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Lowness

The jump of A C w is the halting problem relative to A:
A'={n : ®}n) 1)

Forany A, B,
A<rB = A <r B

A s low If
Al =T @l

which is close to computable w.r.t. the jump operator.
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Low for ML-randomness

Forany A, B C w,
A <y B = MLR(B) € MLR(A)
A i1s low for ML-randomness if
MLR(A) = MLR

Surprisingly, it has many characterizations such as

(i) lowness for K,
(i) K-triviality,
(iii) being a base for ML-randomness.
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Uniformly Low for SR

For Schnorr randomness, we have the following
equivalence:

(i) uniformly low for Schnorr randomness,

(i1) uniformly low for computable measure machines,
(iii)) Schnorr triviality,
(iv) being a base for uniform Schnorr tests.

We need uniform relativization.
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Goal

For the former half,

we give a basic introduction to uniform relativization.
(This finding was almost a decade ago.)

For the latter half,

we give further equivalences via prefix-free decidable
machines and total machines,
no counterpart in ML-randomness.

6/32



Background

Uniform
relativization

% Turing and
tt-reducibility

% Open set

% Representation
% Uniform
relativization

% With measure
restriction

2
%

 With computable
measure

% Randomness
% Other
characterizations

% tt vs uniform

Lowness

Triviality

Uniform relativization

7132



Turing and tt-reducibility

A is Turing reducible to B if A is computable by a Turing
machine with an oracle B.

In this case, it Iis often called that A is computable
(Turing) relative to B.

A 1s truth-table reducible to (or tt-reducible to) B if the
reduction is total, which means the computation works
for any oracle X C w.

Some researchers say that A is tt-computable relative to
B.

Roughly speaking, uniform relativization is this tt-version
of relativization.
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Open set

Cantor space 2“ is the class of infinite binary sequences
equipped with the topology generated by the cylinder
sets

ol ={Xe€2¥ : 06 < X}

as a basis.
An open set U on 2¥ is called c.e. if there exists a
computable sequence {o, } of finite binary strings such

that
U = U[Un]

This is sometimes called inner approximation.
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Representation

An open set U is c.e. Turing relative to A € 2¢ if there
exists a sequence {o,} computable relative to A such
that U =, |0,

Let O be the class of open sets. Define § : w* — O as
follows: For an input p = {p(n)}, € w,

0(p) = | J[opm)]

n

where o}, Is the k-th binary string.

Then, U is c.e. Turing relative to A iff there exists a
computable function ¢ :C 2 — w* such that

U =06(®(A)) as usual in computabele analysis.
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Uniform relativization

U is c.e. Turing relative to A iff 3¢ :C 2¥ — w¥ (partial
comp.) s.t. U = 6(P(A)).
U Is c.e. uniformly relative to A iff 4® : 2 — w* (total
comp.) s.t. U = 0(P(A)).

For a given partial &, we can construct a total
computable function ® extending ® (by adding the
special string indicating the empty set on 2%).

Thus, U is c.e. Turing relative to A if and only if U Is c.e.
uniformly relative to A.
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With measure restriction

Suppose that U is c.e. Turing relative to A with measure
< 27" via a partial comp. o. A

Then, we can construct a total comp. ¢ extending ¢ by
enumerating the strings as long as the measure is

< 27",

Again, Turing relativization is equivalent to uniform
relativization in this case.
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With computable measure

Finally suppose that U is c.e. Turing relative to A with
A-comp. measure < 27" via

(i) a partial comp. ® (to compute U) and
(ii)) another partial comp. f : 2¥ — R (to compute the
measure).

Then, we can not extend them to total comp.
This can be proved by using the difference between
Turing reducibility and tt-reducibility.
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Randomness

A Martin-Lof test (ML-test) is a comp. seq. {U,,} of c.e.
open sets with measure < 27". A set X is ML-random if
X €, U, for any ML-test.

This can be relativized, but Turing and uniformly
relativized ML-randomness are the same.

A Schnorr test is a ML-test with computable measures.
Schnorr randomness is defined similarly.

It turns out that there exists a set A such that Schnorr
randomness Turing relative to A is different from
Schnorr randomness uniformly relative to A.

Ques. For which one? high sets?
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Other characterizations

Randomness can be characterized via complexity,

martingales, integral tests.
Randomness with uniform relativization also can be

done via them.
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it vs uniform

For a random set, there is no reduction to the oracle, so
this is not about the reduction but about the
relativization.

