that, for computable measures µ and ν, we
have

MLR(ν) ∩ CR(µ) ⊆ MLR(µ).

Thus, if CR(ν) ⊆ CR(µ), we have

MLR(ν) = MLR(ν) ∩ CR(ν) ⊆ MLR(ν) ∩ CR(µ) ⊆ MLR(µ).

The proof of the latter implication of (3) actually showed that, if there exists X such that µ(X ) = 0 and ν(X ) > 0
for two computable measures µ, ν, then MLR(ν) ̸⊆ MLR(µ). Hence, we have the following implications.

Lemma 3.11. Let µ, ν be computable measures. Then, we have

CR(ν) ⊆ CR(µ) ⇒ MLR(ν) ⊆ MLR(µ) ⇒ ν ≪ µ.
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The following lemma is the key observation. If CR(µ) ⊆ CR(λ), then µ ≪ λ. By Radon-Nikodym theorem,
there exists a measurable function f : 2ω → R+ such that µ(A) =

∫
A
f dλ for a Borel set A. By this existence

of f , we can find find positions that separates the space roughly half for each in measure; loosely speaking we
can find the positions on which the measure is close to the fair-coin measure.

Lemma 3.12. Let Φ :⊆ 2ω → 2ω be a Turing functional almost everywhere defined. Let µ be the push-forward
measure of λ by Φ where λ is the fair-coin measure on 2ω. Assume that µ ≪ λ. Then, for each σ ∈ 2<ω, we
have

lim
n→∞

λ{X ∈ [σ] : Φ(X)(n) = 0} =
1

2
λ(σ).

Proof. Let µσ be the measure defined by

µσ(τ) = λ(Φ−1([τ ]) ∩ [σ]) = λ{X ∈ [σ] : Φ(X) ∈ [τ ]}.
Then,

µσ ≪ µ≪ λ.

Let g =
dµσ

dλ
be a Radon-Nikodym derivative and let

gn(X) =
1

2−n

∫
[X↾n]

g dλ.

By Lévy’s zero-one law, {gn} converges in the L1-norm, that is,

lim
n

∫
|gn − g| dλ = 0.

For n ∈ ω and i = 0, 1, let
D(n, i) = {Y ∈ 2ω : Φ(Y )(n) = i}.

Since gn−1 looks only at X ↾ (n− 1), so
∫
D(n,0)

gn−1dλ =
∫
D(n,1)

gn−1dλ. Then,∣∣∣∣∣
∫
D(n,0)

gndλ−
∫
D(n,1)

gndλ

∣∣∣∣∣ ≤
∣∣∣∣∣
∫
D(n,0)

gndλ−
∫
D(n,0)

gn−1dλ

∣∣∣∣∣+
∣∣∣∣∣
∫
D(n,1)

gn−1dλ−
∫
D(n,1)

gndλ

∣∣∣∣∣
≤
∫
D(n,0)

|gn − gn−1|dλ+

∫
D(n,1)

|gn − gn−1|dλ

=

∫
|gn − gn−1|dλ

Notice that ∫
D(n,0)

gndλ+

∫
D(n,1)

gndλ = µσ(2
ω) = λ(σ).

Thus,

lim
n

∫
D(n,0)

gndλ =
1

2
λ(σ).

Finally notice that ∫
D(n,0)

gndλ =

∫
D(n,0)

gdλ = µσ(D(n, 0)) = λ{X ∈ [σ] : Φ(X)(n) = 0}.

□
The lemma enables us to find, for each σ, a position n such that the measure λ{X ∈ [σ] : Φ(X)(n) = 0} is

roughly a half of λ(σ). So when one looks only at these positions, µ looks like the uniform measure. We define
such positions inductively. The positions are just the candidates for forcing. Then, there are many candidates
for σ, but still finite. Thus, we consider all candidates for σ and look for n sufficiently large for all σ.

Proof of Theorem 3.10. Case 2: CR(µ) ⊆ CR(λ)
First, we construct a computable function g : ω → ω. The values of g will be the candidates of the positions

where we force Φ(X)(g(n)) = 0. The function g depends only on Φ. We will define g(n) inductively on n. Let
G = {g(n) : n ∈ ω}.

Let ϵ be a positive rational number sufficiently small. Let bn be a computable strictly increasing sequence
of rationals such that 0 < bn < 1 and

∏
n bn > 1 − ϵ. The values bn are close to 1. They control the ratio

between λ{X ∈ [σ] : Φ(X)(n) = 0} and λ(σ). The values bn also control how many bits are needed to compute
Φ(X)(n) as explained below.

