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Lowness
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The jump of A ⊆ ω is the halting problem relative to A:

A′ = {n : ΦA
n (n) ↓}

For any A,B,

A ≤T B ⇒ A′ ≤T B′

A is low if
A′ ≡T ∅′

which is close to computable w.r.t. the jump operator.



Low for ML-randomness
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For any A,B ⊆ ω,

A ≤T B ⇒ MLR(B) ⊆ MLR(A)

A is low for ML-randomness if

MLR(A) = MLR

Surprisingly, it has many characterizations such as

(i) lowness for K,
(ii) K-triviality,

(iii) being a base for ML-randomness.



Uniformly Low for SR
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For Schnorr randomness, we have the following
equivalence:

(i) uniformly low for Schnorr randomness,
(ii) uniformly low for computable measure machines,

(iii) Schnorr triviality,
(iv) being a base for uniform Schnorr tests.

We need uniform relativization.



Goal
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For the former half,
we give a basic introduction to uniform relativization.
(This finding was almost a decade ago.)

For the latter half,
we give further equivalences via prefix-free decidable
machines and total machines,
no counterpart in ML-randomness.
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Turing and tt-reducibility
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A is Turing reducible to B if A is computable by a Turing
machine with an oracle B.
In this case, it is often called that A is computable
(Turing) relative to B.

A is truth-table reducible to (or tt-reducible to) B if the
reduction is total, which means the computation works
for any oracle X ⊆ ω.
Some researchers say that A is tt-computable relative to
B.
Roughly speaking, uniform relativization is this tt-version
of relativization.



Open set
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Cantor space 2ω is the class of infinite binary sequences
equipped with the topology generated by the cylinder
sets

[σ] = {X ∈ 2ω : σ ≺ X}

as a basis.
An open set U on 2ω is called c.e. if there exists a
computable sequence {σn} of finite binary strings such
that

U =
⋃

n

[σn]

This is sometimes called inner approximation.



Representation
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An open set U is c.e. Turing relative to A ∈ 2ω if there
exists a sequence {σn} computable relative to A such
that U =

⋃
n[σn].

Let O be the class of open sets. Define θ : ωω → O as
follows: For an input p = {p(n)}n ∈ ωω,

θ(p) =
⋃

n

[σp(n)]

where σk is the k-th binary string.
Then, U is c.e. Turing relative to A iff there exists a
computable function Φ :⊆ 2ω → ωω such that
U = θ(Φ(A)) as usual in computabele analysis.



Uniform relativization

11 / 32

U is c.e. Turing relative to A iff ∃Φ :⊆ 2ω → ωω (partial
comp.) s.t. U = θ(Φ(A)).
U is c.e. uniformly relative to A iff ∃Φ : 2ω → ωω (total
comp.) s.t. U = θ(Φ(A)).

For a given partial Φ, we can construct a total
computable function Φ̂ extending Φ (by adding the
special string indicating the empty set on 2ω).
Thus, U is c.e. Turing relative to A if and only if U is c.e.
uniformly relative to A.



With measure restriction
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Suppose that U is c.e. Turing relative to A with measure
≤ 2−n via a partial comp. Φ.
Then, we can construct a total comp. Φ̂ extending Φ by
enumerating the strings as long as the measure is
≤ 2−n.
Again, Turing relativization is equivalent to uniform
relativization in this case.
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With computable measure
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Finally suppose that U is c.e. Turing relative to A with
A-comp. measure ≤ 2−n via

(i) a partial comp. Φ (to compute U ) and
(ii) another partial comp. f : 2ω → R (to compute the

measure).

Then, we can not extend them to total comp.
This can be proved by using the difference between
Turing reducibility and tt-reducibility.



Randomness
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A Martin-Löf test (ML-test) is a comp. seq. {Un} of c.e.
open sets with measure ≤ 2−n. A set X is ML-random if
X 6∈

⋂
n Un for any ML-test.

This can be relativized, but Turing and uniformly
relativized ML-randomness are the same.

A Schnorr test is a ML-test with computable measures.
Schnorr randomness is defined similarly.
It turns out that there exists a set A such that Schnorr
randomness Turing relative to A is different from
Schnorr randomness uniformly relative to A.
Ques. For which one? high sets?



Other characterizations
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Randomness can be characterized via complexity,
martingales, integral tests.
Randomness with uniform relativization also can be
done via them.



tt vs uniform
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For a random set, there is no reduction to the oracle, so
this is not about the reduction but about the
relativization.

