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Borel (1901) showed the strong law of large numbers.

Theorem 1.

Suppose P (Xi = 1) = P (Xi = −1) =
1

2
, i.i.d.

Let Sn =
∑n

i=1Xi.
Then,

Sn
n

→ 0

almost surely.

Actually, he showed the existence of ”absolutely normal
numbers”. This was surprising at least at that time.
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Theorem 2 (Khintchine 1924). With the same
assumption,

lim sup
n→∞

Sn√
2n ln lnn

= 1

Notice that sup Sn√
n
= ∞ by the central limit theorem and

BC2.
Remark. The spelling of the name varies.
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Theorem 3 (Erdös-Feller-Kolmogorov-Petrowsky). Let ψ
be a positive increasing function. Let

I(ψ) =

∫ ∞

1

ψ(λ)

λ
exp(−ψ(λ)2/2)dλ

If I(ψ) <∞, then
Sn <

√
nψ

for almost all n almost surely. If I(ψ) = ∞, then

Sn >
√
nψ

for infinitely many n almost surely.
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This is also called an integral test.
Erdös proved this in 1942. Feller generalized this in
1946. Kolmogorov in 1937 in Lévy’s book claimed this
without a proof. Petrowsky in 1935 proved this for
Brownian motion.
A good reference of this topic would be the Ph.D. thesis

”Integral Tests for Brownian Motion and Some
Related Processes” by Keprta (1997)

Recall that the limit of random walks can be seen as
Brownian motion. Hence, the same law holds for both.
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Many proofs of SLLN have been given by
measure-theoretic and via martingales.
Many books omit the LIL probably because the proof is
lengthy.
Any proof of the EFKP-LIL for coin-tossing is hard to
read.
A proof of the EFKP-LIL for Brownian motion is more
accessible, but it requires much prior knowledge. I
recommend Section 5.4 in

Knight. Essentials of Brownian Motion and
Diffusion. AMS, 1981.
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Our (tentative) goal is to give a (simple) proof for
EFKP-LIL via martingales (without measure-theoretic
arguments).
Why important?
Philosophical view:
We need not assume any prior probability. Thus it can
directly translate into the argument in game-theoretic
probability. Notice that many results precedes the
axioms of probability by Kolmogorov 1933. In fact, the
main result in the book is the LIL in a general case.
Probability theory may not require measures. In other
words, I would like to see probability in a different
perspective.



The goal 2
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Technical view:
We can argue the computability of strategies. This is
essential from the point of view of algorithmic
randomness. In other words, we would like to look at
complexity of the set of paths that do not hold the claim.

We can argue the rate of divergence of the capitals
along the path that do not hold the claim. This is closely
related to Hausdorff dimension. This is important when
we can not assume probability beforehand.
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I will give a proof sketch of the following two results.

(i) Validity of the EFKP-LIL via martingales.
(ii) Sharpness of the usual LIL via martingales.

Both proofs are radically simpler than any known proof.
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Theorem 4. Let ψ be a positive increasing continuous
function with

I(ψ) =

∫ ∞

1

ψ(λ)

λ
exp(−ψ2(λ))dλ <∞

Then,
Bt <

√
tψ(t)

for all sufficiently large t.



Proof idea
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(i) We construct a supermartingale Mt = h(t, Bt).
(ii) We check that if Bt ≥

√
tψ(t), then M is a large

number that goes to infinity as t→ ∞.



Supermartingale
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A supermartingale w.r.t. Xt is a stochastic process Mt

such that

(i) E(Mt) <∞ for all t,
(ii) E(Mt|{Xu : u ≤ s}) = Xs for all s ≤ t.

Roughly speaking, a supermartingle is a process whose
expectation is decreasing.



How to use
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If Mt is always positive, by the second condition, we can
show

P (sup
t

Mt = ∞) = 0.

This follows from the famous martingale convergence
theorem, but actually this also follows from an earlier
result by Ville.
Thus, if one wants to show that some event E occurs
almost surely, then it suffices to construct a positive
martingale Mt that goes to infinity along outside E.



Proof
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Recall that exp(κBt − 1
2κ

2t) is a martingale for any κ. By
integrating this w.r.t. κ,

Mt =

∫ 1

0

exp(ǫBt −
1

2
ǫ2t)π(ǫ)dǫ

is also a martingale for an integrable π(ǫ). Set

π(ǫ) =
c(ǫ)

ǫ
ψ(1/ǫ) exp(−ψ(1/ǫ)

2

2
)

where c(ǫ) → ∞ as ǫ→ 0. If I(ψ) <∞, such c exists.
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When Bt ≥
√
tψ(t), by restricting between (1− 1

ψ
)ψ(t)√

t

and
ψ(t)√
t
,

Mt ≥
1√
t
exp(

ψ2

2
)c(

ψ√
t
)

√
t

ψ
ψ(

√
t

ψ
) exp(−

ψ(
√
t
ψ
)2

2
) → ∞

because

ψ(
√
t/ψ)

ψ
→ 1, exp(

ψ2

2
) ≥ exp(

ψ(
√
t
ψ
)2

2
)

Remark. The essential idea was by Prof. Takemura.
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Suppose Sn ≤ (1− δ)
√
2n ln lnn a.a.

Let C be large and

κ1 = (1− δ)

√

2 ln lnC

C
, κ2 = (1 + δ∗)κ1, κ3 = (1 + δ∗)κ2

Let

Kn = 3
n
∏

i=1

(1 + κ2xi)−
n
∏

i=1

(1 + κ1x1)−
n
∏

i=1

(1 + κ3xi)



Proof 2
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If SC ≤ κ1C or SC ≥ κ3C, then Kn ≤ 0. In other cases,

Kn < lnC

by simple calculation.
Let

Ln = 1 +
1−Kn

lnC

Then, Ln is a positive martingale. Furthermore, if
SC ≤ κ1C then

LC ≥ 1 +
1

lnC



Proof 3
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Consider Mn that uses Kn for Ck ≤ n < Ck+1. For each
round, C in Kn should be Ck+1 − Ck.
If Sn ≤ (1− δ)

√
2n ln lnn, then

SCk+1 − SCk

≤(1− δ)
√
2Ck+1 ln lnCk+1 + (1− δ)

√
2Ck ln lnCk

≤(1− δ/2)
√

2(Ck+1 − Ck) ln ln(Ck+1 − Ck)

Finally,

MCk ≥
k
∏

i=1

(1 +
1

ln(C i+1 − C i)
) → ∞



Future work
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(i) Does a similar argument prove the EFKP-LIL?
(ii) What is the exact bound of the rate of divergence

of the martingale?
(iii) (Validity) When ψ is computable, can the

martingale be computable or lower
semicomputable? If not, can we construct a
ML-random set along which the EFKP-LIL fails?

(iv) (Sharpness) When ψ is computable, is there a
computable bound from below of the martingale
for each set that does not satisfy the EFKP-LIL?
If not, can we construct a Schnorr random set
along which the sharpness of the EFKP-LIL fails?
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Thank you.
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