Muchnik degrees and Medvedev degrees of the randomness notions

Kenshi Miyabe (宮部賢志) @ Meiji University

22 Mar 2019 AMS @ Hawaii

Background

Randomness hierarchy

Mass problems

Main results

Proof

Further results

Background

Randomness hierarchy

 $KR \supset SR \supset CR \supset MLR \supset DiffR \xrightarrow{\bigcirc} W2R \xrightarrow{\bigcirc} 2R$

We know $\exists X \in SR \setminus CR$.

Given a Schnorr random, can we compute a computably random?

Mass problems

Definition 1. Let $P, Q \subseteq 2^{\omega}$.

P is Muchnik reducible to Q ($P \leq_w Q$) if, for every $f \in Q$, there exists $g \in P$ such that $g \leq_T f$.

P is Medvedev reducible to Q ($P \leq_s Q$) if, there exists a Turing functional Φ such that $\Phi^f \in P$ for every $f \in Q$.

The difference is uniformity.

Main results

Muchnik degrees

$$KR <_{w} SR \equiv_{w} CR <_{w} MLR \equiv_{w} DiffR <_{w} W2R <_{w} 2R$$
$$<_{w} DemR <_{w} 2R$$

Medvedev degrees

SR<_sCR, MLR<_sDiffR

Background

Proof $SR \equiv_w CR$ $\texttt{SR} <_s \mathrm{CR}$ $\bigstar \operatorname{SR} \supsetneq \operatorname{CR}$ $\bigstar \mathrm{SR} \supsetneq \mathrm{CR}$ $\texttt{SR} <_s \mathrm{CR}$ $\texttt{SR} <_s \mathrm{CR}$ $\texttt{SR} <_s \mathrm{CR}$ $\mathbf{\mathbf{\diamond}} \operatorname{CR}(\mu) \not\subseteq$ $\operatorname{CR}(\lambda)$ $\mathbf{\mathbf{\diamond}}\operatorname{CR}(\mu)\subseteq$ $\operatorname{CR}(\lambda)$ $\mathbf{\diamond} \operatorname{CR}(\mu) \subseteq$ $\operatorname{CR}(\lambda)$ $CR(\mu) \subseteq$ $CR(\lambda)$

Further results

Proof

 $SR \equiv_w CR$

Let $X \in SR$.

- If X is not high, X is already in CR.
- If X is high, X can compute a real in CR.
- Both from Nies, Stephan, and Terwijn (2005).

The goal is

$\forall \Phi \exists X \in \mathrm{SR}[\Phi(X) \notin \mathrm{CR}].$

When $\Phi = id$, this means

$X \in \mathrm{SR} \setminus \mathrm{CR}.$

Thus, we extend the method separating ${\rm SR}$ and ${\rm CR}.$

$SR \supseteq CR$

id case

- Construct a random set *A*.
- Forcing $A(n_k) = 0$ in sparse positions \Rightarrow too sparse not to be Schnorr random
- The number of candidates of n_k is small
 ⇒ so small that some computable martingale succeeds on it.

 $SR \supseteq CR$

The positions forcing 0 are sparse.

general case

- Construct $A \in SR$ and $B = \Phi(A) \notin CR$.
- Forcing $B(n_k) = 0$ in some positions (*)
- The number of candidates of n_k should be small $\Rightarrow B \notin CR$.

The requirement (*) may be strong because

$$\lambda(\{X \in 2^{\omega} : \Phi(X)(n_k) = 0\})$$

may be too small (even empty).

We divide the case into two by the induced measure μ .

- μ is "close to" uniform measure ($CR(\mu) \subseteq CR(\lambda)$) \Rightarrow the same method can be applied
- μ is "far from" uniform measure ($CR(\mu) \not\subseteq CR(\lambda)$) \Rightarrow we can show it by a different reason

$\operatorname{CR}(\mu) \not\subseteq \operatorname{CR}(\lambda)$

$\exists Y \in \operatorname{CR}(\mu) \setminus \operatorname{CR}(\lambda)$ By no-randomness-from-nothing for CR ,

 $\exists X \in \operatorname{CR} \ [\Phi(X) = Y].$ Then, $X \in \operatorname{SR}$ and $\Phi(X) \notin \operatorname{CR}$.

$\operatorname{CR}(\mu) \subseteq \operatorname{CR}(\lambda)$

Lemma 2 (essentially Bienvenu-Merkle). Let μ , ν be computable measures.

 $\operatorname{CR}(\mu) \subseteq \operatorname{CR}(\nu) \Rightarrow \operatorname{MLR}(\mu) \subseteq \operatorname{MLR}(\nu) \Rightarrow \mu \ll \nu$

« means absolute continuity.

$\operatorname{CR}(\mu) \subseteq \operatorname{CR}(\lambda)$

Lemma 3. Let Φ be an a.e. computable function. Let μ be the induced measure from Φ and λ . Assume $\lambda \ll \mu$. For each $\sigma \in 2^{<\omega}$,

$$\lim_{n \to \infty} \lambda \{ X \in [\sigma] : \Phi(X)(n) = 0 \} = \frac{1}{2} \lambda(\sigma).$$

Proof. By the Radon-Nikodym theorem and Lévy's zero-one law.

$\operatorname{CR}(\mu) \subseteq \operatorname{CR}(\lambda)$

Background

Proof

Further results

Question

✤ m-degree

Summary

Further results

Question

Question 4. Does there exist $A \in SR$ such that, if $B \leq_{tt} A$ then $B \notin CR$. How about wtt?

I conjecture that we can not tt-compute (or wtt-compute) a computably random from a Schnorr random even nonuniformly.

m-degree

Definition 5. $X \leq_m Y$ if \exists comp. f such that

$n \in X \iff f(n) \in Y$

Theorem 6. There exists $A \in SR$ such that, if $B \leq_m A$ then $B \notin CR$.

Every computable subsequence of $A \in SR$ is not computably random. So, regularity prevails anywhere! The proof is a slight extension of the id case.

Summary

- We found two problems that is possible non-uniformly but not possible uniformly.
- Analytical tools are useful to show results in computability. In particular, a.e. computable functions can be studied more from the measure-theoretic perspective.