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Question

3 / 27

It is useful if one can answer:

Question 1. How do we construct a program which
learns general regularity?

Let me ask:

Question 2. What properties should a general learning
program have?

Possible? Yes, one can prove this in some setting.



Formalization
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Formalizing learning by Solomonoff’s setting:

● Underlying space : 2ω = {0, 1}N (for simplicity).
● Sample : X ∈ 2ω is sampled randomly from a

computable measure µ.
● Learner : computable measure ξ.

The learner should be computable, otherwise cannot be
implemented.
The underlying measure should also be computable,
otherwise one cannot predict.



Computability
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f : ω → ω is computable if it can be implemented by a
Turing machine.
Q, 2<ω has a natural representation via ω.
A sequence {qn}n of rationals is computable if n 7→ qn is
computable.
x ∈ R is computable if there exists a computable
sequence {qn}n of rationals such that |x− qn| ≤ 2−n for
all n.
The measure µ on 2ω is computable if there exists a
computable function f : ω × 2<ω → Q such that
|µ([σ])− f(n, σ)| ≤ 2−n for all n where
[σ] = {X ∈ 2ω : σ ≺ X}.



Reward
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A martingale w.r.t. µ is M : 2<ω → R+ such that

µ(σ)M(σ) = µ(σ0)M(σ0) + µ(σ1)M(σ1).

This can be seen as a capital process.
Good predictions has a rapid capital grow.
Natural correspondence between a martingale M and a
measure ξ by

ξ(σ) = µ(σ)M(σ)

We do not know the underlying measure µ so we use a
measure ξ in place of a martingale M .



Optimality
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ξ behaves better than ν if ξ(σ) ≥ ν(σ) for all σ.
No computable measure can behave best.

Theorem 3 (Classical). There exists an optimal c.e.
semi-measure ξ, that is, for any c.e. semi-measure ν,
there exists C ∈ ω such that

ν(σ) ≤ Cξ(σ)

for all σ ∈ 2<ω.

Notice that the class of c.e. semi-measures is countable.



Generality
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The optimal prediction may not behave well in short
term, but behaves not badly compared to any other
measure.
This generality prevents the overfitting problem.

Definition 4. A computable measure ξ multiplicatively
dominates (or m-dominates) ν if there exists C ∈ ω such
that

ν(σ) ≤ Cξ(σ)

for all σ ∈ 2<ω.

Roughly speaking, ξ is more general than ν.



Combination
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µ1, µ2, · · · uniformly computable measures.
Let µ =

∑
n
2−nµn.

Then, µ multiplicatively dominates µn for all n.
Roughly speaking, µ is more general than µn.

Proposition 5. No computable measure is optimal.

This is the reason that c.e. semi-measures have been
studied extensively in the literature.
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Question 6. What properties a sufficiently general
prediction should have?

an > M for sufficiently large n if

(∃N ∈ ω)(∀n ≥ N)an > M

We say that a property P holds for all sufficiently
general prediction if there exists a computable measure
ν such that P holds for any ξ m-dominating ν.
In this case, P is witnessed by ν.
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Result 1
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Theorem 7. µ : comp. measure on 2ω.
ξ : comp. measure m-dominating µ.
X ∈ 2ω : µ-computably random.

∞∑

n=1

D(µ(·|X<n) ||ξ(·|X<n)) < ∞.

In particular,

ξ(k|X<n)− µ(k|X<n) → 0 as n → ∞

for both k ∈ {0, 1}.

Here, D is the KL-divergence.



Result 2
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When µ is a Dirac measure, we can compute the speed
of the convergence.

Theorem 8. A ∈ 2ω : computable
Then, ∃ν : comp. measure s.t. ∀ξ m-dominating ν

∑

n

(1− ξ(An|A<n)) < ∞



Result 3
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Theorem 9. A ∈ 2ω : comp.
(an)n : comp. seq. with

∑
n
an < ∞.

Then, ∃ν : comp. meas. s.t. ∀ξ m-dominating ν

∃C ∈ ω s.t.
ξ(An|A<n) ≥

an

C

for all n.

Thus, all sufficiently general prediction converge at the
same speed up to multiplicative constant!!



Laplace’s result
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The probability of the correct n-th bit via a general
prediction is roughly

1−
C

n(log n)1+ǫ

where C is a constant although the probability cannot
be monotone.
Compare to the Laplace’s result to the sunrise problem :

n+ 1

n+ 2



Overfitting problem

16 / 27

Another interpretation is possible :
If ∑

n

(1− ξ(An|A<n)) = ∞,

then the convergence is slower than the ”correct” one
and the learner fails to find the regularity of A.

If the convergence of

∑

n

(1− ξ(An|A<n)) < ∞

is too fast, then the convergence is faster than the
”correct” one and the learner overfits A.



Hypothesis
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Check again the hypothesis which makes this argument
possible :

(i) The learner is computable, so the class is
countable.

(ii) The definition of generality uses how fast the
capital grows up to multiplicative constant.

(iii) The underlying measure is computable, really
weak restriction.

If one considers only i.i.d., then the result may change.
The underlying space may be generalized using
computable analysis.
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Randomness
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µ : comp. meas. on 2ω.

Definition 10 (Rute 2016). A µ-martingale is a partial
function M :⊆ 2<ω → R+ s.t.

(i) (Impossibility condition) If M(σ) is undefined,
then µ(σ) = 0.

(ii) (Fairness condition) For all σ ∈ 2<ω, we have

M(σ0)µ(σ0) +M(σ1)µ(σ1) = M(σ)µ(σ)

where undefined · 0 = 0 and R+ is the set of all
non-negative reals.



Existence of the limit
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Theorem 11. X ∈ 2ω is µ-computably random if and
only if limn→∞M(X≤n) exists for all a.e. computable
µ-martingales M .

For Martin-Löf randomness, we do not know any
characterization via such existence of the limit.



Convergence
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µ : comp. meas. on 2ω.
Let C ∈ ω s.t. µ(σ) ≤ Cξ(σ) and

D(σ) = D(µ(·|σ) || ξ(·|σ))

Then,

M(σ) = lnC − ln
µ(σ)

ξ(σ)
+

|σ|∑

t=1

D(σ<t)

is a µ-martingale.
Its convergence implies the convergence of D to 0.



Non-convergence
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For simplicity, consider A = 1ω.
Every general prediction should cover the case

An = 1n0ω

for all n.
For simple n, the weight of An should be large.
This prevents a general prediction bets 1 too much.
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Summary
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(i) We propose a framework to give the correct
convergence speed to the correct measure.

(ii) It is based on Solomonoff’s framework.
(iii) We propose the definition of generality inspired

by Solomonoff’s result.
(iv) We use computable randomness rather than

Martin-Löf randomness.
(v) The correct probability is determined only up to

multiplicative constant in the limit.
(vi) Sufficiently good approximation by functions

computable in polynomial time.



Future work
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(i) The underlying space is too restricted. Can it be
generalized?

(ii) Compare with the existing framework.
(iii) Study the computational and/or descriptive

complexity more.
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Thank you for listening.


	Motivation
	Question
	Formalization
	Computability
	Reward
	Optimality
	Generality
	Combination
	Question

	Results
	Result 1
	Result 2
	Result 3
	Laplace's result
	Overfitting problem
	Hypothesis

	Proof
	Randomness
	Existence of the limit
	Convergence
	Non-convergence
	Picture

	Summary
	Summary
	Future work
	End


