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We consider the behaviour of Schnorr randomness, a randomness notion
weaker than Martin-Löf’s, for left-r.e. reals under Solovay reducibility. Con-
trasting with results on Martin-Löf-randomenss, we show that Schnorr
randomness is not upward closed in the Solovay degrees. Next, some left-r.e.
Schnorr random α is the sum of two left-r.e. reals that are far from random.
We also show that the left-r.e. reals of effective dimension > r , for some
rational r , form a filter in the Solovay degrees.

03D32,68Q30

1 Introduction

Randomness notions

The algorithmic theory of randomness defines randomness notions of reals in
[0, 1], or equivalently infinite bit sequences, and studies their properties and
interactions with computational complexity. The notion of Martin-Löf (ML)
randomness was for a long time considered to be the central one. We review the
definition. An open set U ⊆ [0, 1] is r.e. if it is a union of computable sequence
of open intervals with rational endpoints, that is, U =

⋃
i∈N(pi, qi) where 〈pi〉

and 〈qi〉 are computable sequence of rationals. A ML-test is a sequence 〈Un〉 of
uniformly r.e. open sets with µ(Un) ≤ 2−n where µ is the Lebesgue measure. A
real x is ML-random if x 6∈

⋂
n Un for every ML-test 〈Un〉.

A suite of alternative notions has been introduced by modifying this definition,
both stronger and weaker notions than ML-randomness. See e.g. [13, Ch. 3].
Many of these notions have shown their importance in particular for the interac-
tion of randomness and analysis [14, 2]. One of them is the following weakening
of ML-randomness, which will be of importance in the present paper. We say
that a real x is Schnorr random if it passes all ML-tests 〈Un〉 such that µ(Un)
is computable uniformly in n.

http://www.ams.org/mathscinet/search/mscdoc.html?code=03D32,68Q30
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Solovay reducibility

Our central notion is Solovay reducibility ≤S . Informally, for left-r.e. reals α, β ,
α ≤S β expresses that α is no harder to approximate from the left than β .
A formal definition will be given in the beginning of Section 2. This implies
α ≤T β , so β can compute α. Further, α ≤S β also implies that β is in a
particular sense no less random than α. Then, Solovay reducibility is a measure
of both computational complexity and algorithmic randomness. Background is
provided e.g. in [5, Chapter 9], and also in [13, Section 3.2].

Main results

For left-r.e. reals, ML-randomness interacts closely with Solovay reducibility:
a left-r.e. real is ML-random iff it is Solovay complete (Calude et al. [3] and
Kučera-Slaman [9]). As discussed shortly, the complete Solovay degree is join
irreducible.

The supremum of two left-r.e. reals in the degree structure induced by Solovay
reducibility is given by their arithmetic sum. We are guided by the following
two facts that restate some of the results above in terms of the sum. Let α, β

be left-r.e. reals.

(1) If α is ML-random, then α + β is ML-random.
(2) If α + β is ML-random, then at least one of α and β is ML-random.

A simple direct proof of the first fact can be found in [13, Theorem 3.2.27]. For
the second, see Demuth [4], and as a more recent (and more readable) reference
Downey, Hirschfeldt, and Nies [7].

Our first goal is to show that both statements fail for Schnorr randomness
(Corollary 3.2 and Theorem 4.1). Thereafter, we prove that in contrast, left-r.e.
weakly s-random reals behave like ML-random reals (Theorem 5.6). The reals
that have effective packing dimension at most s behave like non-ML-random
reals (Proposition 5.7).

Preliminaries

Our notation in the algorithmic theory of randomness is standard as in Nies
[13] or Downey and Hirschfeldt [5] (except that we write “r.e." instead of “c.e.").
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Unless otherwise stated, reals in this paper are in [0, 1]. A real α is called left-r.e.
if there exists a computable non-decreasing sequence 〈an〉n∈N of rationals such
that limn an = α. We sometimes identify a real α with its binary expansion
X ∈ 2ω and the corresponding set X = {n ∈ N : X(n) = 1}. By X � n we
denote the initial segment of X of length n. We write f (n) ≤+ g(n) to mean
f (n) ≤ g(n) + O(1), that is, there exists a constant c such that f (n) ≤ g(n) + c
for all n.

2 Solovay reducibility

2.1 Definitions and basic facts

The following was first defined by Solovay in unpublished work.

Definition 2.1 (Solovay [15]) For left-r.e. reals α and β , we say that α is
Solovay reducible to β , denoted by α ≤S β , if there exist a constant c and a
partial computable function f : Q → Q such that if q ∈ Q and q < β , then
f (q) ↓< α and α − f (q) < c(β − q).

