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SLLN
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Borel (1901) showed the strong law of large numbers.

Theorem 1.

Suppose P (Xi = 1) = P (Xi = −1) =
1

2
, i.i.d.

Let Sn =
∑

n

i=1
Xi.

Then,
Sn

n
→ 0

almost surely.



LIL
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Theorem 2 (Khintchine 1924). With the same
assumption,

lim sup
n→∞

Sn√
2n ln lnn

= 1

Here, ln means the natural logarithm.
By symmetry, lim inf = −1.



EFKP-LIL
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Theorem 3 (Erdös-Feller-Kolmogorov-Petrowsky). Let ψ
be a positive increasing function. Let

I(ψ) =

∫ ∞

1

ψ(λ)

λ
exp(−ψ(λ)2/2)dλ

If I(ψ) <∞, then

Sn <
√
nψ(n)

for almost all n almost surely. If I(ψ) = ∞, then

Sn >
√
nψ(n)

for infinitely many n almost surely.
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This is also called an integral test.
Erdös proved this in 1942. Feller generalized this in
1946. Kolmogorov in 1937 in Lévy’s book claimed this
without a proof. Petrowsky in 1935 proved this for
Brownian motion.
A good reference of this topic would be the Ph.D. thesis

”Integral Tests for Brownian Motion and Some
Related Processes” by Keprta (1997)

Recall that the limit of random walks can be seen as
Brownian motion. Hence, the same law holds for both.



Proofs
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Many proofs of SLLN have been given by
measure-theoretic and via martingales.
Many books omit the LIL probably because the proof is
lengthy.
Any proof of the EFKP-LIL for coin-tossing uses the
exstended BC, but hard to read.
A proof of the EFKP-LIL for Brownian motion is more
accessible, but it requires much prior knowledge. I
recommend Ito and McKean (Section 1.8 and 4.12).



The goal
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Which randomness notion is sufficient for the EFKP-LIL
to hold, when restricting ψ to be computable?
Schnorr randomness is sufficient for most limit theorems
to hold. The proof is just by looking computability of the
proofs.
However, in our case, I(ψ) may not be computable in
general even if ψ is computable. Furthermore, the
speed of the convergence and the divergence seems to
be related to the speed of the divergence of the
martingales.



Idea
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Rewrite the proofs only via martingales.

● Easy to check the computability.
● Easy to analyze the relation of Hausdorff dimension.

Huygens’ view to probability is not only philosophically
interesting, but also mathematically powerful.



Results
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Theorem 4. Let ψ be a positive increasing computable
function. Let X be computably random. Then, the
validity of the EFKP-LIL holds.
There exists a Schnorr random set X and ψ such that
I(ψ) <∞ but Sn >

√
nψ(n) i.o.

Let X be Schnorr random. Then, the sharpness of the
EFKP-LIL holds.

The proofs have two parts: martingale part and
computability part.
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Gambler’s ruin problem
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A has a points and B has b points where a, b ∈ N.
At each game, the winner got 1 point from the loser.
The game iterates until one of them lost all points.
What is the probability that the final winner is A?

Let p(a) be the probability. Then,

p(a) =
1

2
p(a− 1) +

1

2
p(a+ 1)

and p(a+ b) = 1 and p(0) = 0. So, p is a martingale and
p(a) is the probability in the sense of GTP (or Huygens).



Diffusion process
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Any diffusion process has a scale function s.
The hitting probability of b in [a, b] from x can be written
as

s(x)− s(a)

s(b)− s(a)

The scale function of the Brownian motion is the identity
function.
The normed scale function is again the probability in the
sense of GTP.



Ornstein-Uhlenbeck process
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The Ornstein-Uhlenbeck process is the stochastic
process and the solution of the SDE:

dX(t) = −αdt+ σB(t)

The solution can be written as the transform of the
Brownian motion:

X(t) = e−tB(
1

2
(e2t − 1))

for α = σ = 1. The scale function is written as

s(x) =

∫
x

exp(
α

σ2
y2)dy



EFKP-LIL
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Let ei be the i-th hitting time to 0 after hitting 1.
Then,

B(t) > h(t) for infinitely often

is roughly the same as

The hit to h(ei) in [h(ei), 0] from 1 occurs
infinitely often.

With some analysis calculation and with martingales
forcing BC, we can construct a martingale whose
divergence speed is equivalent to I(ψ).
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CR and SR
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A sequence is computably random if no computable
martingale succeeds along it.
A sequence X is not Schnorr random if there exists a
computable martingale M and a computable order f
such that

M(X ↾ n) > f(n)

for infinitely many n.
So the difference is the divergence speed.



Sharpness
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Let ψ be a positive increasing computable function such
that I(ψ) = ∞. Then, the function

x 7→

∫
x

1

ψ

t
exp(−ψ2/2)dt

is a computable order.

If Sn <
√
nψ(n) for all n, the martingale constructed

above diverges roughly at the same speed of I(ψ),
which is a computable order.



Validity
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Let ψ be a positive increasing computable function such
that I(ψ) <∞, but the convergence is very slow. Notice
that I(ψ) is a left-c.e. real and I(ψ) can be ML-random.

We construct a sequence X such that Sn hits h(ei) when
I(ψ) increases 1/k. The hitting probability is at least 1/k
and the martingale grows only k-times. The increase
occurs too occasionally and the martingale does not
succeed in the sense of Schnorr.

Question: For which ψ, is this construction possible?



Summary
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● EFKP-LIL is a rare example that Schnorr
randomness is not sufficient to hold.

● Rewriting a proof via martingales is useful to analyze
computability and to construct a random sequence.



End
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Thank you.
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