As a warmup, we define g(0) first. By Lemma 3.12, we can compute n ∈ ω such that

λ{X ∈ 2ω : Φ(X)(n) = i} > 1

2
b0
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for i = 0, 1. We wish to define n to be g(0). However, there are many possibilities of X such that Φ(X)(n) = 0.
In order to construct X inductively, we would like to restrict possibilities to be finite. Notice that we can
enumerate all strings τ such that Φ(τ)(n) is defined. Since Φ is almost everywhere defined, the measure of all
such strings is 1 for each n. In some fixed order search sufficiently large n and the least s such that

λ(
∪

{[τ ] : Φ(τ)(n)[s] = i}) > b0
2

for both i = 0, 1. Then we define g(0) to be this n. For this s, let a(0) be the maximum of the lengths of the
strings in the set

{τ : Φ(τ)(n)[s] ↓}.
We also let

T (0) = {σ ∈ 2a(0) : τ ⪯ σ, Φ(τ)(n)[s] ↓}.
We define g(k), a(k), T (k) inductively on k. For each σ ∈ T (k − 1), search n > g(k − 1) and s such that

λ(
∪

{[τ ] : σ ≺ τ, Φ(σ)(n)[s] = i}) > bk
2
λ(σ)

for both i = 0, 1. For each σ, we can find such s by taking sufficiently large n. Since the set T (k−1) is finite, we
can computably find sufficiently large n and the least s such that the above inequality holds for all σ ∈ T (k−1).
Then we define g(k) to be this n. For this s, let a(k) be the maximum of the lengths of the strings in the set∪

σ∈T (k−1)

{τ : σ ≺ τ, Φ(τ)(n)[s] ↓}.

We also let

T (k) = {ρ ∈ 2a(k) : σ ≺ τ ⪯ ρ, Φ(τ)(n)[s] ↓}.
Note that, for each σ ∈ T (k − 1),

|{ρ ∈ T (k) : σ ⪯ ρ}| > bk2
a(k)−a(k−1).

Similarly,

|{ρ ∈ T (k) : σ ⪯ ρ, Φ(ρ)(n) = 0}| > bk
2
2a(k)−a(k−1).

Now we essentially follow the construction of X ∈ SR \ CR in [19]. We define ψ as follows:

ψ(e, x) =

{
⟨e, x, s⟩+ 1 where s is the smallest number such that Φe(x)[s] ↓,
↑ if Φe(x) ↑ .

Here, ⟨i, j⟩ is a number coding of the ordered pair and define ⟨i, j, k⟩ = ⟨⟨i, j⟩, k⟩. Notice that ψ is one-to-one
where defined, ψ(e, x) > x, and the relation n ∈ rngψ is decidable. Furthermore, the numbers e, x such that
ψ(e, x) = n is computable from n.

We define a computable function p : ω → ω as follows:

p(n) =

{
p(x) + 1 if ∃x < n, ∃e < log p(x)− 1, ψ(e, x) = n,

n+ 4 otherwise.

Loosely speaking, the number of candidates of forcing positions at stage n is log p(n)−1. Notice that limn p(n) =
∞.

We define a set Hx as follows:

Hx = {ψ(e, x) : ψ(e, x) ↓, e < log p(x)− 1}.

The set Hx is the candidates of forcing positions at stage x. We assume Φ0 is total and Hx is not empty for
each x ∈ ω. Notice that Hx is pairwise disjoint and |Hx| ≤ log p(x)− 1.

Let h(x) = max(Hx). We will force Φ(X)(g(h(x))) = 0. The function h may not be monotone, but h
grows faster than any computable order in the following sense. Let f : ω → ω be an increasing unbounded

computable function. Let e be such that Φe(x) = 22
f(x)

. Then, ψ(e, x) > 22
f(x)

. Since limx p(x) = ∞, we have

e < log p(x) − 1 for almost all x. For such x, we have h(log log x) > f(x). Let ĥ be the reordering of h, that

is, the strictly increasing function ĥ such that {ĥ(n)} = {h(n)}. Note that ĥ also dominates all computable
functions.

Let {Mn} be a non-effective enumeration of Q2-valued computable martingales with initial capital 1. Let
V =

∑
n 2

−n−1Mn. Then, V is a martingale.
Now, we construct X ∈ 2ω. We define σ−1 ≺ σ0 ≺ · · · ≺ σn ≺ X. Let σ−1 to be the empty string and T (−1)

to be the set containing only the empty string. Suppose we have chosen σn−1 ∈ T (n− 1). The definition of σn
varies depending on whether there exists k such that ĥ(k) = n.
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If no k satisfies ĥ(k) = n, we would like to define σn so that V does not increase rapidly along σn after σn−1.
This is possible because the measure of

∪
{[τ ] : σn−1 ≺ τ ∈ T (n)} is close to the measure of [σn−1]. We claim

that there exists τ ∈ T (n) such that σn−1 ⪯ τ and

V (τ) ≤ 1

bn
V (σn−1).

Suppose not. Since the possibilities of τ is more than bn2
a(n)−a(n−1),∑

{V (τ) : τ ∈ T (n), σn−1 ⪯ τ} > 1

bn
V (σn−1) · bn2a(n)−a(n−1).