Solovay’s used the terminology “α is dominated by β”. Recall that this definition
expresses that α is less complex than β by asking that β is harder to approximate
from below. For, let αs, βs be computable nondecreasing sequences of rational
converging to α, β respectively. Then α ≤S β if and only if there are a constant
c ∈ N and a computable function g such that α − αg(n) < c(β − βn) for all n.
For a proof, see again [5, Chapter 9], and also [13, Section 3.2].

There is a useful algebraic characterization of Solovay reducibility: α ≤S β

means that β can be obtained from α by literally “adding" information, in the
sense of adding a left-r.e. real γ . To make this work we also need to scale β .
(For the precise version of the result used here see [13, 3.2.29].)

Proposition 2.2 (Downey, Hirschfeldt, and Nies [7]) For left-r.e. reals α, β

we have α ≤S β if and only if there are d ∈ N and a left-r.e. real γ such that
α + γ = 2dβ .

2.2 Connections to K -reducibility

For any reals α, β one writes
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α ≤K β if ∀n K(α � n) ≤+ K(β � n),

where K denotes prefix-free Kolmogorov complexity. The Levin-Schnorr theorem
says that X is ML-random if and only if K(X � n) ≥+ n. Then α ≤K β says
that β is no less random than α.

For left-r.e. reals α, β , if α ≤S β then α ≤K β [15]. This fact also follows
from Proposition 2.2. We will now obtain an implication in the converse
direction under a hypothesis stronger that α ≤K β . We write α �K β if
limn(K(β � n) − K(α � n)) = ∞.

Proposition 2.3 Let α, β be left-r.e. reals. If α �K β then α <S β .

Notice that in this proposition we can replace K(σ) by C(σ), K(σ|n), or C(σ|n)
where n = |σ|. The proof remains almost the same.

Downey, Hirschfeldt, Laforte [6] showed cl-reducibility version, that is �K

implies ≤cl . We also note that ∅ �K α implies that α is wtt-complete [5,
Theorem 9.12.2].

Proof First note that β ≤S α would imply β ≤K α, contrary to α �K β .
Hence it suffices to show α ≤S β . If β is a rational, α �K β does not hold. So
β is not a rational. If α is a rational, then α ≤S β holds trivially. Hence, we
can assume that α is not a rational.

Let 〈αs〉s∈N, 〈βs〉s∈N be increasing computable sequences of rationals converging
to α, β respectively. Given n ∈ N, let sn be the first stage s such that αs � n =

α � n. There exists a constant c ∈ N such that for each n

K(βsn � n) ≤ K(αsn � n) + c = K(α � n) + c.

If given αsn � n, we can compute the stage sn from the approximation 〈αs〉,
which also computes βsn � n, thus the first inequality follows. Since limn(K(β �
n) − K(α � n)) = ∞, we have K(β � n) > K(α � n) + c for sufficiently large n.
Thus, βsn � n 6= β � n for all sufficiently large n. Furthermore, β � n is not equal
to the lexicographic successor of βsn � n, for otherwise K(β � n) would be within
a constant of K(βsn � n). Hence, β − βsn ≥ 2−n .

Define a partial computable function f : Q → Q by f (q) = αs , where s is the
first stage such that q < βs . If n is sufficiently large and sn ≤ s ≤ sn+1 , then

α − αs ≤ α − αsn ≤ 2−n,
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while
β − βs ≥ β − βsn+1 ≥ 2−n−1.

Then there is a rational q∗ < β such that α − f (q) ≤ 2(β − q) for every rational
q with q∗ ≤ q < β . Modifying f on the rationals ≤ q∗ shows that α ≤S β .

2.3 Connections to ML-randomness

We restate the two guiding facts from the introduction. They connect Solovay
reducibility and ML-randomness.

Proposition 2.4 Let α, β be left-r.e. reals. If α is ML-random, then α + β is
ML-random.

Here + is the real addition. For a direct proof see [13, Theorem 3.2.27].

By Proposition 2.2, for left-r.e. reals α, γ , if α is ML-random and α ≤S γ , then
γ is ML-random. The implication ≤S⇒≤K is an extension of this result by the
Levin-Schnorr theorem. This explains that Solovay reducibility is a measure of
algorithmic randomness.

Alternatively, recall that a left-r.e. real is ML-random iff it is Solovay complete
(Calude et al. [3] and Kučera-Slaman [9]). Proposition 2.4 now follows via
Proposition 2.2.

The second fact says that the top degree in the Solovay degrees is join irreducible.

Theorem 2.5 (Demuth [4], Downey, Hirschfeldt, and Nies [7]) Let α, β be
left-r.e. reals. If α+β is ML-random, then at least one of α and β is ML-random.

