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Triviality
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The following are equivalent for a real A ∈ 2ω:

(i) A is K-trivial.
(ii) A is low for ML-randomness.

(iii) A is low for K.
(iv) A is a base for ML-randomness.

The following are equivalent for a real B ∈ 2ω:

(i) B is Schnorr trivial.
(ii) B is uniformly low for Schnorr randomness.

(iii) B is uniformly low for computable measure
machines.

(iv) B is a base for uniform Schnorr tests.



Triviality - comment
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We have a Schnorr-randomness version of each notion.

Obtaining these result was far from by straightforward
modification.
In fact, many researchers introduced many notions,
most of which are not equivalent to Schnorr triviality.



Decidable machines
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ML-random prefix-free machine

Schnorr random computable measure machine
prefix-free decidable machine

Table 1: prefix-free case

ML-random plain machine

Schnorr random total machine

Table 2: plain case



Goal
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No characterization of K-triviality via plain machines.
Some characterizations of Schnorr triviality via
prefix-free decidable machines and total machines.

Study Schnorr triviality and lowness via decidable
machines,
of which we do not have straightforward counterparts in
ML-random case.
Hopefully, any suggestion to the study of C.
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ML-Randomness
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The following are equivalent for X ∈ 2ω:

(i) X is ML-random.
(ii) K(X ↾ n) > n−O(1) (Levin-Schnorr, Chaitin

1970s)
(iii) C(X ↾ n) > n−K(n)−O(1) (Miller-Yu 2008)

where K is the prefix-free Kolmogorov complexity and C
is the plain Kolmogorov complexity.



Schnorr Randomness
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The following are equivalent for X ∈ 2ω:

(i) X is Schnorr random
(ii) KM(X ↾ n) > n−O(1) for every computable

measure machines M (Downey-Griffiths 2004)
(iii) KM(X ↾ n) > n− f(n)−O(1) for every prefix-free

decidable machine M and every computable
order f (Bienvenu-Merkle 2007)

(iv) CM(X ↾ n) > n−KN(n)−O(1) for every total
machine M and every computable measure
machine N (Miyabe 2016)



Decidable machines
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An order is a computable function f : ω → ω that is
unbounded and nondecreasing.

A machine is called decidable if its domain is
computable.
The measure of a machine M :⊆ 2<ω → 2<ω is

∑

σ∈dom(M)

2−|σ|,

which is left-c.e. but not computable in general.
A computable measure machine is a machine whose
measure is computable.
Every computable measure machine is decidable.



Lowness

11 / 30

A ∈ 2ω is low for K if K(σ) ≤ KA(σ) +O(1).
Lowness for K is equivalent to K-triviality.

A ∈ 2ω is uniformly low for computable measure
machines if ∀M : u.c.m.m. ∃N : c.m.m. s.t.

KN(σ) ≤ KMA(σ) +O(1).

This is equivalent to comp. tt-traceability (Miyabe 2011),
which in turn is equivalent to Schnorr triviality
(Franklin-Stephan 2010).



Lowness via pdm, tm
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Theorem 1 (M.).
The following are equivalent for A ∈ 2ω:

(i) A is Schnorr trivial.
(ii) ∀M : updm ∀f : order ∃N : pdm s.t.

KN(n) ≤ KMA(n) + f(n).

(iii) ∀M : utm ∀f : order ∃N : tm s.t.

CN(n) ≤ KMA(n) + f(n).



Reducibility version
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Recall that
≤LK ⇐⇒ ≤LR,

which is a reducibility version of the equivalence
between lowness for K and lowness for MLR.

The equivalence above also has a corresponding
reducibility version.



Another remark

14 / 30

The results above were inspired by the following result:

Theorem 2 (Bienvenu-Merkle 2007). A is computably
traceable iff
∀M : pdm with oracles ∀h : order ∃N : pdm s.t.

KN(σ) ≤ KA

M(σ) + h(KA

M(σ)) +O(1).

Computable traceability is equivalent to Turing lowness
for Schnorr randomness.
The complexities w.r.t. a uniform machine can be
computably bounded from below.
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Triviality
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A ≤K B if

K(A ↾ n) ≤ K(B ↾ n) +O(1).

K-trivial reals are the bottom class in K-reducibility.

A ≤Sch B if ∀M : c.m.m. ∃N : c.m.m. s.t.

KN(A ↾ n) ≤ KM(B ↾ n) +O(1).

Schnorr trivial reals are the bottom class in Schnorr
reducibility.