Why not calling tt-relativization?

The oracle space may be |0, 1]; in that case the
relativization depends on the names.

We need to consider O and |0, 1], not appropriate to call
them tt-reduction.

The key is the totality of the functions, and we require
the functions work for all oracles uniformly.
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ML-Randomness

The following are equivalent for X € 2¢:

(i) X is ML-random.
ii)) K(X [n)>n—0(1) (Levin-Schnorr, Chaitin
1970s)
i) C(X [ n)>n—K(n)—0(1) (Miller-Yu 2008)

where K Is the prefix-free Kolmogorov complexity and C
IS the plain Kolmogorov complexity.
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Schnorr Randomness

The following are equivalent for X € 2¢:

(i) X is Schnorr random

i) Ky (X [ n)>n—0O(1) for every computable
measure machines M (Downey-Griffiths 2004)

(iii)) Ky (X [ n) >n— f(n)—O(1) for every prefix-free
decidable machine M and every computable
order f (Bienvenu-Merkle 2007)

iv) Cy(X [ n)>n— Ky(n)— O(1) for every total
machine M and every computable measure
machine N (Miyabe 2016)
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Decidable machines

An order Is a computable function f : w — w that is
unbounded and nondecreasing.

A machine is called decidable if its domain is
computable.
The measure of a machine M :C 2<% — 2<% s

Z 9l

oedom (M)

which is left-c.e. but not computable in general.

A computable measure machine is a machine whose
measure is computable.

Every computable measure machine is decidable.
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Lowness

A C wislow for MLR if MLR(A) = MLR.
Aislow for K if K(0) < K4(o) + O(1).
They are equivalent!

A is unif. low for SR if SR"(A) = SR.
A 1s uniformly low for computable measure machines if
VM :u.c.m.m. dN : c.m.m. s.i.

Kn(o) < Kya(o) +O(1).

They are equivalent (Miyabe 2011, Franklin-Stephan
2010).
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Lowness via pdm, tm

Theorem 1 (M.).
The following are equivalent for A € 2%:

(1) A is unif. low for Schnorr randomness
(i) VM :updmVf : order AN : pdm s.t.

Kn(n) < Kya(n) + f(n).

(1)) VM :utmVf : order AN : tm s.t.

Cn(n) < Kya(n) + f(n).

No characterization of lowness for MLR via C' is known.
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Reducibility version

Recall that

<LKk <= <LR;
which is a reducibility version of the equivalence
between lowness for K and lowness for MLR.

The equivalence above also has a corresponding
reducibility version.
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Another remark

The results above were inspired by the following result:

Theorem 2 (Bienvenu-Merkle 2007). A is computably
traceable iff
VM : pdm with oracles Vh : order AN : pdm s.t.

Ky(0) < Kjj(o) + h(Kj (o)) + O(1).

Computable traceability is equivalent to Turing lowness
for Schnorr randomness.

The complexities w.r.t. a uniform machine can be
computably bounded from below.
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Triviality
A<g Bif

K(ATn)<K(BTIln)+O0(1).

K-trivial reals are the bottom class in K-reducibility.

A<g., BItVM :c.m.m.dN :c.m.m. s.i.
Ky(An) < Ky(B[n)+O(1).

Schnorr trivial reals are the bottom class in Schnorr
reducibility.
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Via decidable machines

Theorem 3 (M. 2015).
A <g., B iff
VM : pdmVf : order AN : pdm s.t.

Ky(A T n) < Ky(B[n)+ f(n)+O0(1).

In particular, Schnorr triviality can be characterized via
pdm.
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Via total machines

The following is from Holzl-Merkle 2010.
A set A is totally I.o. complex if dg : order s.t.
VM :tm 3%°n € w

Cu(A T g(n)) >n.

They showed that its negation is equivalent to
computable tt-traceability, which in turn is equivalent
Schnorr triviality.

So Schnorr triviality can be characterized via total
machines!!
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Question

Note that the negation is equivalent to
VM :tmVf :order 4N : tm s.t.

Question 4. A <., B iff
VM :tm Vf : order 9N : tm s.t.

Cn(ATn) <Cu(Bn)+ f(n)?

Any suggestion to <,=<k.
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Triviality
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End

Thank you for listening.

\/ BBakE

MELJI UNIVERSITY
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