For left-r.e. reals α, β , the degree of α + β is the least degree above α, β , thus
the degree of α + β is the join of α and β . The theorem says that the join of
two non-ML-random left-r.e. reals is not ML-random either, and the top degree
can not be the join of two lesser degrees.
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3 Schnorr randomness is not upward closed in the
Solovay degrees

The following will be used to show that for Schnorr randomness, the counterpart
of Proposition 2.4 fails.

Theorem 3.1 Let α be a left-r.e. real such that ∀n K(α � n) < n − f (n) for
some order function f . There exists a left-r.e. real β such that α + β is disjoint
from some infinite computable set.

Proof Suppose g, h are strictly increasing computable functions such that the
range of h is the complement of the range of g. We define C = A ⊕g B by
C(g(n)) = B(n) and C(h(n)) = A(n).

Let α be as in the statement. If g is a sufficiently fast growing computable
function, then γ = Ω ⊕g ∅ satisfies K(γ � n) ≥+ n − f (n)

2 . Note that γ is left-r.e.
Since α �K γ , by Proposition 2.3 we have α ≤S γ . By Prop. 2.2 there exist
a natural number d and a left-r.e. real β such that 2dγ = α + β . Since γ is
disjoint from an infinite computable set, so is α + β .

Partial computable randomness is a notion in between Schnorr and ML-randomness.
For the definition see [13, Section 7.4].

Corollary 3.2 The left-r.e. Schnorr random reals are not upward closed in the
Solovay degrees.

Proof By a result of Merkle [12] (also see [13, Remark 7.4.17]) there exists a
left-r.e. Schnorr random real α such that that K(α � n) = O(log n). Now take
α + β ≥S α as above. Since α + β is disjoint from some infinite computable set,
this can not be Schnorr random.

Remark 3.3 The constructed α can be even partial computably random as
in [13, Remark 7.4.17]. Furthermore, α + β is not even Kurtz random because
of its disjointness from an infinite computable set. The definitions of partial
computable randomness and Kurtz randomness can be found in [13] and [5].
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4 Left-r.e. Schnorr random reals can be split into
non-Schnorr random reals

We show that the counterpart of Theorem 2.5 for Schnorr randomness does not
hold either. Theorem 4.1 below gives a sufficient condition on α so that α is
the join of two far-from-random reals. The condition is given by somewhat slow
growing initial segment complexity of a left-r.e. real α. The condition is weak
in the sense that α can still be Schnorr random using [13, Remark 7.4.17] as in
the proof of Corollary 3.2.

We show that α can be written as a sum of left-r.e. reals which are far from
random in various senses. One way to express this is saying that their effective
Hausdorff dimensions are 0.

We recall the definition here. By [10], for a real X ∈ 2ω , the effective Hausdorff
dimension dim(X) can be characterized by

(1) dim(X) = lim inf
n

K(X � n)
n

.

By [1] the effective packing dimension Dim(X) can be characterized by

(2) Dim(X) = lim sup
n

K(X � n)
n

.

Let a be a Solovay degree. Recall that Solovay reducibility implies K -reducibility.
For α, β ∈ a we have α ≡K β and hence dim(α) = dim(β). So we may well-
define dim(a) = dim(α) for some real α ∈ a . A survey of effective Hausdorff
dimension is given in [11].

Theorem 4.1 Let α be a left-r.e. real such that C(α � n) ≤ n − g(n) for all n,
where g is a computable function such that

∑
n 2−g(n) is finite and a computable

real. There exist left-r.e. reals β, γ such that α = β + γ , dim(β) = dim(γ) = 0
and both β, γ are not Borel normal and disjoint from infinite computable sets.

Notice that dim(α) can be 1 in which case α is more random than β and γ .

Proof Let 〈αs〉 be an increasing computable sequence of dyadic rationals
converging to α. We impose additional properties to 〈αs〉. For each k ∈ N,
we can compute s such that Cs(αs � n) < n − g(n) for all n ≤ k . Since αs is a
dyadic rational, αs · 2j is a natural number for some j. By taking a subsequence
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of such s and considering an increasing computable function h that maps k to
j, we can assume that αs · 2h(s) is a natural number and C(αs � n) < n − g(n)
for all s and all n ≤ h(s).

Let an be the number of s such that the binary representation of αs+1 −αs has a
bit 1 at position n. The numbers {an} are uniformly computably approximable
from below and

α =
∑

n
an · 2−n.