Why not calling tt-relativization?
The oracle space may be [0, 1]; in that case the
relativization depends on the names.
We need to consider O and [0, 1], not appropriate to call
them tt-reduction.
The key is the totality of the functions, and we require
the functions work for all oracles uniformly.
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ML-Randomness
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The following are equivalent for X ∈ 2ω:

(i) X is ML-random.
(ii) K(X ↾ n) > n−O(1) (Levin-Schnorr, Chaitin

1970s)
(iii) C(X ↾ n) > n−K(n)−O(1) (Miller-Yu 2008)

where K is the prefix-free Kolmogorov complexity and C

is the plain Kolmogorov complexity.



Schnorr Randomness
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The following are equivalent for X ∈ 2ω:

(i) X is Schnorr random
(ii) KM(X ↾ n) > n−O(1) for every computable

measure machines M (Downey-Griffiths 2004)
(iii) KM(X ↾ n) > n− f(n)−O(1) for every prefix-free

decidable machine M and every computable
order f (Bienvenu-Merkle 2007)

(iv) CM(X ↾ n) > n−KN(n)−O(1) for every total
machine M and every computable measure
machine N (Miyabe 2016)



Decidable machines
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An order is a computable function f : ω → ω that is
unbounded and nondecreasing.

A machine is called decidable if its domain is
computable.
The measure of a machine M :⊆ 2<ω → 2<ω is

∑

σ∈dom(M)

2−|σ|,

which is left-c.e. but not computable in general.
A computable measure machine is a machine whose
measure is computable.
Every computable measure machine is decidable.



Lowness
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A ⊆ ω is low for MLR if MLR(A) = MLR.
A is low for K if K(σ) ≤ KA(σ) +O(1).
They are equivalent!

A is unif. low for SR if SR∗(A) = SR.
A is uniformly low for computable measure machines if
∀M : u.c.m.m. ∃N : c.m.m. s.t.

KN(σ) ≤ KMA(σ) +O(1).

They are equivalent (Miyabe 2011, Franklin-Stephan
2010).



Lowness via pdm, tm
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Theorem 1 (M.).
The following are equivalent for A ∈ 2ω:

(i) A is unif. low for Schnorr randomness
(ii) ∀M : updm ∀f : order ∃N : pdm s.t.

KN(n) ≤ KMA(n) + f(n).

(iii) ∀M : utm ∀f : order ∃N : tm s.t.

CN(n) ≤ KMA(n) + f(n).

No characterization of lowness for MLR via C is known.



Reducibility version
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Recall that
≤LK ⇐⇒ ≤LR,

which is a reducibility version of the equivalence
between lowness for K and lowness for MLR.

The equivalence above also has a corresponding
reducibility version.



Another remark
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The results above were inspired by the following result:

Theorem 2 (Bienvenu-Merkle 2007). A is computably
traceable iff
∀M : pdm with oracles ∀h : order ∃N : pdm s.t.

KN(σ) ≤ KA
M(σ) + h(KA

M(σ)) +O(1).

Computable traceability is equivalent to Turing lowness
for Schnorr randomness.
The complexities w.r.t. a uniform machine can be
computably bounded from below.
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Triviality
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A ≤K B if

K(A ↾ n) ≤ K(B ↾ n) +O(1).

K-trivial reals are the bottom class in K-reducibility.

A ≤Sch B if ∀M : c.m.m. ∃N : c.m.m. s.t.

KN(A ↾ n) ≤ KM(B ↾ n) +O(1).

Schnorr trivial reals are the bottom class in Schnorr
reducibility.



Via decidable machines
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Theorem 3 (M. 2015).
A ≤Sch B iff
∀M : pdm ∀f : order ∃N : pdm s.t.

KN(A ↾ n) ≤ KM(B ↾ n) + f(n) +O(1).

In particular, Schnorr triviality can be characterized via
pdm.



Via total machines
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The following is from Hölzl-Merkle 2010.
A set A is totally i.o. complex if ∃g : order s.t.
∀M : tm ∃∞n ∈ ω

CM(A ↾ g(n)) ≥ n.

They showed that its negation is equivalent to
computable tt-traceability, which in turn is equivalent
Schnorr triviality.
So Schnorr triviality can be characterized via total
machines!!



Question

30 / 32

Note that the negation is equivalent to
∀M : tm ∀f : order ∃N : tm s.t.

CN(A ↾ n) ≤ CM(n) + f(n).

Question 4. A ≤Sch B iff
∀M : tm ∀f : order ∃N : tm s.t.

CN(A ↾ n) ≤ CM(B ↾ n) + f(n)?

Any suggestion to ≤C⇒≤K .
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End
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Thank you for listening.
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