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Randomness hierarchy

KR D SR D CR D MLR D DiffR o WZR DQR
O DemR D

We know 39X € SR\ CR.

Given a Schnorr random, can we compute a computably
random?
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Mass problems

Definition 1. Let P, () C 2v,

P is Muchnik reducible to Q) (P <,, Q) If, for every f € @,
there exists ¢ € P such that ¢ <7 f.

P is Medvedev reducible to @ (P <, Q) If, there exists a
Turing functional ® such that ®/ € P for every f € Q.

The difference is uniformity.
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Main results

Muchnik degrees

KR <. SR=.CR <, MLR=, DiffR ~* 2R <uwop
<, DemR <

Medvedev degrees

SR<,CR, MLR<DiffR
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SR =,, CR

Let X € SR.

If X is not high, X is already in CR.

If X is high, X can compute a real in CR.
Both from Nies, Stephan, and Terwijn (2005).
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SR <. CR

The goal is
VedX € SR|®(X) ¢ CRJ.

When & = id, this means
X € SR\ CR.

Thus, we extend the method separating SR and CR.
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SR 2 CR

Id case

Construct a random set A.

Forcing A(nx) = 0 in sparse positions

= too sparse not to be Schnorr random

The number of candidates of n, i1s small

=- s0 small that some computable martingale
succeeds on it.
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SR 2 CR

The positions forcing 0 are sparse.

random 10 random nl

G O O O O

The numbers of candidates are small.
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SR <. CR

general case

e Construct A € SRand B =®(A) ¢ CR.

e Forcing B(n;) = 0in some positions (*)

e The number of candidates of n; should be small
= B ¢ CR.

The requirement (*) may be strong because
A{X €2¥ @ &(X)(ng) =0})

may be too small (even empty).
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oR <, CR

random ‘ random

n( nl

;

O O O O O

The numbers of candidates are small.
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SR <. CR

We divide the case into two by the induced measure .

e . is close to” uniform measure (CR(u) € CR(N))
= the same method can be applied

e . is “far from” uniform measure (CR(u) € CR()))
=- we can show it by a different reason
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CR(u) € CR(A)

1Y € CR(u) \ CR(M)
By no-randomness-from-nothing for CR,

1X € CR [¢(X) =Y.
Then, X € SR and (X)) £ CR.
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CR(p) € CR(A)

Lemma 2 (essentially Bienvenu-Merkle). Let i1, v be
computable measures.

CR(p) € CR(rv) = MLR(u) € MLR(v) = p < v

< means absolute continuity.
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CR(p) € CR(A)

Lemma 3. Let & be an a.e. computable function. Let 1
be the induced measure from & and . Assume \ < L.
For each o € 2<%,

lim MX € [o] : &(X)(n) =0} ==X (o).

nN—r00

Proof. By the Radon-Nikodym theorem and Lévy’s
zero-one law.
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almost the same measure

0101010101010101010101010101010101010101
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Question

Question 4. Does there exist A € SR such that, if
B <, Athen B ¢ CR.
How about witt?

| conjecture that we can not tt-compute (or wtt-compute)
a computably random from a Schnorr random even
nonuniformly.
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m-degree

Definition 5. X <,, Y if 3 comp. f such that
neX < f(n)ey

Theorem 6. There exists A € SR such that, if B <,, A
then B ¢ CR.

Every computable subsequence of A € SR is not
computably random.

So, regularity prevails anywhere!

The proof is a slight extension of the id case.
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Summary

e We found two problems that is possible

non-uniformly but not possible uniformly.
Analytical tools are useful to show results in
computability. In particular, a.e. computable
functions can be studied more from the
measure-theoretic perspective.
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