Notice that an ≤ 2n−g(n) for each n. For s such that h(s) < n, αs −αs−1 does not
have a bit 1 at position n. For s such that h(s) ≥ n, we have C(αs � n) < n−g(n)
and there are at most 2n−g(n) many different strings αs � n.

Now we split the natural numbers into intervals I0, I1, . . . such that p(max(In)) >

(min(In))2 for every n where p : N → N is a computable function such that∑
m≥n 2−g(m) ≤ 2−p(n) . For these intervals, the following inequalities hold:∑

m>max(In)
am · 2−m ≤

∑
m>max(In)

2−g(m) ≤ 2−p(max(In)) ≤ 2−(min(In))2
.

We define left-r.e. reals β and γ by

β =
∑

m
{am · 2−m : ∃n(m ∈ I2n)}, γ =

∑
m

{am · 2−m : ∃n(m ∈ I2n+1)}.

For β , the bits at the positions from min(In) to (min(In))2 are 0 whenever
n is odd. This is because, for every n, the terms am · 2−m with m < min(In)
affect only digits with positions below min(In) and the terms am · 2−m with
m > max(In) only contribute to a number bounded by 2−p(max(In)) which has
non-zero digits only at positions larger than (min(In))2 . By a similar reason,
for γ , the bits at the positions from min(In) to (min(In))2 are 0 whenever n is
even.

This fact implies dim(β) = dim(γ) = 0. To compute (min(In))2 bits of β for
odd n, we only need the information of min(In) bits of β and of n. Thus,

K(β � (min(In))2)
(min(In))2 ≤ K(β � min(In)) + K(n) + O(1)

(min(In))2 → 0.

Furthermore, β and γ are not Borel normal, as the limit superior of the
frequences of subwords of the form 0k goes to 1 for each k . Finally, β is
disjoint from the infinite computable set {min(I2n+1) : n ∈ N}, and γ from
{min(I2n) : n ∈ N}.
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5 Filters and Ideals related to effective dimension

In this final section, we study the relationship between effective Hausdorff
dimension and Solovay degrees. Recall that a nonempty subset F of a partially
ordered set (P, ≤) is a filter if

(1) for every x ∈ F , x ≤ y implies y ∈ F ,
(2) for every x, y ∈ F , there exists z ∈ F such that z ≤ x and z ≤ y.

A filter is called principal if F = {x : x ≥ y} for some y ∈ P.

The ML-random left-r.e. reals are Solovay complete, and therefore induce the
trivial filter consisting of the largest element. To treat filters related to dimension,
we review the following.

Theorem 5.1 For each rational r ∈ (0, 1), the set of Solovay degrees a such
that dim(a) > r is a filter in the Solovay degrees.

For a proof, we use a generalization of Chaitin’s Omega. Let s ∈ (0, 1]. Tadaki
[16, Theorems 3.1, 3.2] defined

Ωs =
∑

U(σ)↓
2− |σ|

s

and showed that s = dim(Ωs) = Dim(Ωs). The former equality was indepen-
dently shown by Mayordomo [10, Corollary 3.3].

Lemma 5.2 Let r ∈ (0, 1) be a real. Suppose α, β are left-r.e. reals such that
dim(α) > r and dim(β) > r . There is a left-r.e. real γ such that γ ≤S α, γ ≤S β

and dim(γ) > r .

Notice that r need not be a rational.

Proof Let p, q be rationals such that r < p < q and q < dim(α), dim(β).
Then, Ωp is a left-r.e. real and dim(Ωp) > r . Furthermore, by Tadaki’s results
and (1,2) we have Ωp �K α, and hence Ωp <S α by Proposition 2.3. Similarly,
Ωp <S β .

Theorem 5.1 is now immediate from the lemma.

Question 5.3 Let r ∈ (0, 1] be a real. If α, β are left-r.e. reals such that
dim(α) ≥ r and dim(β) ≥ r , does there exist γ ≤S α, β with dim(γ) ≥ r?
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Equivalent, is {a : dim(a) ≥ r} a filter? We give a partial answer to it. By the
following result it is not a principal filter.

Proposition 5.4 Let α be a left-r.e. real such that dim(α) = r > 0. There
exists a left-r.e. real β such that dim(β) = r and β <S α.

Notice that r need not be computable. We do not use r in the construction of
β .

Proof Let f (n) be the biggest natural number less than n +
√

n. Note that
f : N → N is an increasing computable function. Given a lef-r.e. α, let
β = {f (n) : n ∈ α}. Notice that β is a left-r.e. real with the approximation
βs = {f (n) : n ∈ αs} where αs is an increasing computable approximation of
α.