In contrast, the fairness condition in the definition of martingales imply

V (σn−1) = 2−(a(n)−a(n−1))
∑

{V (τ) : τ ∈ 2an , σn−1 ⪯ τ} ≥ 2−(a(n)−a(n−1))
∑

{V (τ) : τ ∈ T (n), σ ⪯ τ},

which is a contradiction. Then, define σn to be such τ .

If there exists k such that ĥ(k) = n, we need to define σn so that Φ(σn)(g(n)) = 0. We can show that there
exists τ ∈ T (n) such that σn−1 ⪯ τ , Φ(τ)(g(n)) = 0, and

V (τ) ≤ 2

bn
V (σn−1)

in the same way. Then, define σn to be such τ .

We claim thatX is Schnorr random. Suppose that there exists a computable martingaleMk and a computable
order f such that Mk(X ↾ f(m)) > 2m for infinitely many m. Let c(m) be the smallest natural number such
that f(m) ≤ a(c(m)). Since f and a are increasing and computable, c is also computable. By the saving
property of V ,

V (X ↾ a(c(m))) ≥ V (X ↾ f(m))− 2 ≥ 2−k−1Mk(X ↾ f(m))− 2 ≥ 2m−k−1 − 2.

In contrast,

V (X ↾ a(c(m))) ≤
c(m)∏
n=1

1

bk
· 2|{k : ĥ(k)≤c(m)}| <

1

1− ϵ
2|{k : ĥ(k)≤c(m)}|.

This contradicts the fact that ĥ dominates all computable functions.

Finally, we claim that Φ(X) is not computably random. We construct a computable martingale M that
succeeds on X. The initial capital of M is 1. The martingale M uses the martingale strategy S. We describe
the strategy of M for each Z = Z(0)Z(1)Z(2) · · · ∈ 2ω. The strategy can be divided into countable stages.

At 0-th stage, the strategy uses the martingale strategy with initial bet 1
p(0) = 1

4 only at g(H0) until the

prediction is correct. Notice that g(H0) is a computable finite set. A little formal definition by induction on σ is

as follows. If |σ| ̸∈ g(H0), then defineM(σ0) =M(σ1) =M(σ). If |σ| ∈ g(H0), then defineM(σ0) =M(σ)+ 2k

p(0)

and M(σ1) = M(σ) − 2k

p(0) with an exception explained below. Here k is the number of positions taking risks

so far, that is, k = |{n ≤ |σ| : n ∈ H0}|. The exception is the case that M(σ) − 2k

p(0) < 0 for some σ. In this

case, define M(τ) = M(σ) for all τ ≻ σ and 0-th stage never ends. Clearly, M keeps the capital non-negative.
The 0-th stage ends at the position g(n), that is, the smallest number such that n ∈ H0 and Z(g(n)) = 0, or
never ends if no such n exists. Note that the position g(n) need not be g(h(0)). Since |H0| ≤ log p(0), by the
property of the martingale strategy, the capital M(Z ↾ g(n)) at the end of the stage is 1 + 1

4 . Since n ∈ H0,
p(n) = p(0) + 1 = 5. Next stage starts from the next position.

The strategy at m-th stage for m ≥ 1 as follows. Suppose that (m− 1)-th stage ends the position g(n) and
assume that p(n) = m+4. We prove this induction on m later. The strategy uses the martingale strategy with
initial bet 1

m+4 only at g(Hn) until the prediction is correct. Note that each element in g(Hn) is larger than

g(n) and all candidates has not come yet. Since Hn ≤ log p(n) = log(m + 4), the capital M(Z ↾ g(n)) at the
end of the m-th stage is 1 +

∑m
i=0

1
i+4 .

Suppose that the m-th stage ends at the position g(n′). We claim that p(n′) = m+5. This is true for m = 0.
For m ≥ 1, since n′ ∈ Hn, there exists e < log p(n) − 1 such that n′ = ψ(e, n). By the definition of p, since
n < n′, we have

p(n′) = p(n) + 1 = (m− 1 + 5) + 1 = m+ 5.

Finally, we prove that M succeeds on the set Φ(X). By construction of X, we have Φ(X)(g(h(x))) = 0 for
all x. Thus, for each m, there exists n ∈ Hm such that Φ(X)(g(n)) = 0. Hence, each stage ends at some point
and the supremum of M along X is infinity. □
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3.4. KL-randomness and ML-randomness. We give a comment on the relation between Kolmogorov-
Loveland randomness (KL-randomness) and ML-randomness. We know that each ML-random set is KL-random
but it is a long open question whether the inclusion is strict. Merkle, Miller, Nies, Reimann and Stephan showed
that, if X = Y ⊕ Z is KL-random, then at least one of Y and Z is ML-random ([13, Theorem 12]). This fact
immediately implies that KL ≡w MLR where KL is the class of all KL-random sets. We do not know whether
KL ≡s MLR.
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