Via decidable machines
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Theorem 3 (M. 2015).
A ≤Sch B iff
∀M : pdm ∀f : order ∃N : pdm s.t.

KN(A ↾ n) ≤ KM(B ↾ n) + f(n) +O(1).

In particular,
≤dm⇒≤Sch .

The converse (probably) does not hold.



Via total machines
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The following is from Hölzl-Merkle 2010.
A set A is totally i.o. complex if ∃g : order s.t.
∀M : tm ∃∞n ∈ ω

CM(A ↾ g(n)) ≥ n.

They showed that its negation is equivalent to
computable tt-traceability, which in turn is equivalent
Schnorr triviality.
So Schnorr triviality can be characterized via total
machines!!



Question
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Note that the negation is equivalent to
∀N : tm ∀f : order ∃N : tm s.t.

CN(A ↾ n) ≤ CM(n) + f(n).

Question 4. A ≤Sch B iff
∀N : tm ∀f : order ∃N : tm s.t.

CN(A ↾ n) ≤ CM(B ↾ n) + f(n)?

I have a proof sketch (with calculation) of ”if” direction,
I conjecture ”only if” direction does not hold.
Any suggestion to ≤C⇒≤K .



Question 2
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Question 5. We have characterizations of
ML-randomness via decidable machines and total
machines.
Can we say anything about K-triviality via decidable
machines and total machines?
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Schnorr reducibility
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Theorem 6 (M. 2015 again).

≤Sch ⇐⇒ ≤wdm,

which means that the following are equivalent for
A,B ∈ 2ω:

(i) ∀M : c.m.m. ∃N : c.m.m. s.t.

KN(A ↾ n) ≤ KM(B ↾ n) +O(1).

(ii) ∀M : pdm ∀f : order ∃N : pdm s.t.

KN(A ↾ n) ≤ KM(B ↾ n) + f(n) +O(1).



Key observation
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prefix-free machine
∃U : prefix-free s.t. ∀V : prefix-free

KU(n) ≤ KV (n) +O(1).

U is called universal or optimal.



Key observation 2
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prefix-free decidable machine
∃M : pdm s.t. ∀N : prefix-free

KM(n) ≤ KN(n) +O(1)

for infinitely many n. So M is i.o. optimal.

The pdm is essentially the same as time-bounded
Kolmogorov complexity Kt(σ).
The same holds for a function t = O(|σ|2).



Key observation 3
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computable measure machine
∀M : c.m.m. ∃N : c.m.m. ∃f : order s.t.

KN(n) + f(n) ≤ KM(n).

So no c.m.m. is optimal even in the sense of i.o.
Notice that f can be taken as a computable function.



Proof 1
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Lemma 7. ∀M : pdm ∀g : order ∃N : c.m.m. s.t.

KN(σ) ≤ KM(σ) + g(|σ|) +O(1).

This implies ≤Sch⇒≤wdm.
Suppose A ≤Sch B. M : pdm, g : order.
∃M ′ : c.m.m. s.t.

KM ′(B ↾ n) ≤ KM(B ↾ n) + g(n) +O(1).

By A ≤Sch B, ∃N : c.m.m. s.t.

KN(A ↾ n) ≤ KM ′(B ↾ n) +O(1).

Combine these and notice that N is a pdm.



Proof 2
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Lemma 8. ∀M : c.m.m ∃N : pdm ∃g : order s.t.

KN(σ) + g(|σ|) ≤ KM(σ) +O(1).

This implies ≤wdm⇒≤Sch.
Suppose A ≤wdm. M : c.m.m..
∃M ′ : pdm ∃f : order s.t.

KM ′(B ↾ n) ≤ KM(B ↾ n)− g(n) +O(1).

Since A ≤wdm B, ∃N ′ : pdm s.t.

KN ′(A ↾ n) ≤ KM ′(B ↾ n) + g(n)/2 +O(1).



Proof 3
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∃N : c.m.m s.t.

KN(A ↾ n) ≤ KN ′(A ↾ n) + g(n)/2 +O(1).

By combining these, we have

KN(A ↾ n) ≤ KM(B ↾ n) +O(1).



Summary
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● Schnorr triviality can be characterized

✦ via complexity and lowness
✦ w.r.t. computable measure machines, prefix-free

decidable machines, total machines.

It has many characterizations and is really a robust
notion.

● The situation seems very different from K-triviality.
Is there any suggestion to that?



End
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Thank you for listening.
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