Now the following equalities hold:

r = lim inf C(α � n)
n

= lim inf C(β � f (n))
n

= lim inf C(β � f (n))
f (n) · f (n)

n
= lim inf C(β � n)

n
.

To describe β � f (n) one only needs to describe the bits in the positions f (k) for
k < n. Since f (n + 1) − f (n) ≤ 2 for every n, C(β � n) = C(β � f (k)) + O(1) for
some k .

Clearly β ≤S α. Assume by way of contradiction that the converse also holds.
Then there are constants c, c′ ∈ N such that

C(α � f (n)) ≤ C(β � f (n)) + c′ ≤ C(α � n) + c.

Let k ∈ N. There exists a0 ∈ N such that f (n)−n ≥ k for all n ≥ a0 . Inductively,
we define an+1 = f (an). Then, an ≥ a0 + kn. In contrast,

C(α � an) ≤ C(α � an−1) + c ≤ C(α � a0) + cn.

Hence,

lim inf C(α � an)
an

≤ lim inf C(α � a0) + cn
a0 + kn

≤ c
k

.

Since k is arbitrary, we have dim(α) = 0, which is a contradiction.

Next we consider partial randomness.
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Definition 5.5 (Tadaki [16], see also [5, Definition 13.5.1]) A test for weak
s-ML randomness is a sequence of uniformly r.e. sets of strings 〈Vk〉 such that∑

σ∈Vk
2−s|σ| ≤ 2−k . A set X ∈ 2ω is weakly s-ML-random if X 6∈

⋂
kJVkK for all

tests for weak s-ML randomness.

The strings can be replaced with open intervals with dyadic rational endpoints
[5, after Definition 13.5.8].

Tadaki [16] showed that X is weakly s-ML-random if and only if K(X � n) >

sn − O(1). Hence, for every weakly s-ML-random real X , we have dim(X) ≥ s.
It is known that the converse fails. This also follows from the construction of
Proposition 5.4.

Further, for left-r.e. reals, being weakly s-ML-random is upward closed under
≤S .

Theorem 5.6 Let s ∈ (0, 1] ∩ Q. The set of left-r.e. weakly-s-random Solovay
degrees is a principal filter in Solovay degrees with the degree of Ωs as the
bottom element.

Here, we consider only left-r.e. reals, so we restrict s to be a rational.

Proof We follow the argument of Kučera-Slaman theorem [9]. Let α be a
left-r.e. weakly s-random real. The goal is to show Ωs ≤S α.

We construct a test for weak s-ML-randomness 〈Uk〉k∈N . At stage t act as
follows. If αt ∈ Uk[t], then do nothing. Otherwise let t′ be the last stage at
which we put anything into Uk (or t = 0 if there is no such stage), and put the
intervals (αt, αt + 2− k

s (Ωs
t − Ωs

t′)) into Uk .

Let t0 = 0, t1, · · · be the stages at which we put numbers into Uk . The total
weight is bounded by∑

i
(2− k

s (Ωs
ti+1 − Ωs

ti))
s ≤

∑
U(σ)↓

(2− k
s )s(2− |σ|

s )s ≤ 2−k.

Thus, 〈Uk〉 is a test for weak s-ML-randomness.

Since α is weakly s-random, there exists a constant k such that α 6∈ Uk . Then,

αti+1 − αti > 2−k/s(Ωs
ti − Ωs

ti−1)

for each i > 0, so Ωs ≤S α.
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Now we turn to ideals, the dual notion of filters. A nonempty subset I of a
partially ordered set (P, ≤) is an ideal if

(1) for every x ∈ I , y ≤ x implies x ∈ I ,
(2) for every x, y ∈ I , there exists z ∈ I such that x ≤ z and y ≤ z.

Theorem 2.5 says that the non-ML-random Solovay degrees form an ideal. The
following is an easy observation.

Proposition 5.7 For each r ∈ [0, 1], the set of left-r.e. degrees a such that
Dim(a) < r is an ideal of left-r.e. Solovay degrees. We can replace Dim(a) < r
by Dim(a) ≤ r .

Proof Let α, β be left-r.e. reals such that Dim(α) < r and Dim(β) < r .
Then, γ = α + β satisfies α ≤S γ and β ≤S γ . One can easily check that
K(γ � n) =+ max(K(α � n), K(β � n)) ([8, Theorem 7.4]). Hence,

Dim(γ) = lim sup K(γ � n)
n

≤ lim sup max(K(α � n), K(β � n))
n

< r.

The proof in the case that Dim(a) ≤ r is almost the same.

The set of left-r.e. K -trivial degrees is an ideal in the Solovay degrees because
the sum of two K -trivial reals is again K -trivial [8, Theorem 7.2].
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